summaryrefslogtreecommitdiffstats
path: root/modules/freetype2/src/smooth/ftgrays.c
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /modules/freetype2/src/smooth/ftgrays.c
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'modules/freetype2/src/smooth/ftgrays.c')
-rw-r--r--modules/freetype2/src/smooth/ftgrays.c2057
1 files changed, 2057 insertions, 0 deletions
diff --git a/modules/freetype2/src/smooth/ftgrays.c b/modules/freetype2/src/smooth/ftgrays.c
new file mode 100644
index 000000000..ba42c9ca9
--- /dev/null
+++ b/modules/freetype2/src/smooth/ftgrays.c
@@ -0,0 +1,2057 @@
+/***************************************************************************/
+/* */
+/* ftgrays.c */
+/* */
+/* A new `perfect' anti-aliasing renderer (body). */
+/* */
+/* Copyright 2000-2016 by */
+/* David Turner, Robert Wilhelm, and Werner Lemberg. */
+/* */
+/* This file is part of the FreeType project, and may only be used, */
+/* modified, and distributed under the terms of the FreeType project */
+/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
+/* this file you indicate that you have read the license and */
+/* understand and accept it fully. */
+/* */
+/***************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* This file can be compiled without the rest of the FreeType engine, by */
+ /* defining the STANDALONE_ macro when compiling it. You also need to */
+ /* put the files `ftgrays.h' and `ftimage.h' into the current */
+ /* compilation directory. Typically, you could do something like */
+ /* */
+ /* - copy `src/smooth/ftgrays.c' (this file) to your current directory */
+ /* */
+ /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
+ /* same directory */
+ /* */
+ /* - compile `ftgrays' with the STANDALONE_ macro defined, as in */
+ /* */
+ /* cc -c -DSTANDALONE_ ftgrays.c */
+ /* */
+ /* The renderer can be initialized with a call to */
+ /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated */
+ /* with a call to `ft_gray_raster.raster_render'. */
+ /* */
+ /* See the comments and documentation in the file `ftimage.h' for more */
+ /* details on how the raster works. */
+ /* */
+ /*************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* This is a new anti-aliasing scan-converter for FreeType 2. The */
+ /* algorithm used here is _very_ different from the one in the standard */
+ /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */
+ /* coverage of the outline on each pixel cell. */
+ /* */
+ /* It is based on ideas that I initially found in Raph Levien's */
+ /* excellent LibArt graphics library (see http://www.levien.com/libart */
+ /* for more information, though the web pages do not tell anything */
+ /* about the renderer; you'll have to dive into the source code to */
+ /* understand how it works). */
+ /* */
+ /* Note, however, that this is a _very_ different implementation */
+ /* compared to Raph's. Coverage information is stored in a very */
+ /* different way, and I don't use sorted vector paths. Also, it doesn't */
+ /* use floating point values. */
+ /* */
+ /* This renderer has the following advantages: */
+ /* */
+ /* - It doesn't need an intermediate bitmap. Instead, one can supply a */
+ /* callback function that will be called by the renderer to draw gray */
+ /* spans on any target surface. You can thus do direct composition on */
+ /* any kind of bitmap, provided that you give the renderer the right */
+ /* callback. */
+ /* */
+ /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */
+ /* each pixel cell. */
+ /* */
+ /* - It performs a single pass on the outline (the `standard' FT2 */
+ /* renderer makes two passes). */
+ /* */
+ /* - It can easily be modified to render to _any_ number of gray levels */
+ /* cheaply. */
+ /* */
+ /* - For small (< 20) pixel sizes, it is faster than the standard */
+ /* renderer. */
+ /* */
+ /*************************************************************************/
+
+
+ /*************************************************************************/
+ /* */
+ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */
+ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
+ /* messages during execution. */
+ /* */
+#undef FT_COMPONENT
+#define FT_COMPONENT trace_smooth
+
+
+#ifdef STANDALONE_
+
+
+ /* The size in bytes of the render pool used by the scan-line converter */
+ /* to do all of its work. */
+#define FT_RENDER_POOL_SIZE 16384L
+
+
+ /* Auxiliary macros for token concatenation. */
+#define FT_ERR_XCAT( x, y ) x ## y
+#define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y )
+
+#define FT_BEGIN_STMNT do {
+#define FT_END_STMNT } while ( 0 )
+
+#define FT_MIN( a, b ) ( (a) < (b) ? (a) : (b) )
+#define FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) )
+#define FT_ABS( a ) ( (a) < 0 ? -(a) : (a) )
+
+
+ /*
+ * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
+ * algorithm. We use alpha = 1, beta = 3/8, giving us results with a
+ * largest error less than 7% compared to the exact value.
+ */
+#define FT_HYPOT( x, y ) \
+ ( x = FT_ABS( x ), \
+ y = FT_ABS( y ), \
+ x > y ? x + ( 3 * y >> 3 ) \
+ : y + ( 3 * x >> 3 ) )
+
+
+ /* define this to dump debugging information */
+/* #define FT_DEBUG_LEVEL_TRACE */
+
+
+#ifdef FT_DEBUG_LEVEL_TRACE
+#include <stdio.h>
+#include <stdarg.h>
+#endif
+
+#include <stddef.h>
+#include <string.h>
+#include <setjmp.h>
+#include <limits.h>
+#define FT_CHAR_BIT CHAR_BIT
+#define FT_UINT_MAX UINT_MAX
+#define FT_INT_MAX INT_MAX
+#define FT_ULONG_MAX ULONG_MAX
+
+#define ft_memset memset
+
+#define ft_setjmp setjmp
+#define ft_longjmp longjmp
+#define ft_jmp_buf jmp_buf
+
+typedef ptrdiff_t FT_PtrDist;
+
+
+#define ErrRaster_Invalid_Mode -2
+#define ErrRaster_Invalid_Outline -1
+#define ErrRaster_Invalid_Argument -3
+#define ErrRaster_Memory_Overflow -4
+
+#define FT_BEGIN_HEADER
+#define FT_END_HEADER
+
+#include "ftimage.h"
+#include "ftgrays.h"
+
+
+ /* This macro is used to indicate that a function parameter is unused. */
+ /* Its purpose is simply to reduce compiler warnings. Note also that */
+ /* simply defining it as `(void)x' doesn't avoid warnings with certain */
+ /* ANSI compilers (e.g. LCC). */
+#define FT_UNUSED( x ) (x) = (x)
+
+
+ /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
+
+#ifdef FT_DEBUG_LEVEL_TRACE
+
+ void
+ FT_Message( const char* fmt,
+ ... )
+ {
+ va_list ap;
+
+
+ va_start( ap, fmt );
+ vfprintf( stderr, fmt, ap );
+ va_end( ap );
+ }
+
+
+ /* empty function useful for setting a breakpoint to catch errors */
+ int
+ FT_Throw( int error,
+ int line,
+ const char* file )
+ {
+ FT_UNUSED( error );
+ FT_UNUSED( line );
+ FT_UNUSED( file );
+
+ return 0;
+ }
+
+
+ /* we don't handle tracing levels in stand-alone mode; */
+#ifndef FT_TRACE5
+#define FT_TRACE5( varformat ) FT_Message varformat
+#endif
+#ifndef FT_TRACE7
+#define FT_TRACE7( varformat ) FT_Message varformat
+#endif
+#ifndef FT_ERROR
+#define FT_ERROR( varformat ) FT_Message varformat
+#endif
+
+#define FT_THROW( e ) \
+ ( FT_Throw( FT_ERR_CAT( ErrRaster, e ), \
+ __LINE__, \
+ __FILE__ ) | \
+ FT_ERR_CAT( ErrRaster, e ) )
+
+#else /* !FT_DEBUG_LEVEL_TRACE */
+
+#define FT_TRACE5( x ) do { } while ( 0 ) /* nothing */
+#define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */
+#define FT_ERROR( x ) do { } while ( 0 ) /* nothing */
+#define FT_THROW( e ) FT_ERR_CAT( ErrRaster_, e )
+
+
+#endif /* !FT_DEBUG_LEVEL_TRACE */
+
+
+#define FT_DEFINE_OUTLINE_FUNCS( class_, \
+ move_to_, line_to_, \
+ conic_to_, cubic_to_, \
+ shift_, delta_ ) \
+ static const FT_Outline_Funcs class_ = \
+ { \
+ move_to_, \
+ line_to_, \
+ conic_to_, \
+ cubic_to_, \
+ shift_, \
+ delta_ \
+ };
+
+#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, \
+ raster_new_, raster_reset_, \
+ raster_set_mode_, raster_render_, \
+ raster_done_ ) \
+ const FT_Raster_Funcs class_ = \
+ { \
+ glyph_format_, \
+ raster_new_, \
+ raster_reset_, \
+ raster_set_mode_, \
+ raster_render_, \
+ raster_done_ \
+ };
+
+
+#else /* !STANDALONE_ */
+
+
+#include <ft2build.h>
+#include "ftgrays.h"
+#include FT_INTERNAL_OBJECTS_H
+#include FT_INTERNAL_DEBUG_H
+#include FT_OUTLINE_H
+
+#include "ftsmerrs.h"
+
+#include "ftspic.h"
+
+#define Smooth_Err_Invalid_Mode Smooth_Err_Cannot_Render_Glyph
+#define Smooth_Err_Memory_Overflow Smooth_Err_Out_Of_Memory
+#define ErrRaster_Memory_Overflow Smooth_Err_Out_Of_Memory
+
+
+#endif /* !STANDALONE_ */
+
+
+#ifndef FT_MEM_SET
+#define FT_MEM_SET( d, s, c ) ft_memset( d, s, c )
+#endif
+
+#ifndef FT_MEM_ZERO
+#define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count )
+#endif
+
+#ifndef FT_ZERO
+#define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) )
+#endif
+
+ /* as usual, for the speed hungry :-) */
+
+#undef RAS_ARG
+#undef RAS_ARG_
+#undef RAS_VAR
+#undef RAS_VAR_
+
+#ifndef FT_STATIC_RASTER
+
+#define RAS_ARG gray_PWorker worker
+#define RAS_ARG_ gray_PWorker worker,
+
+#define RAS_VAR worker
+#define RAS_VAR_ worker,
+
+#else /* FT_STATIC_RASTER */
+
+#define RAS_ARG void
+#define RAS_ARG_ /* empty */
+#define RAS_VAR /* empty */
+#define RAS_VAR_ /* empty */
+
+#endif /* FT_STATIC_RASTER */
+
+
+ /* must be at least 6 bits! */
+#define PIXEL_BITS 8
+
+#undef FLOOR
+#undef CEILING
+#undef TRUNC
+#undef SCALED
+
+#define ONE_PIXEL ( 1 << PIXEL_BITS )
+#define TRUNC( x ) ( (TCoord)( (x) >> PIXEL_BITS ) )
+#define SUBPIXELS( x ) ( (TPos)(x) * ONE_PIXEL )
+#define FLOOR( x ) ( (x) & -ONE_PIXEL )
+#define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
+#define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
+
+#if PIXEL_BITS >= 6
+#define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) )
+#define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) )
+#else
+#define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) )
+#define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) )
+#endif
+
+
+ /* Compute `dividend / divisor' and return both its quotient and */
+ /* remainder, cast to a specific type. This macro also ensures that */
+ /* the remainder is always positive. */
+#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
+ FT_BEGIN_STMNT \
+ (quotient) = (type)( (dividend) / (divisor) ); \
+ (remainder) = (type)( (dividend) % (divisor) ); \
+ if ( (remainder) < 0 ) \
+ { \
+ (quotient)--; \
+ (remainder) += (type)(divisor); \
+ } \
+ FT_END_STMNT
+
+#ifdef __arm__
+ /* Work around a bug specific to GCC which make the compiler fail to */
+ /* optimize a division and modulo operation on the same parameters */
+ /* into a single call to `__aeabi_idivmod'. See */
+ /* */
+ /* http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 */
+#undef FT_DIV_MOD
+#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
+ FT_BEGIN_STMNT \
+ (quotient) = (type)( (dividend) / (divisor) ); \
+ (remainder) = (type)( (dividend) - (quotient) * (divisor) ); \
+ if ( (remainder) < 0 ) \
+ { \
+ (quotient)--; \
+ (remainder) += (type)(divisor); \
+ } \
+ FT_END_STMNT
+#endif /* __arm__ */
+
+
+ /* These macros speed up repetitive divisions by replacing them */
+ /* with multiplications and right shifts. */
+#define FT_UDIVPREP( c, b ) \
+ long b ## _r = c ? (long)( FT_ULONG_MAX >> PIXEL_BITS ) / ( b ) \
+ : 0
+#define FT_UDIV( a, b ) \
+ ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >> \
+ ( sizeof( long ) * FT_CHAR_BIT - PIXEL_BITS ) )
+
+
+ /*************************************************************************/
+ /* */
+ /* TYPE DEFINITIONS */
+ /* */
+
+ /* don't change the following types to FT_Int or FT_Pos, since we might */
+ /* need to define them to "float" or "double" when experimenting with */
+ /* new algorithms */
+
+ typedef long TPos; /* sub-pixel coordinate */
+ typedef int TCoord; /* integer scanline/pixel coordinate */
+ typedef int TArea; /* cell areas, coordinate products */
+
+
+ typedef struct TCell_* PCell;
+
+ typedef struct TCell_
+ {
+ TCoord x; /* same with gray_TWorker.ex */
+ TCoord cover; /* same with gray_TWorker.cover */
+ TArea area;
+ PCell next;
+
+ } TCell;
+
+ typedef struct TPixmap_
+ {
+ unsigned char* origin; /* pixmap origin at the bottom-left */
+ int pitch; /* pitch to go down one row */
+
+ } TPixmap;
+
+ /* maximum number of gray cells in the buffer */
+#if FT_RENDER_POOL_SIZE > 2048
+#define FT_MAX_GRAY_POOL ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) )
+#else
+#define FT_MAX_GRAY_POOL ( 2048 / sizeof ( TCell ) )
+#endif
+
+
+#if defined( _MSC_VER ) /* Visual C++ (and Intel C++) */
+ /* We disable the warning `structure was padded due to */
+ /* __declspec(align())' in order to compile cleanly with */
+ /* the maximum level of warnings. */
+#pragma warning( push )
+#pragma warning( disable : 4324 )
+#endif /* _MSC_VER */
+
+ typedef struct gray_TWorker_
+ {
+ ft_jmp_buf jump_buffer;
+
+ TCoord ex, ey;
+ TCoord min_ex, max_ex;
+ TCoord min_ey, max_ey;
+
+ TArea area;
+ TCoord cover;
+ int invalid;
+
+ PCell* ycells;
+ PCell cells;
+ FT_PtrDist max_cells;
+ FT_PtrDist num_cells;
+
+ TPos x, y;
+
+ FT_Outline outline;
+ TPixmap target;
+
+ FT_Raster_Span_Func render_span;
+ void* render_span_data;
+
+ } gray_TWorker, *gray_PWorker;
+
+#if defined( _MSC_VER )
+#pragma warning( pop )
+#endif
+
+
+#ifndef FT_STATIC_RASTER
+#define ras (*worker)
+#else
+ static gray_TWorker ras;
+#endif
+
+
+ typedef struct gray_TRaster_
+ {
+ void* memory;
+
+ } gray_TRaster, *gray_PRaster;
+
+
+#ifdef FT_DEBUG_LEVEL_TRACE
+
+ /* to be called while in the debugger -- */
+ /* this function causes a compiler warning since it is unused otherwise */
+ static void
+ gray_dump_cells( RAS_ARG )
+ {
+ int y;
+
+
+ for ( y = ras.min_ey; y < ras.max_ey; y++ )
+ {
+ PCell cell = ras.ycells[y - ras.min_ey];
+
+
+ printf( "%3d:", y );
+
+ for ( ; cell != NULL; cell = cell->next )
+ printf( " (%3d, c:%4d, a:%6d)",
+ cell->x, cell->cover, cell->area );
+ printf( "\n" );
+ }
+ }
+
+#endif /* FT_DEBUG_LEVEL_TRACE */
+
+
+ /*************************************************************************/
+ /* */
+ /* Record the current cell in the table. */
+ /* */
+ static void
+ gray_record_cell( RAS_ARG )
+ {
+ PCell *pcell, cell;
+ TCoord x = ras.ex;
+
+
+ pcell = &ras.ycells[ras.ey - ras.min_ey];
+ for (;;)
+ {
+ cell = *pcell;
+ if ( !cell || cell->x > x )
+ break;
+
+ if ( cell->x == x )
+ goto Found;
+
+ pcell = &cell->next;
+ }
+
+ if ( ras.num_cells >= ras.max_cells )
+ ft_longjmp( ras.jump_buffer, 1 );
+
+ /* insert new cell */
+ cell = ras.cells + ras.num_cells++;
+ cell->x = x;
+ cell->area = ras.area;
+ cell->cover = ras.cover;
+
+ cell->next = *pcell;
+ *pcell = cell;
+
+ return;
+
+ Found:
+ /* update old cell */
+ cell->area += ras.area;
+ cell->cover += ras.cover;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Set the current cell to a new position. */
+ /* */
+ static void
+ gray_set_cell( RAS_ARG_ TCoord ex,
+ TCoord ey )
+ {
+ /* Move the cell pointer to a new position. We set the `invalid' */
+ /* flag to indicate that the cell isn't part of those we're interested */
+ /* in during the render phase. This means that: */
+ /* */
+ /* . the new vertical position must be within min_ey..max_ey-1. */
+ /* . the new horizontal position must be strictly less than max_ex */
+ /* */
+ /* Note that if a cell is to the left of the clipping region, it is */
+ /* actually set to the (min_ex-1) horizontal position. */
+
+ /* All cells that are on the left of the clipping region go to the */
+ /* min_ex - 1 horizontal position. */
+
+ if ( ex < ras.min_ex )
+ ex = ras.min_ex - 1;
+
+ /* record the current one if it is valid */
+ if ( !ras.invalid )
+ gray_record_cell( RAS_VAR );
+
+ ras.area = 0;
+ ras.cover = 0;
+ ras.ex = ex;
+ ras.ey = ey;
+
+ ras.invalid = ( ey >= ras.max_ey || ey < ras.min_ey ||
+ ex >= ras.max_ex );
+ }
+
+
+#ifndef FT_LONG64
+
+ /*************************************************************************/
+ /* */
+ /* Render a scanline as one or more cells. */
+ /* */
+ static void
+ gray_render_scanline( RAS_ARG_ TCoord ey,
+ TPos x1,
+ TCoord y1,
+ TPos x2,
+ TCoord y2 )
+ {
+ TCoord ex1, ex2, fx1, fx2, first, delta, mod;
+ TPos p, dx;
+ int incr;
+
+
+ ex1 = TRUNC( x1 );
+ ex2 = TRUNC( x2 );
+
+ /* trivial case. Happens often */
+ if ( y1 == y2 )
+ {
+ gray_set_cell( RAS_VAR_ ex2, ey );
+ return;
+ }
+
+ fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
+ fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
+ delta = y2 - y1;
+
+ /* everything is located in a single cell. That is easy! */
+ /* */
+ if ( ex1 == ex2 )
+ {
+ ras.area += (TArea)(( fx1 + fx2 ) * delta);
+ ras.cover += delta;
+ return;
+ }
+
+ /* ok, we'll have to render a run of adjacent cells on the same */
+ /* scanline... */
+ /* */
+ dx = x2 - x1;
+
+ if ( dx > 0 )
+ {
+ p = ( ONE_PIXEL - fx1 ) * delta;
+ first = ONE_PIXEL;
+ incr = 1;
+ }
+ else
+ {
+ p = fx1 * delta;
+ first = 0;
+ incr = -1;
+ dx = -dx;
+ }
+
+ FT_DIV_MOD( TCoord, p, dx, delta, mod );
+
+ ras.area += (TArea)(( fx1 + first ) * delta);
+ ras.cover += delta;
+
+ ex1 += incr;
+ gray_set_cell( RAS_VAR_ ex1, ey );
+ y1 += delta;
+
+ if ( ex1 != ex2 )
+ {
+ TCoord lift, rem;
+
+
+ p = ONE_PIXEL * ( y2 - y1 + delta );
+ FT_DIV_MOD( TCoord, p, dx, lift, rem );
+
+ mod -= (int)dx;
+
+ do
+ {
+ delta = lift;
+ mod += rem;
+ if ( mod >= 0 )
+ {
+ mod -= (TCoord)dx;
+ delta++;
+ }
+
+ ras.area += (TArea)(ONE_PIXEL * delta);
+ ras.cover += delta;
+ y1 += delta;
+ ex1 += incr;
+ gray_set_cell( RAS_VAR_ ex1, ey );
+ } while ( ex1 != ex2 );
+ }
+
+ delta = y2 - y1;
+ ras.area += (TArea)(( fx2 + ONE_PIXEL - first ) * delta);
+ ras.cover += delta;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Render a given line as a series of scanlines. */
+ /* */
+ static void
+ gray_render_line( RAS_ARG_ TPos to_x,
+ TPos to_y )
+ {
+ TCoord ey1, ey2, fy1, fy2, first, delta, mod;
+ TPos p, dx, dy, x, x2;
+ int incr;
+
+
+ ey1 = TRUNC( ras.y );
+ ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
+
+ /* perform vertical clipping */
+ if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
+ ( ey1 < ras.min_ey && ey2 < ras.min_ey ) )
+ goto End;
+
+ fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) );
+ fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
+
+ /* everything is on a single scanline */
+ if ( ey1 == ey2 )
+ {
+ gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
+ goto End;
+ }
+
+ dx = to_x - ras.x;
+ dy = to_y - ras.y;
+
+ /* vertical line - avoid calling gray_render_scanline */
+ if ( dx == 0 )
+ {
+ TCoord ex = TRUNC( ras.x );
+ TCoord two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
+ TArea area;
+
+
+ if ( dy > 0)
+ {
+ first = ONE_PIXEL;
+ incr = 1;
+ }
+ else
+ {
+ first = 0;
+ incr = -1;
+ }
+
+ delta = first - fy1;
+ ras.area += (TArea)two_fx * delta;
+ ras.cover += delta;
+ ey1 += incr;
+
+ gray_set_cell( RAS_VAR_ ex, ey1 );
+
+ delta = first + first - ONE_PIXEL;
+ area = (TArea)two_fx * delta;
+ while ( ey1 != ey2 )
+ {
+ ras.area += area;
+ ras.cover += delta;
+ ey1 += incr;
+
+ gray_set_cell( RAS_VAR_ ex, ey1 );
+ }
+
+ delta = fy2 - ONE_PIXEL + first;
+ ras.area += (TArea)two_fx * delta;
+ ras.cover += delta;
+
+ goto End;
+ }
+
+ /* ok, we have to render several scanlines */
+ if ( dy > 0)
+ {
+ p = ( ONE_PIXEL - fy1 ) * dx;
+ first = ONE_PIXEL;
+ incr = 1;
+ }
+ else
+ {
+ p = fy1 * dx;
+ first = 0;
+ incr = -1;
+ dy = -dy;
+ }
+
+ FT_DIV_MOD( TCoord, p, dy, delta, mod );
+
+ x = ras.x + delta;
+ gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first );
+
+ ey1 += incr;
+ gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
+
+ if ( ey1 != ey2 )
+ {
+ TCoord lift, rem;
+
+
+ p = ONE_PIXEL * dx;
+ FT_DIV_MOD( TCoord, p, dy, lift, rem );
+ mod -= (TCoord)dy;
+
+ do
+ {
+ delta = lift;
+ mod += rem;
+ if ( mod >= 0 )
+ {
+ mod -= (TCoord)dy;
+ delta++;
+ }
+
+ x2 = x + delta;
+ gray_render_scanline( RAS_VAR_ ey1,
+ x, ONE_PIXEL - first,
+ x2, first );
+ x = x2;
+
+ ey1 += incr;
+ gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
+ } while ( ey1 != ey2 );
+ }
+
+ gray_render_scanline( RAS_VAR_ ey1,
+ x, ONE_PIXEL - first,
+ to_x, fy2 );
+
+ End:
+ ras.x = to_x;
+ ras.y = to_y;
+ }
+
+#else
+
+ /*************************************************************************/
+ /* */
+ /* Render a straight line across multiple cells in any direction. */
+ /* */
+ static void
+ gray_render_line( RAS_ARG_ TPos to_x,
+ TPos to_y )
+ {
+ TPos dx, dy, fx1, fy1, fx2, fy2;
+ TCoord ex1, ex2, ey1, ey2;
+
+
+ ey1 = TRUNC( ras.y );
+ ey2 = TRUNC( to_y );
+
+ /* perform vertical clipping */
+ if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
+ ( ey1 < ras.min_ey && ey2 < ras.min_ey ) )
+ goto End;
+
+ ex1 = TRUNC( ras.x );
+ ex2 = TRUNC( to_x );
+
+ fx1 = ras.x - SUBPIXELS( ex1 );
+ fy1 = ras.y - SUBPIXELS( ey1 );
+
+ dx = to_x - ras.x;
+ dy = to_y - ras.y;
+
+ if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */
+ ;
+ else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */
+ {
+ ex1 = ex2;
+ gray_set_cell( RAS_VAR_ ex1, ey1 );
+ }
+ else if ( dx == 0 )
+ {
+ if ( dy > 0 ) /* vertical line up */
+ do
+ {
+ fy2 = ONE_PIXEL;
+ ras.cover += ( fy2 - fy1 );
+ ras.area += ( fy2 - fy1 ) * fx1 * 2;
+ fy1 = 0;
+ ey1++;
+ gray_set_cell( RAS_VAR_ ex1, ey1 );
+ } while ( ey1 != ey2 );
+ else /* vertical line down */
+ do
+ {
+ fy2 = 0;
+ ras.cover += ( fy2 - fy1 );
+ ras.area += ( fy2 - fy1 ) * fx1 * 2;
+ fy1 = ONE_PIXEL;
+ ey1--;
+ gray_set_cell( RAS_VAR_ ex1, ey1 );
+ } while ( ey1 != ey2 );
+ }
+ else /* any other line */
+ {
+ TPos prod = dx * fy1 - dy * fx1;
+ FT_UDIVPREP( ex1 != ex2, dx );
+ FT_UDIVPREP( ey1 != ey2, dy );
+
+
+ /* The fundamental value `prod' determines which side and the */
+ /* exact coordinate where the line exits current cell. It is */
+ /* also easily updated when moving from one cell to the next. */
+ do
+ {
+ if ( prod <= 0 &&
+ prod - dx * ONE_PIXEL > 0 ) /* left */
+ {
+ fx2 = 0;
+ fy2 = (TPos)FT_UDIV( -prod, -dx );
+ prod -= dy * ONE_PIXEL;
+ ras.cover += ( fy2 - fy1 );
+ ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
+ fx1 = ONE_PIXEL;
+ fy1 = fy2;
+ ex1--;
+ }
+ else if ( prod - dx * ONE_PIXEL <= 0 &&
+ prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 ) /* up */
+ {
+ prod -= dx * ONE_PIXEL;
+ fx2 = (TPos)FT_UDIV( -prod, dy );
+ fy2 = ONE_PIXEL;
+ ras.cover += ( fy2 - fy1 );
+ ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
+ fx1 = fx2;
+ fy1 = 0;
+ ey1++;
+ }
+ else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 &&
+ prod + dy * ONE_PIXEL >= 0 ) /* right */
+ {
+ prod += dy * ONE_PIXEL;
+ fx2 = ONE_PIXEL;
+ fy2 = (TPos)FT_UDIV( prod, dx );
+ ras.cover += ( fy2 - fy1 );
+ ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
+ fx1 = 0;
+ fy1 = fy2;
+ ex1++;
+ }
+ else /* ( prod + dy * ONE_PIXEL < 0 &&
+ prod > 0 ) down */
+ {
+ fx2 = (TPos)FT_UDIV( prod, -dy );
+ fy2 = 0;
+ prod += dx * ONE_PIXEL;
+ ras.cover += ( fy2 - fy1 );
+ ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
+ fx1 = fx2;
+ fy1 = ONE_PIXEL;
+ ey1--;
+ }
+
+ gray_set_cell( RAS_VAR_ ex1, ey1 );
+ } while ( ex1 != ex2 || ey1 != ey2 );
+ }
+
+ fx2 = to_x - SUBPIXELS( ex2 );
+ fy2 = to_y - SUBPIXELS( ey2 );
+
+ ras.cover += ( fy2 - fy1 );
+ ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
+
+ End:
+ ras.x = to_x;
+ ras.y = to_y;
+ }
+
+#endif
+
+ static void
+ gray_split_conic( FT_Vector* base )
+ {
+ TPos a, b;
+
+
+ base[4].x = base[2].x;
+ b = base[1].x;
+ a = base[3].x = ( base[2].x + b ) / 2;
+ b = base[1].x = ( base[0].x + b ) / 2;
+ base[2].x = ( a + b ) / 2;
+
+ base[4].y = base[2].y;
+ b = base[1].y;
+ a = base[3].y = ( base[2].y + b ) / 2;
+ b = base[1].y = ( base[0].y + b ) / 2;
+ base[2].y = ( a + b ) / 2;
+ }
+
+
+ static void
+ gray_render_conic( RAS_ARG_ const FT_Vector* control,
+ const FT_Vector* to )
+ {
+ FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */
+ FT_Vector* arc = bez_stack;
+ TPos dx, dy;
+ int draw, split;
+
+
+ arc[0].x = UPSCALE( to->x );
+ arc[0].y = UPSCALE( to->y );
+ arc[1].x = UPSCALE( control->x );
+ arc[1].y = UPSCALE( control->y );
+ arc[2].x = ras.x;
+ arc[2].y = ras.y;
+
+ /* short-cut the arc that crosses the current band */
+ if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
+ TRUNC( arc[1].y ) >= ras.max_ey &&
+ TRUNC( arc[2].y ) >= ras.max_ey ) ||
+ ( TRUNC( arc[0].y ) < ras.min_ey &&
+ TRUNC( arc[1].y ) < ras.min_ey &&
+ TRUNC( arc[2].y ) < ras.min_ey ) )
+ {
+ ras.x = arc[0].x;
+ ras.y = arc[0].y;
+ return;
+ }
+
+ dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
+ dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
+ if ( dx < dy )
+ dx = dy;
+
+ /* We can calculate the number of necessary bisections because */
+ /* each bisection predictably reduces deviation exactly 4-fold. */
+ /* Even 32-bit deviation would vanish after 16 bisections. */
+ draw = 1;
+ while ( dx > ONE_PIXEL / 4 )
+ {
+ dx >>= 2;
+ draw <<= 1;
+ }
+
+ /* We use decrement counter to count the total number of segments */
+ /* to draw starting from 2^level. Before each draw we split as */
+ /* many times as there are trailing zeros in the counter. */
+ do
+ {
+ split = 1;
+ while ( ( draw & split ) == 0 )
+ {
+ gray_split_conic( arc );
+ arc += 2;
+ split <<= 1;
+ }
+
+ gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
+ arc -= 2;
+
+ } while ( --draw );
+ }
+
+
+ static void
+ gray_split_cubic( FT_Vector* base )
+ {
+ TPos a, b, c, d;
+
+
+ base[6].x = base[3].x;
+ c = base[1].x;
+ d = base[2].x;
+ base[1].x = a = ( base[0].x + c ) / 2;
+ base[5].x = b = ( base[3].x + d ) / 2;
+ c = ( c + d ) / 2;
+ base[2].x = a = ( a + c ) / 2;
+ base[4].x = b = ( b + c ) / 2;
+ base[3].x = ( a + b ) / 2;
+
+ base[6].y = base[3].y;
+ c = base[1].y;
+ d = base[2].y;
+ base[1].y = a = ( base[0].y + c ) / 2;
+ base[5].y = b = ( base[3].y + d ) / 2;
+ c = ( c + d ) / 2;
+ base[2].y = a = ( a + c ) / 2;
+ base[4].y = b = ( b + c ) / 2;
+ base[3].y = ( a + b ) / 2;
+ }
+
+
+ static void
+ gray_render_cubic( RAS_ARG_ const FT_Vector* control1,
+ const FT_Vector* control2,
+ const FT_Vector* to )
+ {
+ FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */
+ FT_Vector* arc = bez_stack;
+ TPos dx, dy, dx_, dy_;
+ TPos dx1, dy1, dx2, dy2;
+ TPos L, s, s_limit;
+
+
+ arc[0].x = UPSCALE( to->x );
+ arc[0].y = UPSCALE( to->y );
+ arc[1].x = UPSCALE( control2->x );
+ arc[1].y = UPSCALE( control2->y );
+ arc[2].x = UPSCALE( control1->x );
+ arc[2].y = UPSCALE( control1->y );
+ arc[3].x = ras.x;
+ arc[3].y = ras.y;
+
+ /* short-cut the arc that crosses the current band */
+ if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
+ TRUNC( arc[1].y ) >= ras.max_ey &&
+ TRUNC( arc[2].y ) >= ras.max_ey &&
+ TRUNC( arc[3].y ) >= ras.max_ey ) ||
+ ( TRUNC( arc[0].y ) < ras.min_ey &&
+ TRUNC( arc[1].y ) < ras.min_ey &&
+ TRUNC( arc[2].y ) < ras.min_ey &&
+ TRUNC( arc[3].y ) < ras.min_ey ) )
+ {
+ ras.x = arc[0].x;
+ ras.y = arc[0].y;
+ return;
+ }
+
+ for (;;)
+ {
+ /* Decide whether to split or draw. See `Rapid Termination */
+ /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
+ /* F. Hain, at */
+ /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
+
+ /* dx and dy are x and y components of the P0-P3 chord vector. */
+ dx = dx_ = arc[3].x - arc[0].x;
+ dy = dy_ = arc[3].y - arc[0].y;
+
+ L = FT_HYPOT( dx_, dy_ );
+
+ /* Avoid possible arithmetic overflow below by splitting. */
+ if ( L > 32767 )
+ goto Split;
+
+ /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
+ s_limit = L * (TPos)( ONE_PIXEL / 6 );
+
+ /* s is L * the perpendicular distance from P1 to the line P0-P3. */
+ dx1 = arc[1].x - arc[0].x;
+ dy1 = arc[1].y - arc[0].y;
+ s = FT_ABS( dy * dx1 - dx * dy1 );
+
+ if ( s > s_limit )
+ goto Split;
+
+ /* s is L * the perpendicular distance from P2 to the line P0-P3. */
+ dx2 = arc[2].x - arc[0].x;
+ dy2 = arc[2].y - arc[0].y;
+ s = FT_ABS( dy * dx2 - dx * dy2 );
+
+ if ( s > s_limit )
+ goto Split;
+
+ /* Split super curvy segments where the off points are so far
+ from the chord that the angles P0-P1-P3 or P0-P2-P3 become
+ acute as detected by appropriate dot products. */
+ if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
+ dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
+ goto Split;
+
+ gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
+
+ if ( arc == bez_stack )
+ return;
+
+ arc -= 3;
+ continue;
+
+ Split:
+ gray_split_cubic( arc );
+ arc += 3;
+ }
+ }
+
+
+ static int
+ gray_move_to( const FT_Vector* to,
+ gray_PWorker worker )
+ {
+ TPos x, y;
+
+
+ /* start to a new position */
+ x = UPSCALE( to->x );
+ y = UPSCALE( to->y );
+
+ gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
+
+ ras.x = x;
+ ras.y = y;
+ return 0;
+ }
+
+
+ static int
+ gray_line_to( const FT_Vector* to,
+ gray_PWorker worker )
+ {
+ gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
+ return 0;
+ }
+
+
+ static int
+ gray_conic_to( const FT_Vector* control,
+ const FT_Vector* to,
+ gray_PWorker worker )
+ {
+ gray_render_conic( RAS_VAR_ control, to );
+ return 0;
+ }
+
+
+ static int
+ gray_cubic_to( const FT_Vector* control1,
+ const FT_Vector* control2,
+ const FT_Vector* to,
+ gray_PWorker worker )
+ {
+ gray_render_cubic( RAS_VAR_ control1, control2, to );
+ return 0;
+ }
+
+
+ static void
+ gray_hline( RAS_ARG_ TCoord x,
+ TCoord y,
+ TArea area,
+ TCoord acount )
+ {
+ int coverage;
+ FT_Span span;
+
+
+ /* compute the coverage line's coverage, depending on the */
+ /* outline fill rule */
+ /* */
+ /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
+ /* */
+ coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
+ /* use range 0..256 */
+ if ( coverage < 0 )
+ coverage = -coverage;
+
+ if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
+ {
+ coverage &= 511;
+
+ if ( coverage > 256 )
+ coverage = 512 - coverage;
+ else if ( coverage == 256 )
+ coverage = 255;
+ }
+ else
+ {
+ /* normal non-zero winding rule */
+ if ( coverage >= 256 )
+ coverage = 255;
+ }
+
+ if ( ras.render_span ) /* for FT_RASTER_FLAG_DIRECT only */
+ {
+ span.x = (short)x;
+ span.len = (unsigned short)acount;
+ span.coverage = (unsigned char)coverage;
+
+ ras.render_span( y, 1, &span, ras.render_span_data );
+ }
+ else
+ {
+ unsigned char* q = ras.target.origin - ras.target.pitch * y + x;
+ unsigned char c = (unsigned char)coverage;
+
+
+ /* For small-spans it is faster to do it by ourselves than
+ * calling `memset'. This is mainly due to the cost of the
+ * function call.
+ */
+ switch ( acount )
+ {
+ case 7: *q++ = c;
+ case 6: *q++ = c;
+ case 5: *q++ = c;
+ case 4: *q++ = c;
+ case 3: *q++ = c;
+ case 2: *q++ = c;
+ case 1: *q = c;
+ case 0: break;
+ default:
+ FT_MEM_SET( q, c, acount );
+ }
+ }
+ }
+
+
+ static void
+ gray_sweep( RAS_ARG )
+ {
+ int y;
+
+
+ FT_TRACE7(( "gray_sweep: start\n" ));
+
+ for ( y = ras.min_ey; y < ras.max_ey; y++ )
+ {
+ PCell cell = ras.ycells[y - ras.min_ey];
+ TCoord cover = 0;
+ TCoord x = ras.min_ex;
+
+
+ for ( ; cell != NULL; cell = cell->next )
+ {
+ TArea area;
+
+
+ if ( cover != 0 && cell->x > x )
+ gray_hline( RAS_VAR_ x, y, (TArea)cover * ( ONE_PIXEL * 2 ),
+ cell->x - x );
+
+ cover += cell->cover;
+ area = (TArea)cover * ( ONE_PIXEL * 2 ) - cell->area;
+
+ if ( area != 0 && cell->x >= ras.min_ex )
+ gray_hline( RAS_VAR_ cell->x, y, area, 1 );
+
+ x = cell->x + 1;
+ }
+
+ if ( cover != 0 )
+ gray_hline( RAS_VAR_ x, y, (TArea)cover * ( ONE_PIXEL * 2 ),
+ ras.max_ex - x );
+ }
+
+ FT_TRACE7(( "gray_sweep: end\n" ));
+ }
+
+
+#ifdef STANDALONE_
+
+ /*************************************************************************/
+ /* */
+ /* The following functions should only compile in stand-alone mode, */
+ /* i.e., when building this component without the rest of FreeType. */
+ /* */
+ /*************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* FT_Outline_Decompose */
+ /* */
+ /* <Description> */
+ /* Walk over an outline's structure to decompose it into individual */
+ /* segments and Bézier arcs. This function is also able to emit */
+ /* `move to' and `close to' operations to indicate the start and end */
+ /* of new contours in the outline. */
+ /* */
+ /* <Input> */
+ /* outline :: A pointer to the source target. */
+ /* */
+ /* func_interface :: A table of `emitters', i.e., function pointers */
+ /* called during decomposition to indicate path */
+ /* operations. */
+ /* */
+ /* <InOut> */
+ /* user :: A typeless pointer which is passed to each */
+ /* emitter during the decomposition. It can be */
+ /* used to store the state during the */
+ /* decomposition. */
+ /* */
+ /* <Return> */
+ /* Error code. 0 means success. */
+ /* */
+ static int
+ FT_Outline_Decompose( const FT_Outline* outline,
+ const FT_Outline_Funcs* func_interface,
+ void* user )
+ {
+#undef SCALED
+#define SCALED( x ) ( ( (x) << shift ) - delta )
+
+ FT_Vector v_last;
+ FT_Vector v_control;
+ FT_Vector v_start;
+
+ FT_Vector* point;
+ FT_Vector* limit;
+ char* tags;
+
+ int error;
+
+ int n; /* index of contour in outline */
+ int first; /* index of first point in contour */
+ char tag; /* current point's state */
+
+ int shift;
+ TPos delta;
+
+
+ if ( !outline )
+ return FT_THROW( Invalid_Outline );
+
+ if ( !func_interface )
+ return FT_THROW( Invalid_Argument );
+
+ shift = func_interface->shift;
+ delta = func_interface->delta;
+ first = 0;
+
+ for ( n = 0; n < outline->n_contours; n++ )
+ {
+ int last; /* index of last point in contour */
+
+
+ FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
+
+ last = outline->contours[n];
+ if ( last < 0 )
+ goto Invalid_Outline;
+ limit = outline->points + last;
+
+ v_start = outline->points[first];
+ v_start.x = SCALED( v_start.x );
+ v_start.y = SCALED( v_start.y );
+
+ v_last = outline->points[last];
+ v_last.x = SCALED( v_last.x );
+ v_last.y = SCALED( v_last.y );
+
+ v_control = v_start;
+
+ point = outline->points + first;
+ tags = outline->tags + first;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ /* A contour cannot start with a cubic control point! */
+ if ( tag == FT_CURVE_TAG_CUBIC )
+ goto Invalid_Outline;
+
+ /* check first point to determine origin */
+ if ( tag == FT_CURVE_TAG_CONIC )
+ {
+ /* first point is conic control. Yes, this happens. */
+ if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
+ {
+ /* start at last point if it is on the curve */
+ v_start = v_last;
+ limit--;
+ }
+ else
+ {
+ /* if both first and last points are conic, */
+ /* start at their middle and record its position */
+ /* for closure */
+ v_start.x = ( v_start.x + v_last.x ) / 2;
+ v_start.y = ( v_start.y + v_last.y ) / 2;
+
+ v_last = v_start;
+ }
+ point--;
+ tags--;
+ }
+
+ FT_TRACE5(( " move to (%.2f, %.2f)\n",
+ v_start.x / 64.0, v_start.y / 64.0 ));
+ error = func_interface->move_to( &v_start, user );
+ if ( error )
+ goto Exit;
+
+ while ( point < limit )
+ {
+ point++;
+ tags++;
+
+ tag = FT_CURVE_TAG( tags[0] );
+ switch ( tag )
+ {
+ case FT_CURVE_TAG_ON: /* emit a single line_to */
+ {
+ FT_Vector vec;
+
+
+ vec.x = SCALED( point->x );
+ vec.y = SCALED( point->y );
+
+ FT_TRACE5(( " line to (%.2f, %.2f)\n",
+ vec.x / 64.0, vec.y / 64.0 ));
+ error = func_interface->line_to( &vec, user );
+ if ( error )
+ goto Exit;
+ continue;
+ }
+
+ case FT_CURVE_TAG_CONIC: /* consume conic arcs */
+ v_control.x = SCALED( point->x );
+ v_control.y = SCALED( point->y );
+
+ Do_Conic:
+ if ( point < limit )
+ {
+ FT_Vector vec;
+ FT_Vector v_middle;
+
+
+ point++;
+ tags++;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ vec.x = SCALED( point->x );
+ vec.y = SCALED( point->y );
+
+ if ( tag == FT_CURVE_TAG_ON )
+ {
+ FT_TRACE5(( " conic to (%.2f, %.2f)"
+ " with control (%.2f, %.2f)\n",
+ vec.x / 64.0, vec.y / 64.0,
+ v_control.x / 64.0, v_control.y / 64.0 ));
+ error = func_interface->conic_to( &v_control, &vec, user );
+ if ( error )
+ goto Exit;
+ continue;
+ }
+
+ if ( tag != FT_CURVE_TAG_CONIC )
+ goto Invalid_Outline;
+
+ v_middle.x = ( v_control.x + vec.x ) / 2;
+ v_middle.y = ( v_control.y + vec.y ) / 2;
+
+ FT_TRACE5(( " conic to (%.2f, %.2f)"
+ " with control (%.2f, %.2f)\n",
+ v_middle.x / 64.0, v_middle.y / 64.0,
+ v_control.x / 64.0, v_control.y / 64.0 ));
+ error = func_interface->conic_to( &v_control, &v_middle, user );
+ if ( error )
+ goto Exit;
+
+ v_control = vec;
+ goto Do_Conic;
+ }
+
+ FT_TRACE5(( " conic to (%.2f, %.2f)"
+ " with control (%.2f, %.2f)\n",
+ v_start.x / 64.0, v_start.y / 64.0,
+ v_control.x / 64.0, v_control.y / 64.0 ));
+ error = func_interface->conic_to( &v_control, &v_start, user );
+ goto Close;
+
+ default: /* FT_CURVE_TAG_CUBIC */
+ {
+ FT_Vector vec1, vec2;
+
+
+ if ( point + 1 > limit ||
+ FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
+ goto Invalid_Outline;
+
+ point += 2;
+ tags += 2;
+
+ vec1.x = SCALED( point[-2].x );
+ vec1.y = SCALED( point[-2].y );
+
+ vec2.x = SCALED( point[-1].x );
+ vec2.y = SCALED( point[-1].y );
+
+ if ( point <= limit )
+ {
+ FT_Vector vec;
+
+
+ vec.x = SCALED( point->x );
+ vec.y = SCALED( point->y );
+
+ FT_TRACE5(( " cubic to (%.2f, %.2f)"
+ " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
+ vec.x / 64.0, vec.y / 64.0,
+ vec1.x / 64.0, vec1.y / 64.0,
+ vec2.x / 64.0, vec2.y / 64.0 ));
+ error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
+ if ( error )
+ goto Exit;
+ continue;
+ }
+
+ FT_TRACE5(( " cubic to (%.2f, %.2f)"
+ " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
+ v_start.x / 64.0, v_start.y / 64.0,
+ vec1.x / 64.0, vec1.y / 64.0,
+ vec2.x / 64.0, vec2.y / 64.0 ));
+ error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
+ goto Close;
+ }
+ }
+ }
+
+ /* close the contour with a line segment */
+ FT_TRACE5(( " line to (%.2f, %.2f)\n",
+ v_start.x / 64.0, v_start.y / 64.0 ));
+ error = func_interface->line_to( &v_start, user );
+
+ Close:
+ if ( error )
+ goto Exit;
+
+ first = last + 1;
+ }
+
+ FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
+ return 0;
+
+ Exit:
+ FT_TRACE5(( "FT_Outline_Decompose: Error %d\n", error ));
+ return error;
+
+ Invalid_Outline:
+ return FT_THROW( Invalid_Outline );
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* FT_Outline_Get_CBox */
+ /* */
+ /* <Description> */
+ /* Return an outline's `control box'. The control box encloses all */
+ /* the outline's points, including Bézier control points. Though it */
+ /* coincides with the exact bounding box for most glyphs, it can be */
+ /* slightly larger in some situations (like when rotating an outline */
+ /* that contains Bézier outside arcs). */
+ /* */
+ /* Computing the control box is very fast, while getting the bounding */
+ /* box can take much more time as it needs to walk over all segments */
+ /* and arcs in the outline. To get the latter, you can use the */
+ /* `ftbbox' component, which is dedicated to this single task. */
+ /* */
+ /* <Input> */
+ /* outline :: A pointer to the source outline descriptor. */
+ /* */
+ /* <Output> */
+ /* acbox :: The outline's control box. */
+ /* */
+ /* <Note> */
+ /* See @FT_Glyph_Get_CBox for a discussion of tricky fonts. */
+ /* */
+
+ static void
+ FT_Outline_Get_CBox( const FT_Outline* outline,
+ FT_BBox *acbox )
+ {
+ TPos xMin, yMin, xMax, yMax;
+
+
+ if ( outline && acbox )
+ {
+ if ( outline->n_points == 0 )
+ {
+ xMin = 0;
+ yMin = 0;
+ xMax = 0;
+ yMax = 0;
+ }
+ else
+ {
+ FT_Vector* vec = outline->points;
+ FT_Vector* limit = vec + outline->n_points;
+
+
+ xMin = xMax = vec->x;
+ yMin = yMax = vec->y;
+ vec++;
+
+ for ( ; vec < limit; vec++ )
+ {
+ TPos x, y;
+
+
+ x = vec->x;
+ if ( x < xMin ) xMin = x;
+ if ( x > xMax ) xMax = x;
+
+ y = vec->y;
+ if ( y < yMin ) yMin = y;
+ if ( y > yMax ) yMax = y;
+ }
+ }
+ acbox->xMin = xMin;
+ acbox->xMax = xMax;
+ acbox->yMin = yMin;
+ acbox->yMax = yMax;
+ }
+ }
+
+#endif /* STANDALONE_ */
+
+
+ FT_DEFINE_OUTLINE_FUNCS(
+ func_interface,
+
+ (FT_Outline_MoveTo_Func) gray_move_to, /* move_to */
+ (FT_Outline_LineTo_Func) gray_line_to, /* line_to */
+ (FT_Outline_ConicTo_Func)gray_conic_to, /* conic_to */
+ (FT_Outline_CubicTo_Func)gray_cubic_to, /* cubic_to */
+
+ 0, /* shift */
+ 0 /* delta */
+ )
+
+
+ static int
+ gray_convert_glyph_inner( RAS_ARG )
+ {
+
+ volatile int error = 0;
+
+#ifdef FT_CONFIG_OPTION_PIC
+ FT_Outline_Funcs func_interface;
+ Init_Class_func_interface(&func_interface);
+#endif
+
+ if ( ft_setjmp( ras.jump_buffer ) == 0 )
+ {
+ error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
+ if ( !ras.invalid )
+ gray_record_cell( RAS_VAR );
+
+ FT_TRACE7(( "band [%d..%d]: %d cells\n",
+ ras.min_ey, ras.max_ey, ras.num_cells ));
+ }
+ else
+ {
+ error = FT_THROW( Memory_Overflow );
+
+ FT_TRACE7(( "band [%d..%d]: to be bisected\n",
+ ras.min_ey, ras.max_ey ));
+ }
+
+ return error;
+ }
+
+
+ static int
+ gray_convert_glyph( RAS_ARG )
+ {
+ TCell buffer[FT_MAX_GRAY_POOL];
+ TCoord band_size = FT_MAX_GRAY_POOL / 8;
+ TCoord count = ras.max_ey - ras.min_ey;
+ int num_bands;
+ TCoord min, max, max_y;
+ TCoord bands[32]; /* enough to accommodate bisections */
+ TCoord* band;
+
+
+ /* set up vertical bands */
+ if ( count > band_size )
+ {
+ /* two divisions rounded up */
+ num_bands = (int)( ( count + band_size - 1) / band_size );
+ band_size = ( count + num_bands - 1 ) / num_bands;
+ }
+
+ min = ras.min_ey;
+ max_y = ras.max_ey;
+
+ for ( ; min < max_y; min = max )
+ {
+ max = min + band_size;
+ if ( max > max_y )
+ max = max_y;
+
+ band = bands;
+ band[1] = min;
+ band[0] = max;
+
+ do
+ {
+ TCoord width = band[0] - band[1];
+ int error;
+
+
+ /* memory management */
+ {
+ size_t ycount = (size_t)width;
+ size_t cell_start;
+
+
+ cell_start = ( ycount * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) /
+ sizeof ( TCell );
+
+ ras.cells = buffer + cell_start;
+ ras.max_cells = (FT_PtrDist)( FT_MAX_GRAY_POOL - cell_start );
+ ras.num_cells = 0;
+
+ ras.ycells = (PCell*)buffer;
+ while ( ycount )
+ ras.ycells[--ycount] = NULL;
+ }
+
+ ras.invalid = 1;
+ ras.min_ey = band[1];
+ ras.max_ey = band[0];
+
+ error = gray_convert_glyph_inner( RAS_VAR );
+
+ if ( !error )
+ {
+ gray_sweep( RAS_VAR );
+ band--;
+ continue;
+ }
+ else if ( error != ErrRaster_Memory_Overflow )
+ return 1;
+
+ /* render pool overflow; we will reduce the render band by half */
+ width >>= 1;
+
+ /* This is too complex for a single scanline; there must */
+ /* be some problems. */
+ if ( width == 0 )
+ {
+ FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
+ return 1;
+ }
+
+ band++;
+ band[1] = band[0];
+ band[0] += width;
+ } while ( band >= bands );
+ }
+
+ return 0;
+ }
+
+
+ static int
+ gray_raster_render( FT_Raster raster,
+ const FT_Raster_Params* params )
+ {
+ const FT_Outline* outline = (const FT_Outline*)params->source;
+ const FT_Bitmap* target_map = params->target;
+ FT_BBox cbox, clip;
+
+#ifndef FT_STATIC_RASTER
+ gray_TWorker worker[1];
+#endif
+
+
+ if ( !raster )
+ return FT_THROW( Invalid_Argument );
+
+ /* this version does not support monochrome rendering */
+ if ( !( params->flags & FT_RASTER_FLAG_AA ) )
+ return FT_THROW( Invalid_Mode );
+
+ if ( !outline )
+ return FT_THROW( Invalid_Outline );
+
+ /* return immediately if the outline is empty */
+ if ( outline->n_points == 0 || outline->n_contours <= 0 )
+ return 0;
+
+ if ( !outline->contours || !outline->points )
+ return FT_THROW( Invalid_Outline );
+
+ if ( outline->n_points !=
+ outline->contours[outline->n_contours - 1] + 1 )
+ return FT_THROW( Invalid_Outline );
+
+ ras.outline = *outline;
+
+ if ( params->flags & FT_RASTER_FLAG_DIRECT )
+ {
+ if ( !params->gray_spans )
+ return 0;
+
+ ras.render_span = (FT_Raster_Span_Func)params->gray_spans;
+ ras.render_span_data = params->user;
+ }
+ else
+ {
+ /* if direct mode is not set, we must have a target bitmap */
+ if ( !target_map )
+ return FT_THROW( Invalid_Argument );
+
+ /* nothing to do */
+ if ( !target_map->width || !target_map->rows )
+ return 0;
+
+ if ( !target_map->buffer )
+ return FT_THROW( Invalid_Argument );
+
+ if ( target_map->pitch < 0 )
+ ras.target.origin = target_map->buffer;
+ else
+ ras.target.origin = target_map->buffer
+ + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch;
+
+ ras.target.pitch = target_map->pitch;
+
+ ras.render_span = (FT_Raster_Span_Func)NULL;
+ ras.render_span_data = NULL;
+ }
+
+ FT_Outline_Get_CBox( outline, &cbox );
+
+ /* reject too large outline coordinates */
+ if ( cbox.xMin < -0x1000000L || cbox.xMax > 0x1000000L ||
+ cbox.yMin < -0x1000000L || cbox.yMax > 0x1000000L )
+ return FT_THROW( Invalid_Outline );
+
+ /* truncate the bounding box to integer pixels */
+ cbox.xMin = cbox.xMin >> 6;
+ cbox.yMin = cbox.yMin >> 6;
+ cbox.xMax = ( cbox.xMax + 63 ) >> 6;
+ cbox.yMax = ( cbox.yMax + 63 ) >> 6;
+
+ /* compute clipping box */
+ if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
+ {
+ /* compute clip box from target pixmap */
+ clip.xMin = 0;
+ clip.yMin = 0;
+ clip.xMax = (FT_Pos)target_map->width;
+ clip.yMax = (FT_Pos)target_map->rows;
+ }
+ else if ( params->flags & FT_RASTER_FLAG_CLIP )
+ clip = params->clip_box;
+ else
+ {
+ clip.xMin = -32768L;
+ clip.yMin = -32768L;
+ clip.xMax = 32767L;
+ clip.yMax = 32767L;
+ }
+
+ /* clip to target bitmap, exit if nothing to do */
+ ras.min_ex = FT_MAX( cbox.xMin, clip.xMin );
+ ras.min_ey = FT_MAX( cbox.yMin, clip.yMin );
+ ras.max_ex = FT_MIN( cbox.xMax, clip.xMax );
+ ras.max_ey = FT_MIN( cbox.yMax, clip.yMax );
+
+ if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey )
+ return 0;
+
+ return gray_convert_glyph( RAS_VAR );
+ }
+
+
+ /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
+ /**** a static object. *****/
+
+#ifdef STANDALONE_
+
+ static int
+ gray_raster_new( void* memory,
+ FT_Raster* araster )
+ {
+ static gray_TRaster the_raster;
+
+ FT_UNUSED( memory );
+
+
+ *araster = (FT_Raster)&the_raster;
+ FT_ZERO( &the_raster );
+
+ return 0;
+ }
+
+
+ static void
+ gray_raster_done( FT_Raster raster )
+ {
+ /* nothing */
+ FT_UNUSED( raster );
+ }
+
+#else /* !STANDALONE_ */
+
+ static int
+ gray_raster_new( FT_Memory memory,
+ FT_Raster* araster )
+ {
+ FT_Error error;
+ gray_PRaster raster = NULL;
+
+
+ *araster = 0;
+ if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
+ {
+ raster->memory = memory;
+ *araster = (FT_Raster)raster;
+ }
+
+ return error;
+ }
+
+
+ static void
+ gray_raster_done( FT_Raster raster )
+ {
+ FT_Memory memory = (FT_Memory)((gray_PRaster)raster)->memory;
+
+
+ FT_FREE( raster );
+ }
+
+#endif /* !STANDALONE_ */
+
+
+ static void
+ gray_raster_reset( FT_Raster raster,
+ unsigned char* pool_base,
+ unsigned long pool_size )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( pool_base );
+ FT_UNUSED( pool_size );
+ }
+
+
+ static int
+ gray_raster_set_mode( FT_Raster raster,
+ unsigned long mode,
+ void* args )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( mode );
+ FT_UNUSED( args );
+
+
+ return 0; /* nothing to do */
+ }
+
+
+ FT_DEFINE_RASTER_FUNCS(
+ ft_grays_raster,
+
+ FT_GLYPH_FORMAT_OUTLINE,
+
+ (FT_Raster_New_Func) gray_raster_new, /* raster_new */
+ (FT_Raster_Reset_Func) gray_raster_reset, /* raster_reset */
+ (FT_Raster_Set_Mode_Func)gray_raster_set_mode, /* raster_set_mode */
+ (FT_Raster_Render_Func) gray_raster_render, /* raster_render */
+ (FT_Raster_Done_Func) gray_raster_done /* raster_done */
+ )
+
+
+/* END */
+
+
+/* Local Variables: */
+/* coding: utf-8 */
+/* End: */