diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /layout/style/nsStyleTransformMatrix.cpp | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'layout/style/nsStyleTransformMatrix.cpp')
-rw-r--r-- | layout/style/nsStyleTransformMatrix.cpp | 1061 |
1 files changed, 1061 insertions, 0 deletions
diff --git a/layout/style/nsStyleTransformMatrix.cpp b/layout/style/nsStyleTransformMatrix.cpp new file mode 100644 index 000000000..3cc166707 --- /dev/null +++ b/layout/style/nsStyleTransformMatrix.cpp @@ -0,0 +1,1061 @@ +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* + * A class used for intermediate representations of the -moz-transform property. + */ + +#include "nsStyleTransformMatrix.h" +#include "nsCSSValue.h" +#include "nsLayoutUtils.h" +#include "nsPresContext.h" +#include "nsRuleNode.h" +#include "nsSVGUtils.h" +#include "nsCSSKeywords.h" +#include "mozilla/StyleAnimationValue.h" +#include "gfxMatrix.h" +#include "gfxQuaternion.h" + +using namespace mozilla; +using namespace mozilla::gfx; + +namespace nsStyleTransformMatrix { + +/* Note on floating point precision: The transform matrix is an array + * of single precision 'float's, and so are most of the input values + * we get from the style system, but intermediate calculations + * involving angles need to be done in 'double'. + */ + + +// Define UNIFIED_CONTINUATIONS here and in nsDisplayList.cpp +// to have the transform property try +// to transform content with continuations as one unified block instead of +// several smaller ones. This is currently disabled because it doesn't work +// correctly, since when the frames are initially being reflowed, their +// continuations all compute their bounding rects independently of each other +// and consequently get the wrong value. +//#define UNIFIED_CONTINUATIONS + +void +TransformReferenceBox::EnsureDimensionsAreCached() +{ + if (mIsCached) { + return; + } + + MOZ_ASSERT(mFrame); + + mIsCached = true; + + if (mFrame->GetStateBits() & NS_FRAME_SVG_LAYOUT) { + if (!nsLayoutUtils::SVGTransformBoxEnabled()) { + mX = -mFrame->GetPosition().x; + mY = -mFrame->GetPosition().y; + Size contextSize = nsSVGUtils::GetContextSize(mFrame); + mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width); + mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height); + } else + if (mFrame->StyleDisplay()->mTransformBox == + NS_STYLE_TRANSFORM_BOX_FILL_BOX) { + // Percentages in transforms resolve against the SVG bbox, and the + // transform is relative to the top-left of the SVG bbox. + gfxRect bbox = nsSVGUtils::GetBBox(const_cast<nsIFrame*>(mFrame)); + nsRect bboxInAppUnits = + nsLayoutUtils::RoundGfxRectToAppRect(bbox, + mFrame->PresContext()->AppUnitsPerCSSPixel()); + // The mRect of an SVG nsIFrame is its user space bounds *including* + // stroke and markers, whereas bboxInAppUnits is its user space bounds + // including fill only. We need to note the offset of the reference box + // from the frame's mRect in mX/mY. + mX = bboxInAppUnits.x - mFrame->GetPosition().x; + mY = bboxInAppUnits.y - mFrame->GetPosition().y; + mWidth = bboxInAppUnits.width; + mHeight = bboxInAppUnits.height; + } else { + // The value 'border-box' is treated as 'view-box' for SVG content. + MOZ_ASSERT(mFrame->StyleDisplay()->mTransformBox == + NS_STYLE_TRANSFORM_BOX_VIEW_BOX || + mFrame->StyleDisplay()->mTransformBox == + NS_STYLE_TRANSFORM_BOX_BORDER_BOX, + "Unexpected value for 'transform-box'"); + // Percentages in transforms resolve against the width/height of the + // nearest viewport (or its viewBox if one is applied), and the + // transform is relative to {0,0} in current user space. + mX = -mFrame->GetPosition().x; + mY = -mFrame->GetPosition().y; + Size contextSize = nsSVGUtils::GetContextSize(mFrame); + mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width); + mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height); + } + return; + } + + // If UNIFIED_CONTINUATIONS is not defined, this is simply the frame's + // bounding rectangle, translated to the origin. Otherwise, it is the + // smallest rectangle containing a frame and all of its continuations. For + // example, if there is a <span> element with several continuations split + // over several lines, this function will return the rectangle containing all + // of those continuations. + + nsRect rect; + +#ifndef UNIFIED_CONTINUATIONS + rect = mFrame->GetRect(); +#else + // Iterate the continuation list, unioning together the bounding rects: + for (const nsIFrame *currFrame = mFrame->FirstContinuation(); + currFrame != nullptr; + currFrame = currFrame->GetNextContinuation()) + { + // Get the frame rect in local coordinates, then translate back to the + // original coordinates: + rect.UnionRect(result, nsRect(currFrame->GetOffsetTo(mFrame), + currFrame->GetSize())); + } +#endif + + mX = 0; + mY = 0; + mWidth = rect.Width(); + mHeight = rect.Height(); +} + +void +TransformReferenceBox::Init(const nsSize& aDimensions) +{ + MOZ_ASSERT(!mFrame && !mIsCached); + + mX = 0; + mY = 0; + mWidth = aDimensions.width; + mHeight = aDimensions.height; + mIsCached = true; +} + +float +ProcessTranslatePart(const nsCSSValue& aValue, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox* aRefBox, + TransformReferenceBox::DimensionGetter aDimensionGetter) +{ + nscoord offset = 0; + float percent = 0.0f; + + if (aValue.GetUnit() == eCSSUnit_Percent) { + percent = aValue.GetPercentValue(); + } else if (aValue.GetUnit() == eCSSUnit_Pixel || + aValue.GetUnit() == eCSSUnit_Number) { + // Handle this here (even though nsRuleNode::CalcLength handles it + // fine) so that callers are allowed to pass a null style context + // and pres context to SetToTransformFunction if they know (as + // StyleAnimationValue does) that all lengths within the transform + // function have already been computed to pixels and percents. + // + // Raw numbers are treated as being pixels. + // + // Don't convert to aValue to AppUnits here to avoid precision issues. + return aValue.GetFloatValue(); + } else if (aValue.IsCalcUnit()) { + nsRuleNode::ComputedCalc result = + nsRuleNode::SpecifiedCalcToComputedCalc(aValue, aContext, aPresContext, + aConditions); + percent = result.mPercent; + offset = result.mLength; + } else { + offset = nsRuleNode::CalcLength(aValue, aContext, aPresContext, + aConditions); + } + + float translation = NSAppUnitsToFloatPixels(offset, + nsPresContext::AppUnitsPerCSSPixel()); + // We want to avoid calling aDimensionGetter if there's no percentage to be + // resolved (for performance reasons - see TransformReferenceBox). + if (percent != 0.0f && aRefBox && !aRefBox->IsEmpty()) { + translation += percent * + NSAppUnitsToFloatPixels((aRefBox->*aDimensionGetter)(), + nsPresContext::AppUnitsPerCSSPixel()); + } + return translation; +} + +/** + * Helper functions to process all the transformation function types. + * + * These take a matrix parameter to accumulate the current matrix. + */ + +/* Helper function to process a matrix entry. */ +static void +ProcessMatrix(Matrix4x4& aMatrix, + const nsCSSValue::Array* aData, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox& aRefBox) +{ + NS_PRECONDITION(aData->Count() == 7, "Invalid array!"); + + gfxMatrix result; + + /* Take the first four elements out of the array as floats and store + * them. + */ + result._11 = aData->Item(1).GetFloatValue(); + result._12 = aData->Item(2).GetFloatValue(); + result._21 = aData->Item(3).GetFloatValue(); + result._22 = aData->Item(4).GetFloatValue(); + + /* The last two elements have their length parts stored in aDelta + * and their percent parts stored in aX[0] and aY[1]. + */ + result._31 = ProcessTranslatePart(aData->Item(5), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Width); + result._32 = ProcessTranslatePart(aData->Item(6), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Height); + + aMatrix = result * aMatrix; +} + +static void +ProcessMatrix3D(Matrix4x4& aMatrix, + const nsCSSValue::Array* aData, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox& aRefBox) +{ + NS_PRECONDITION(aData->Count() == 17, "Invalid array!"); + + Matrix4x4 temp; + + temp._11 = aData->Item(1).GetFloatValue(); + temp._12 = aData->Item(2).GetFloatValue(); + temp._13 = aData->Item(3).GetFloatValue(); + temp._14 = aData->Item(4).GetFloatValue(); + temp._21 = aData->Item(5).GetFloatValue(); + temp._22 = aData->Item(6).GetFloatValue(); + temp._23 = aData->Item(7).GetFloatValue(); + temp._24 = aData->Item(8).GetFloatValue(); + temp._31 = aData->Item(9).GetFloatValue(); + temp._32 = aData->Item(10).GetFloatValue(); + temp._33 = aData->Item(11).GetFloatValue(); + temp._34 = aData->Item(12).GetFloatValue(); + temp._44 = aData->Item(16).GetFloatValue(); + + temp._41 = ProcessTranslatePart(aData->Item(13), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Width); + temp._42 = ProcessTranslatePart(aData->Item(14), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Height); + temp._43 = ProcessTranslatePart(aData->Item(15), + aContext, aPresContext, aConditions, + nullptr); + + aMatrix = temp * aMatrix; +} + +/* Helper function to process two matrices that we need to interpolate between */ +void +ProcessInterpolateMatrix(Matrix4x4& aMatrix, + const nsCSSValue::Array* aData, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox& aRefBox, + bool* aContains3dTransform) +{ + NS_PRECONDITION(aData->Count() == 4, "Invalid array!"); + + Matrix4x4 matrix1, matrix2; + if (aData->Item(1).GetUnit() == eCSSUnit_List) { + matrix1 = nsStyleTransformMatrix::ReadTransforms(aData->Item(1).GetListValue(), + aContext, aPresContext, + aConditions, + aRefBox, nsPresContext::AppUnitsPerCSSPixel(), + aContains3dTransform); + } + if (aData->Item(2).GetUnit() == eCSSUnit_List) { + matrix2 = ReadTransforms(aData->Item(2).GetListValue(), + aContext, aPresContext, + aConditions, + aRefBox, nsPresContext::AppUnitsPerCSSPixel(), + aContains3dTransform); + } + double progress = aData->Item(3).GetPercentValue(); + + aMatrix = + StyleAnimationValue::InterpolateTransformMatrix(matrix1, matrix2, progress) + * aMatrix; +} + +/* Helper function to process a translatex function. */ +static void +ProcessTranslateX(Matrix4x4& aMatrix, + const nsCSSValue::Array* aData, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox& aRefBox) +{ + NS_PRECONDITION(aData->Count() == 2, "Invalid array!"); + + Point3D temp; + + temp.x = ProcessTranslatePart(aData->Item(1), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Width); + aMatrix.PreTranslate(temp); +} + +/* Helper function to process a translatey function. */ +static void +ProcessTranslateY(Matrix4x4& aMatrix, + const nsCSSValue::Array* aData, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox& aRefBox) +{ + NS_PRECONDITION(aData->Count() == 2, "Invalid array!"); + + Point3D temp; + + temp.y = ProcessTranslatePart(aData->Item(1), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Height); + aMatrix.PreTranslate(temp); +} + +static void +ProcessTranslateZ(Matrix4x4& aMatrix, + const nsCSSValue::Array* aData, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions) +{ + NS_PRECONDITION(aData->Count() == 2, "Invalid array!"); + + Point3D temp; + + temp.z = ProcessTranslatePart(aData->Item(1), aContext, + aPresContext, aConditions, + nullptr); + aMatrix.PreTranslate(temp); +} + +/* Helper function to process a translate function. */ +static void +ProcessTranslate(Matrix4x4& aMatrix, + const nsCSSValue::Array* aData, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox& aRefBox) +{ + NS_PRECONDITION(aData->Count() == 2 || aData->Count() == 3, "Invalid array!"); + + Point3D temp; + + temp.x = ProcessTranslatePart(aData->Item(1), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Width); + + /* If we read in a Y component, set it appropriately */ + if (aData->Count() == 3) { + temp.y = ProcessTranslatePart(aData->Item(2), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Height); + } + aMatrix.PreTranslate(temp); +} + +static void +ProcessTranslate3D(Matrix4x4& aMatrix, + const nsCSSValue::Array* aData, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox& aRefBox) +{ + NS_PRECONDITION(aData->Count() == 4, "Invalid array!"); + + Point3D temp; + + temp.x = ProcessTranslatePart(aData->Item(1), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Width); + + temp.y = ProcessTranslatePart(aData->Item(2), + aContext, aPresContext, aConditions, + &aRefBox, &TransformReferenceBox::Height); + + temp.z = ProcessTranslatePart(aData->Item(3), + aContext, aPresContext, aConditions, + nullptr); + + aMatrix.PreTranslate(temp); +} + +/* Helper function to set up a scale matrix. */ +static void +ProcessScaleHelper(Matrix4x4& aMatrix, + float aXScale, + float aYScale, + float aZScale) +{ + aMatrix.PreScale(aXScale, aYScale, aZScale); +} + +/* Process a scalex function. */ +static void +ProcessScaleX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_PRECONDITION(aData->Count() == 2, "Bad array!"); + ProcessScaleHelper(aMatrix, aData->Item(1).GetFloatValue(), 1.0f, 1.0f); +} + +/* Process a scaley function. */ +static void +ProcessScaleY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_PRECONDITION(aData->Count() == 2, "Bad array!"); + ProcessScaleHelper(aMatrix, 1.0f, aData->Item(1).GetFloatValue(), 1.0f); +} + +static void +ProcessScaleZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_PRECONDITION(aData->Count() == 2, "Bad array!"); + ProcessScaleHelper(aMatrix, 1.0f, 1.0f, aData->Item(1).GetFloatValue()); +} + +static void +ProcessScale3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_PRECONDITION(aData->Count() == 4, "Bad array!"); + ProcessScaleHelper(aMatrix, + aData->Item(1).GetFloatValue(), + aData->Item(2).GetFloatValue(), + aData->Item(3).GetFloatValue()); +} + +/* Process a scale function. */ +static void +ProcessScale(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_PRECONDITION(aData->Count() == 2 || aData->Count() == 3, "Bad array!"); + /* We either have one element or two. If we have one, it's for both X and Y. + * Otherwise it's one for each. + */ + const nsCSSValue& scaleX = aData->Item(1); + const nsCSSValue& scaleY = (aData->Count() == 2 ? scaleX : + aData->Item(2)); + + ProcessScaleHelper(aMatrix, + scaleX.GetFloatValue(), + scaleY.GetFloatValue(), + 1.0f); +} + +/* Helper function that, given a set of angles, constructs the appropriate + * skew matrix. + */ +static void +ProcessSkewHelper(Matrix4x4& aMatrix, double aXAngle, double aYAngle) +{ + aMatrix.SkewXY(aXAngle, aYAngle); +} + +/* Function that converts a skewx transform into a matrix. */ +static void +ProcessSkewX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_ASSERTION(aData->Count() == 2, "Bad array!"); + ProcessSkewHelper(aMatrix, aData->Item(1).GetAngleValueInRadians(), 0.0); +} + +/* Function that converts a skewy transform into a matrix. */ +static void +ProcessSkewY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_ASSERTION(aData->Count() == 2, "Bad array!"); + ProcessSkewHelper(aMatrix, 0.0, aData->Item(1).GetAngleValueInRadians()); +} + +/* Function that converts a skew transform into a matrix. */ +static void +ProcessSkew(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_ASSERTION(aData->Count() == 2 || aData->Count() == 3, "Bad array!"); + + double xSkew = aData->Item(1).GetAngleValueInRadians(); + double ySkew = (aData->Count() == 2 + ? 0.0 : aData->Item(2).GetAngleValueInRadians()); + + ProcessSkewHelper(aMatrix, xSkew, ySkew); +} + +/* Function that converts a rotate transform into a matrix. */ +static void +ProcessRotateZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_PRECONDITION(aData->Count() == 2, "Invalid array!"); + double theta = aData->Item(1).GetAngleValueInRadians(); + aMatrix.RotateZ(theta); +} + +static void +ProcessRotateX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_PRECONDITION(aData->Count() == 2, "Invalid array!"); + double theta = aData->Item(1).GetAngleValueInRadians(); + aMatrix.RotateX(theta); +} + +static void +ProcessRotateY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_PRECONDITION(aData->Count() == 2, "Invalid array!"); + double theta = aData->Item(1).GetAngleValueInRadians(); + aMatrix.RotateY(theta); +} + +static void +ProcessRotate3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) +{ + NS_PRECONDITION(aData->Count() == 5, "Invalid array!"); + + double theta = aData->Item(4).GetAngleValueInRadians(); + float x = aData->Item(1).GetFloatValue(); + float y = aData->Item(2).GetFloatValue(); + float z = aData->Item(3).GetFloatValue(); + + Matrix4x4 temp; + temp.SetRotateAxisAngle(x, y, z, theta); + + aMatrix = temp * aMatrix; +} + +static void +ProcessPerspective(Matrix4x4& aMatrix, + const nsCSSValue::Array* aData, + nsStyleContext *aContext, + nsPresContext *aPresContext, + RuleNodeCacheConditions& aConditions) +{ + NS_PRECONDITION(aData->Count() == 2, "Invalid array!"); + + float depth = ProcessTranslatePart(aData->Item(1), aContext, + aPresContext, aConditions, nullptr); + ApplyPerspectiveToMatrix(aMatrix, depth); +} + + +/** + * SetToTransformFunction is essentially a giant switch statement that fans + * out to many smaller helper functions. + */ +static void +MatrixForTransformFunction(Matrix4x4& aMatrix, + const nsCSSValue::Array * aData, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox& aRefBox, + bool* aContains3dTransform) +{ + MOZ_ASSERT(aContains3dTransform); + NS_PRECONDITION(aData, "Why did you want to get data from a null array?"); + // It's OK if aContext and aPresContext are null if the caller already + // knows that all length units have been converted to pixels (as + // StyleAnimationValue does). + + + /* Get the keyword for the transform. */ + switch (TransformFunctionOf(aData)) { + case eCSSKeyword_translatex: + ProcessTranslateX(aMatrix, aData, aContext, aPresContext, + aConditions, aRefBox); + break; + case eCSSKeyword_translatey: + ProcessTranslateY(aMatrix, aData, aContext, aPresContext, + aConditions, aRefBox); + break; + case eCSSKeyword_translatez: + *aContains3dTransform = true; + ProcessTranslateZ(aMatrix, aData, aContext, aPresContext, + aConditions); + break; + case eCSSKeyword_translate: + ProcessTranslate(aMatrix, aData, aContext, aPresContext, + aConditions, aRefBox); + break; + case eCSSKeyword_translate3d: + *aContains3dTransform = true; + ProcessTranslate3D(aMatrix, aData, aContext, aPresContext, + aConditions, aRefBox); + break; + case eCSSKeyword_scalex: + ProcessScaleX(aMatrix, aData); + break; + case eCSSKeyword_scaley: + ProcessScaleY(aMatrix, aData); + break; + case eCSSKeyword_scalez: + *aContains3dTransform = true; + ProcessScaleZ(aMatrix, aData); + break; + case eCSSKeyword_scale: + ProcessScale(aMatrix, aData); + break; + case eCSSKeyword_scale3d: + *aContains3dTransform = true; + ProcessScale3D(aMatrix, aData); + break; + case eCSSKeyword_skewx: + ProcessSkewX(aMatrix, aData); + break; + case eCSSKeyword_skewy: + ProcessSkewY(aMatrix, aData); + break; + case eCSSKeyword_skew: + ProcessSkew(aMatrix, aData); + break; + case eCSSKeyword_rotatex: + *aContains3dTransform = true; + ProcessRotateX(aMatrix, aData); + break; + case eCSSKeyword_rotatey: + *aContains3dTransform = true; + ProcessRotateY(aMatrix, aData); + break; + case eCSSKeyword_rotatez: + *aContains3dTransform = true; + MOZ_FALLTHROUGH; + case eCSSKeyword_rotate: + ProcessRotateZ(aMatrix, aData); + break; + case eCSSKeyword_rotate3d: + *aContains3dTransform = true; + ProcessRotate3D(aMatrix, aData); + break; + case eCSSKeyword_matrix: + ProcessMatrix(aMatrix, aData, aContext, aPresContext, + aConditions, aRefBox); + break; + case eCSSKeyword_matrix3d: + *aContains3dTransform = true; + ProcessMatrix3D(aMatrix, aData, aContext, aPresContext, + aConditions, aRefBox); + break; + case eCSSKeyword_interpolatematrix: + ProcessInterpolateMatrix(aMatrix, aData, aContext, aPresContext, + aConditions, aRefBox, + aContains3dTransform); + break; + case eCSSKeyword_perspective: + *aContains3dTransform = true; + ProcessPerspective(aMatrix, aData, aContext, aPresContext, + aConditions); + break; + default: + NS_NOTREACHED("Unknown transform function!"); + } +} + +/** + * Return the transform function, as an nsCSSKeyword, for the given + * nsCSSValue::Array from a transform list. + */ +nsCSSKeyword +TransformFunctionOf(const nsCSSValue::Array* aData) +{ + MOZ_ASSERT(aData->Item(0).GetUnit() == eCSSUnit_Enumerated); + return aData->Item(0).GetKeywordValue(); +} + +void +SetIdentityMatrix(nsCSSValue::Array* aMatrix) +{ + MOZ_ASSERT(aMatrix, "aMatrix should be non-null"); + + nsCSSKeyword tfunc = TransformFunctionOf(aMatrix); + MOZ_ASSERT(tfunc == eCSSKeyword_matrix || + tfunc == eCSSKeyword_matrix3d, + "Only accept matrix and matrix3d"); + + if (tfunc == eCSSKeyword_matrix) { + MOZ_ASSERT(aMatrix->Count() == 7, "Invalid matrix"); + Matrix m; + for (size_t i = 0; i < 6; ++i) { + aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number); + } + return; + } + + MOZ_ASSERT(aMatrix->Count() == 17, "Invalid matrix3d"); + Matrix4x4 m; + for (size_t i = 0; i < 16; ++i) { + aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number); + } +} + +Matrix4x4 +ReadTransforms(const nsCSSValueList* aList, + nsStyleContext* aContext, + nsPresContext* aPresContext, + RuleNodeCacheConditions& aConditions, + TransformReferenceBox& aRefBox, + float aAppUnitsPerMatrixUnit, + bool* aContains3dTransform) +{ + Matrix4x4 result; + + for (const nsCSSValueList* curr = aList; curr != nullptr; curr = curr->mNext) { + const nsCSSValue &currElem = curr->mValue; + if (currElem.GetUnit() != eCSSUnit_Function) { + NS_ASSERTION(currElem.GetUnit() == eCSSUnit_None && + !aList->mNext, + "stream should either be a list of functions or a " + "lone None"); + continue; + } + NS_ASSERTION(currElem.GetArrayValue()->Count() >= 1, + "Incoming function is too short!"); + + /* Read in a single transform matrix. */ + MatrixForTransformFunction(result, currElem.GetArrayValue(), aContext, + aPresContext, aConditions, aRefBox, + aContains3dTransform); + } + + float scale = float(nsPresContext::AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit; + result.PreScale(1/scale, 1/scale, 1/scale); + result.PostScale(scale, scale, scale); + + return result; +} + +/* + * The relevant section of the transitions specification: + * http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types- + * defers all of the details to the 2-D and 3-D transforms specifications. + * For the 2-D transforms specification (all that's relevant for us, right + * now), the relevant section is: + * http://dev.w3.org/csswg/css3-2d-transforms/#animation + * This, in turn, refers to the unmatrix program in Graphics Gems, + * available from http://tog.acm.org/resources/GraphicsGems/ , and in + * particular as the file GraphicsGems/gemsii/unmatrix.c + * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz + * + * The unmatrix reference is for general 3-D transform matrices (any of the + * 16 components can have any value). + * + * For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant: + * + * [ A C E ] + * [ B D F ] + * [ 0 0 1 ] + * + * For that case, I believe the algorithm in unmatrix reduces to: + * + * (1) If A * D - B * C == 0, the matrix is singular. Fail. + * + * (2) Set translation components (Tx and Ty) to the translation parts of + * the matrix (E and F) and then ignore them for the rest of the time. + * (For us, E and F each actually consist of three constants: a + * length, a multiplier for the width, and a multiplier for the + * height. This actually requires its own decomposition, but I'll + * keep that separate.) + * + * (3) Let the X scale (Sx) be sqrt(A^2 + B^2). Then divide both A and B + * by it. + * + * (4) Let the XY shear (K) be A * C + B * D. From C, subtract A times + * the XY shear. From D, subtract B times the XY shear. + * + * (5) Let the Y scale (Sy) be sqrt(C^2 + D^2). Divide C, D, and the XY + * shear (K) by it. + * + * (6) At this point, A * D - B * C is either 1 or -1. If it is -1, + * negate the XY shear (K), the X scale (Sx), and A, B, C, and D. + * (Alternatively, we could negate the XY shear (K) and the Y scale + * (Sy).) + * + * (7) Let the rotation be R = atan2(B, A). + * + * Then the resulting decomposed transformation is: + * + * translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy) + * + * An interesting result of this is that all of the simple transform + * functions (i.e., all functions other than matrix()), in isolation, + * decompose back to themselves except for: + * 'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes + * to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the + * alternate sign possibilities that would get fixed in step 6): + * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = sec(φ). + * Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = sin(φ). + * In step 4, the XY shear is sin(φ). + * Thus, after step 4, C = -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ). + * Thus, in step 5, the Y scale is sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ). + * Thus, after step 5, C = -sin(φ), D = cos(φ), and the XY shear is tan(φ). + * Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1. + * In step 7, the rotation is thus φ. + * + * skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes + * to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring + * the alternate sign possibilities that would get fixed in step 6): + * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = sec(φ). + * Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = sin(φ). + * In step 4, the XY shear is cos(φ)tan(θ) + sin(φ). + * Thus, after step 4, + * C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ) + * D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ) + * Thus, in step 5, the Y scale is sqrt(C² + D²) = + * sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) - + * 2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) + + * (sin²(φ)cos²(φ) + cos⁴(φ))) = + * sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) = + * cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so + * we avoid flipping in step 6). + * After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is + * (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) = + * (dividing both numerator and denominator by cos(φ)) + * (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ). + * (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .) + * Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1. + * In step 7, the rotation is thus φ. + * + * To check this result, we can multiply things back together: + * + * [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ) 0 ] + * [ sin(φ) cos(φ) ] [ 0 1 ] [ 0 cos(φ) ] + * + * [ cos(φ) cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ) 0 ] + * [ sin(φ) sin(φ)tan(θ + φ) + cos(φ) ] [ 0 cos(φ) ] + * + * but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)), + * cos(φ)tan(θ + φ) - sin(φ) + * = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ) + * = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ) + * = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ) + * = tan(θ) (cos(φ) + sin(φ)tan(φ)) + * = tan(θ) sec(φ) (cos²(φ) + sin²(φ)) + * = tan(θ) sec(φ) + * and + * sin(φ)tan(θ + φ) + cos(φ) + * = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ) + * = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ) + * = sec(φ) (sin²(φ) + cos²(φ)) + * = sec(φ) + * so the above is: + * [ cos(φ) tan(θ) sec(φ) ] [ sec(φ) 0 ] + * [ sin(φ) sec(φ) ] [ 0 cos(φ) ] + * + * [ 1 tan(θ) ] + * [ tan(φ) 1 ] + */ + +/* + * Decompose2DMatrix implements the above decomposition algorithm. + */ + +bool +Decompose2DMatrix(const Matrix& aMatrix, + Point3D& aScale, + ShearArray& aShear, + gfxQuaternion& aRotate, + Point3D& aTranslate) +{ + float A = aMatrix._11, + B = aMatrix._12, + C = aMatrix._21, + D = aMatrix._22; + if (A * D == B * C) { + // singular matrix + return false; + } + + float scaleX = sqrt(A * A + B * B); + A /= scaleX; + B /= scaleX; + + float XYshear = A * C + B * D; + C -= A * XYshear; + D -= B * XYshear; + + float scaleY = sqrt(C * C + D * D); + C /= scaleY; + D /= scaleY; + XYshear /= scaleY; + + // A*D - B*C should now be 1 or -1 + NS_ASSERTION(0.99 < Abs(A*D - B*C) && Abs(A*D - B*C) < 1.01, + "determinant should now be 1 or -1"); + if (A * D < B * C) { + A = -A; + B = -B; + C = -C; + D = -D; + XYshear = -XYshear; + scaleX = -scaleX; + } + + float rotate = atan2f(B, A); + aRotate = gfxQuaternion(0, 0, sin(rotate/2), cos(rotate/2)); + aShear[ShearType::XYSHEAR] = XYshear; + aScale.x = scaleX; + aScale.y = scaleY; + aTranslate.x = aMatrix._31; + aTranslate.y = aMatrix._32; + return true; +} + +/** + * Implementation of the unmatrix algorithm, specified by: + * + * http://dev.w3.org/csswg/css3-2d-transforms/#unmatrix + * + * This, in turn, refers to the unmatrix program in Graphics Gems, + * available from http://tog.acm.org/resources/GraphicsGems/ , and in + * particular as the file GraphicsGems/gemsii/unmatrix.c + * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz + */ +bool +Decompose3DMatrix(const Matrix4x4& aMatrix, + Point3D& aScale, + ShearArray& aShear, + gfxQuaternion& aRotate, + Point3D& aTranslate, + Point4D& aPerspective) +{ + Matrix4x4 local = aMatrix; + + if (local[3][3] == 0) { + return false; + } + /* Normalize the matrix */ + local.Normalize(); + + /** + * perspective is used to solve for perspective, but it also provides + * an easy way to test for singularity of the upper 3x3 component. + */ + Matrix4x4 perspective = local; + Point4D empty(0, 0, 0, 1); + perspective.SetTransposedVector(3, empty); + + if (perspective.Determinant() == 0.0) { + return false; + } + + /* First, isolate perspective. */ + if (local[0][3] != 0 || local[1][3] != 0 || + local[2][3] != 0) { + /* aPerspective is the right hand side of the equation. */ + aPerspective = local.TransposedVector(3); + + /** + * Solve the equation by inverting perspective and multiplying + * aPerspective by the inverse. + */ + perspective.Invert(); + aPerspective = perspective.TransposeTransform4D(aPerspective); + + /* Clear the perspective partition */ + local.SetTransposedVector(3, empty); + } else { + aPerspective = Point4D(0, 0, 0, 1); + } + + /* Next take care of translation */ + for (int i = 0; i < 3; i++) { + aTranslate[i] = local[3][i]; + local[3][i] = 0; + } + + /* Now get scale and shear. */ + + /* Compute X scale factor and normalize first row. */ + aScale.x = local[0].Length(); + local[0] /= aScale.x; + + /* Compute XY shear factor and make 2nd local orthogonal to 1st. */ + aShear[ShearType::XYSHEAR] = local[0].DotProduct(local[1]); + local[1] -= local[0] * aShear[ShearType::XYSHEAR]; + + /* Now, compute Y scale and normalize 2nd local. */ + aScale.y = local[1].Length(); + local[1] /= aScale.y; + aShear[ShearType::XYSHEAR] /= aScale.y; + + /* Compute XZ and YZ shears, make 3rd local orthogonal */ + aShear[ShearType::XZSHEAR] = local[0].DotProduct(local[2]); + local[2] -= local[0] * aShear[ShearType::XZSHEAR]; + aShear[ShearType::YZSHEAR] = local[1].DotProduct(local[2]); + local[2] -= local[1] * aShear[ShearType::YZSHEAR]; + + /* Next, get Z scale and normalize 3rd local. */ + aScale.z = local[2].Length(); + local[2] /= aScale.z; + + aShear[ShearType::XZSHEAR] /= aScale.z; + aShear[ShearType::YZSHEAR] /= aScale.z; + + /** + * At this point, the matrix (in locals) is orthonormal. + * Check for a coordinate system flip. If the determinant + * is -1, then negate the matrix and the scaling factors. + */ + if (local[0].DotProduct(local[1].CrossProduct(local[2])) < 0) { + aScale *= -1; + for (int i = 0; i < 3; i++) { + local[i] *= -1; + } + } + + /* Now, get the rotations out */ + aRotate = gfxQuaternion(local); + + return true; +} + +Matrix +CSSValueArrayTo2DMatrix(nsCSSValue::Array* aArray) +{ + MOZ_ASSERT(aArray && + TransformFunctionOf(aArray) == eCSSKeyword_matrix && + aArray->Count() == 7); + Matrix m(aArray->Item(1).GetFloatValue(), + aArray->Item(2).GetFloatValue(), + aArray->Item(3).GetFloatValue(), + aArray->Item(4).GetFloatValue(), + aArray->Item(5).GetFloatValue(), + aArray->Item(6).GetFloatValue()); + return m; +} + +Matrix4x4 +CSSValueArrayTo3DMatrix(nsCSSValue::Array* aArray) +{ + MOZ_ASSERT(aArray && + TransformFunctionOf(aArray) == eCSSKeyword_matrix3d && + aArray->Count() == 17); + gfx::Float array[16]; + for (size_t i = 0; i < 16; ++i) { + array[i] = aArray->Item(i+1).GetFloatValue(); + } + Matrix4x4 m(array); + return m; +} + +} // namespace nsStyleTransformMatrix |