summaryrefslogtreecommitdiffstats
path: root/js/public/RootingAPI.h
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /js/public/RootingAPI.h
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'js/public/RootingAPI.h')
-rw-r--r--js/public/RootingAPI.h1330
1 files changed, 1330 insertions, 0 deletions
diff --git a/js/public/RootingAPI.h b/js/public/RootingAPI.h
new file mode 100644
index 000000000..9f6ed8943
--- /dev/null
+++ b/js/public/RootingAPI.h
@@ -0,0 +1,1330 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+ * vim: set ts=8 sts=4 et sw=4 tw=99:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef js_RootingAPI_h
+#define js_RootingAPI_h
+
+#include "mozilla/Attributes.h"
+#include "mozilla/DebugOnly.h"
+#include "mozilla/GuardObjects.h"
+#include "mozilla/LinkedList.h"
+#include "mozilla/Move.h"
+#include "mozilla/TypeTraits.h"
+
+#include <type_traits>
+
+#include "jspubtd.h"
+
+#include "js/GCAnnotations.h"
+#include "js/GCAPI.h"
+#include "js/GCPolicyAPI.h"
+#include "js/HeapAPI.h"
+#include "js/TypeDecls.h"
+#include "js/UniquePtr.h"
+#include "js/Utility.h"
+
+/*
+ * Moving GC Stack Rooting
+ *
+ * A moving GC may change the physical location of GC allocated things, even
+ * when they are rooted, updating all pointers to the thing to refer to its new
+ * location. The GC must therefore know about all live pointers to a thing,
+ * not just one of them, in order to behave correctly.
+ *
+ * The |Rooted| and |Handle| classes below are used to root stack locations
+ * whose value may be held live across a call that can trigger GC. For a
+ * code fragment such as:
+ *
+ * JSObject* obj = NewObject(cx);
+ * DoSomething(cx);
+ * ... = obj->lastProperty();
+ *
+ * If |DoSomething()| can trigger a GC, the stack location of |obj| must be
+ * rooted to ensure that the GC does not move the JSObject referred to by
+ * |obj| without updating |obj|'s location itself. This rooting must happen
+ * regardless of whether there are other roots which ensure that the object
+ * itself will not be collected.
+ *
+ * If |DoSomething()| cannot trigger a GC, and the same holds for all other
+ * calls made between |obj|'s definitions and its last uses, then no rooting
+ * is required.
+ *
+ * SpiderMonkey can trigger a GC at almost any time and in ways that are not
+ * always clear. For example, the following innocuous-looking actions can
+ * cause a GC: allocation of any new GC thing; JSObject::hasProperty;
+ * JS_ReportError and friends; and ToNumber, among many others. The following
+ * dangerous-looking actions cannot trigger a GC: js_malloc, cx->malloc_,
+ * rt->malloc_, and friends and JS_ReportOutOfMemory.
+ *
+ * The following family of three classes will exactly root a stack location.
+ * Incorrect usage of these classes will result in a compile error in almost
+ * all cases. Therefore, it is very hard to be incorrectly rooted if you use
+ * these classes exclusively. These classes are all templated on the type T of
+ * the value being rooted.
+ *
+ * - Rooted<T> declares a variable of type T, whose value is always rooted.
+ * Rooted<T> may be automatically coerced to a Handle<T>, below. Rooted<T>
+ * should be used whenever a local variable's value may be held live across a
+ * call which can trigger a GC.
+ *
+ * - Handle<T> is a const reference to a Rooted<T>. Functions which take GC
+ * things or values as arguments and need to root those arguments should
+ * generally use handles for those arguments and avoid any explicit rooting.
+ * This has two benefits. First, when several such functions call each other
+ * then redundant rooting of multiple copies of the GC thing can be avoided.
+ * Second, if the caller does not pass a rooted value a compile error will be
+ * generated, which is quicker and easier to fix than when relying on a
+ * separate rooting analysis.
+ *
+ * - MutableHandle<T> is a non-const reference to Rooted<T>. It is used in the
+ * same way as Handle<T> and includes a |set(const T& v)| method to allow
+ * updating the value of the referenced Rooted<T>. A MutableHandle<T> can be
+ * created with an implicit cast from a Rooted<T>*.
+ *
+ * In some cases the small performance overhead of exact rooting (measured to
+ * be a few nanoseconds on desktop) is too much. In these cases, try the
+ * following:
+ *
+ * - Move all Rooted<T> above inner loops: this allows you to re-use the root
+ * on each iteration of the loop.
+ *
+ * - Pass Handle<T> through your hot call stack to avoid re-rooting costs at
+ * every invocation.
+ *
+ * The following diagram explains the list of supported, implicit type
+ * conversions between classes of this family:
+ *
+ * Rooted<T> ----> Handle<T>
+ * | ^
+ * | |
+ * | |
+ * +---> MutableHandle<T>
+ * (via &)
+ *
+ * All of these types have an implicit conversion to raw pointers.
+ */
+
+namespace js {
+
+template <typename T>
+struct BarrierMethods {
+};
+
+template <typename T>
+class RootedBase {};
+
+template <typename T>
+class HandleBase {};
+
+template <typename T>
+class MutableHandleBase {};
+
+template <typename T>
+class HeapBase {};
+
+// Cannot use FOR_EACH_HEAP_ABLE_GC_POINTER_TYPE, as this would import too many macros into scope
+template <typename T> struct IsHeapConstructibleType { static constexpr bool value = false; };
+#define DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE(T) \
+ template <> struct IsHeapConstructibleType<T> { static constexpr bool value = true; };
+FOR_EACH_PUBLIC_GC_POINTER_TYPE(DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE)
+FOR_EACH_PUBLIC_TAGGED_GC_POINTER_TYPE(DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE)
+#undef DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE
+
+template <typename T>
+class PersistentRootedBase {};
+
+static void* const ConstNullValue = nullptr;
+
+namespace gc {
+struct Cell;
+template<typename T>
+struct PersistentRootedMarker;
+} /* namespace gc */
+
+#define DECLARE_POINTER_COMPARISON_OPS(T) \
+ bool operator==(const T& other) const { return get() == other; } \
+ bool operator!=(const T& other) const { return get() != other; }
+
+// Important: Return a reference so passing a Rooted<T>, etc. to
+// something that takes a |const T&| is not a GC hazard.
+#define DECLARE_POINTER_CONSTREF_OPS(T) \
+ operator const T&() const { return get(); } \
+ const T& operator->() const { return get(); }
+
+// Assignment operators on a base class are hidden by the implicitly defined
+// operator= on the derived class. Thus, define the operator= directly on the
+// class as we would need to manually pass it through anyway.
+#define DECLARE_POINTER_ASSIGN_OPS(Wrapper, T) \
+ Wrapper<T>& operator=(const T& p) { \
+ set(p); \
+ return *this; \
+ } \
+ Wrapper<T>& operator=(T&& p) { \
+ set(mozilla::Move(p)); \
+ return *this; \
+ } \
+ Wrapper<T>& operator=(const Wrapper<T>& other) { \
+ set(other.get()); \
+ return *this; \
+ } \
+
+#define DELETE_ASSIGNMENT_OPS(Wrapper, T) \
+ template <typename S> Wrapper<T>& operator=(S) = delete; \
+ Wrapper<T>& operator=(const Wrapper<T>&) = delete;
+
+#define DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr) \
+ const T* address() const { return &(ptr); } \
+ const T& get() const { return (ptr); } \
+
+#define DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr) \
+ T* address() { return &(ptr); } \
+ T& get() { return (ptr); } \
+
+} /* namespace js */
+
+namespace JS {
+
+template <typename T> class Rooted;
+template <typename T> class PersistentRooted;
+
+/* This is exposing internal state of the GC for inlining purposes. */
+JS_FRIEND_API(bool) isGCEnabled();
+
+JS_FRIEND_API(void) HeapObjectPostBarrier(JSObject** objp, JSObject* prev, JSObject* next);
+
+#ifdef JS_DEBUG
+/**
+ * For generational GC, assert that an object is in the tenured generation as
+ * opposed to being in the nursery.
+ */
+extern JS_FRIEND_API(void)
+AssertGCThingMustBeTenured(JSObject* obj);
+extern JS_FRIEND_API(void)
+AssertGCThingIsNotAnObjectSubclass(js::gc::Cell* cell);
+#else
+inline void
+AssertGCThingMustBeTenured(JSObject* obj) {}
+inline void
+AssertGCThingIsNotAnObjectSubclass(js::gc::Cell* cell) {}
+#endif
+
+/**
+ * The Heap<T> class is a heap-stored reference to a JS GC thing. All members of
+ * heap classes that refer to GC things should use Heap<T> (or possibly
+ * TenuredHeap<T>, described below).
+ *
+ * Heap<T> is an abstraction that hides some of the complexity required to
+ * maintain GC invariants for the contained reference. It uses operator
+ * overloading to provide a normal pointer interface, but notifies the GC every
+ * time the value it contains is updated. This is necessary for generational GC,
+ * which keeps track of all pointers into the nursery.
+ *
+ * Heap<T> instances must be traced when their containing object is traced to
+ * keep the pointed-to GC thing alive.
+ *
+ * Heap<T> objects should only be used on the heap. GC references stored on the
+ * C/C++ stack must use Rooted/Handle/MutableHandle instead.
+ *
+ * Type T must be a public GC pointer type.
+ */
+template <typename T>
+class MOZ_NON_MEMMOVABLE Heap : public js::HeapBase<T>
+{
+ // Please note: this can actually also be used by nsXBLMaybeCompiled<T>, for legacy reasons.
+ static_assert(js::IsHeapConstructibleType<T>::value,
+ "Type T must be a public GC pointer type");
+ public:
+ Heap() {
+ static_assert(sizeof(T) == sizeof(Heap<T>),
+ "Heap<T> must be binary compatible with T.");
+ init(GCPolicy<T>::initial());
+ }
+ explicit Heap(const T& p) { init(p); }
+
+ /*
+ * For Heap, move semantics are equivalent to copy semantics. In C++, a
+ * copy constructor taking const-ref is the way to get a single function
+ * that will be used for both lvalue and rvalue copies, so we can simply
+ * omit the rvalue variant.
+ */
+ explicit Heap(const Heap<T>& p) { init(p.ptr); }
+
+ ~Heap() {
+ post(ptr, GCPolicy<T>::initial());
+ }
+
+ DECLARE_POINTER_CONSTREF_OPS(T);
+ DECLARE_POINTER_ASSIGN_OPS(Heap, T);
+
+ const T* address() const { return &ptr; }
+
+ void exposeToActiveJS() const {
+ js::BarrierMethods<T>::exposeToJS(ptr);
+ }
+ const T& get() const {
+ exposeToActiveJS();
+ return ptr;
+ }
+ const T& unbarrieredGet() const {
+ return ptr;
+ }
+
+ T* unsafeGet() { return &ptr; }
+
+ explicit operator bool() const {
+ return bool(js::BarrierMethods<T>::asGCThingOrNull(ptr));
+ }
+ explicit operator bool() {
+ return bool(js::BarrierMethods<T>::asGCThingOrNull(ptr));
+ }
+
+ private:
+ void init(const T& newPtr) {
+ ptr = newPtr;
+ post(GCPolicy<T>::initial(), ptr);
+ }
+
+ void set(const T& newPtr) {
+ T tmp = ptr;
+ ptr = newPtr;
+ post(tmp, ptr);
+ }
+
+ void post(const T& prev, const T& next) {
+ js::BarrierMethods<T>::postBarrier(&ptr, prev, next);
+ }
+
+ T ptr;
+};
+
+static MOZ_ALWAYS_INLINE bool
+ObjectIsTenured(JSObject* obj)
+{
+ return !js::gc::IsInsideNursery(reinterpret_cast<js::gc::Cell*>(obj));
+}
+
+static MOZ_ALWAYS_INLINE bool
+ObjectIsTenured(const Heap<JSObject*>& obj)
+{
+ return ObjectIsTenured(obj.unbarrieredGet());
+}
+
+static MOZ_ALWAYS_INLINE bool
+ObjectIsMarkedGray(JSObject* obj)
+{
+ auto cell = reinterpret_cast<js::gc::Cell*>(obj);
+ return js::gc::detail::CellIsMarkedGrayIfKnown(cell);
+}
+
+static MOZ_ALWAYS_INLINE bool
+ObjectIsMarkedGray(const JS::Heap<JSObject*>& obj)
+{
+ return ObjectIsMarkedGray(obj.unbarrieredGet());
+}
+
+static MOZ_ALWAYS_INLINE bool
+ScriptIsMarkedGray(JSScript* script)
+{
+ auto cell = reinterpret_cast<js::gc::Cell*>(script);
+ return js::gc::detail::CellIsMarkedGrayIfKnown(cell);
+}
+
+static MOZ_ALWAYS_INLINE bool
+ScriptIsMarkedGray(const Heap<JSScript*>& script)
+{
+ return ScriptIsMarkedGray(script.unbarrieredGet());
+}
+
+/**
+ * The TenuredHeap<T> class is similar to the Heap<T> class above in that it
+ * encapsulates the GC concerns of an on-heap reference to a JS object. However,
+ * it has two important differences:
+ *
+ * 1) Pointers which are statically known to only reference "tenured" objects
+ * can avoid the extra overhead of SpiderMonkey's write barriers.
+ *
+ * 2) Objects in the "tenured" heap have stronger alignment restrictions than
+ * those in the "nursery", so it is possible to store flags in the lower
+ * bits of pointers known to be tenured. TenuredHeap wraps a normal tagged
+ * pointer with a nice API for accessing the flag bits and adds various
+ * assertions to ensure that it is not mis-used.
+ *
+ * GC things are said to be "tenured" when they are located in the long-lived
+ * heap: e.g. they have gained tenure as an object by surviving past at least
+ * one GC. For performance, SpiderMonkey allocates some things which are known
+ * to normally be long lived directly into the tenured generation; for example,
+ * global objects. Additionally, SpiderMonkey does not visit individual objects
+ * when deleting non-tenured objects, so object with finalizers are also always
+ * tenured; for instance, this includes most DOM objects.
+ *
+ * The considerations to keep in mind when using a TenuredHeap<T> vs a normal
+ * Heap<T> are:
+ *
+ * - It is invalid for a TenuredHeap<T> to refer to a non-tenured thing.
+ * - It is however valid for a Heap<T> to refer to a tenured thing.
+ * - It is not possible to store flag bits in a Heap<T>.
+ */
+template <typename T>
+class TenuredHeap : public js::HeapBase<T>
+{
+ public:
+ TenuredHeap() : bits(0) {
+ static_assert(sizeof(T) == sizeof(TenuredHeap<T>),
+ "TenuredHeap<T> must be binary compatible with T.");
+ }
+ explicit TenuredHeap(T p) : bits(0) { setPtr(p); }
+ explicit TenuredHeap(const TenuredHeap<T>& p) : bits(0) { setPtr(p.getPtr()); }
+
+ bool operator==(const TenuredHeap<T>& other) { return bits == other.bits; }
+ bool operator!=(const TenuredHeap<T>& other) { return bits != other.bits; }
+
+ void setPtr(T newPtr) {
+ MOZ_ASSERT((reinterpret_cast<uintptr_t>(newPtr) & flagsMask) == 0);
+ if (newPtr)
+ AssertGCThingMustBeTenured(newPtr);
+ bits = (bits & flagsMask) | reinterpret_cast<uintptr_t>(newPtr);
+ }
+
+ void setFlags(uintptr_t flagsToSet) {
+ MOZ_ASSERT((flagsToSet & ~flagsMask) == 0);
+ bits |= flagsToSet;
+ }
+
+ void unsetFlags(uintptr_t flagsToUnset) {
+ MOZ_ASSERT((flagsToUnset & ~flagsMask) == 0);
+ bits &= ~flagsToUnset;
+ }
+
+ bool hasFlag(uintptr_t flag) const {
+ MOZ_ASSERT((flag & ~flagsMask) == 0);
+ return (bits & flag) != 0;
+ }
+
+ T unbarrieredGetPtr() const { return reinterpret_cast<T>(bits & ~flagsMask); }
+ uintptr_t getFlags() const { return bits & flagsMask; }
+
+ void exposeToActiveJS() const {
+ js::BarrierMethods<T>::exposeToJS(unbarrieredGetPtr());
+ }
+ T getPtr() const {
+ exposeToActiveJS();
+ return unbarrieredGetPtr();
+ }
+
+ operator T() const { return getPtr(); }
+ T operator->() const { return getPtr(); }
+
+ explicit operator bool() const {
+ return bool(js::BarrierMethods<T>::asGCThingOrNull(unbarrieredGetPtr()));
+ }
+ explicit operator bool() {
+ return bool(js::BarrierMethods<T>::asGCThingOrNull(unbarrieredGetPtr()));
+ }
+
+ TenuredHeap<T>& operator=(T p) {
+ setPtr(p);
+ return *this;
+ }
+
+ TenuredHeap<T>& operator=(const TenuredHeap<T>& other) {
+ bits = other.bits;
+ return *this;
+ }
+
+ private:
+ enum {
+ maskBits = 3,
+ flagsMask = (1 << maskBits) - 1,
+ };
+
+ uintptr_t bits;
+};
+
+/**
+ * Reference to a T that has been rooted elsewhere. This is most useful
+ * as a parameter type, which guarantees that the T lvalue is properly
+ * rooted. See "Move GC Stack Rooting" above.
+ *
+ * If you want to add additional methods to Handle for a specific
+ * specialization, define a HandleBase<T> specialization containing them.
+ */
+template <typename T>
+class MOZ_NONHEAP_CLASS Handle : public js::HandleBase<T>
+{
+ friend class JS::MutableHandle<T>;
+
+ public:
+ /* Creates a handle from a handle of a type convertible to T. */
+ template <typename S>
+ MOZ_IMPLICIT Handle(Handle<S> handle,
+ typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0)
+ {
+ static_assert(sizeof(Handle<T>) == sizeof(T*),
+ "Handle must be binary compatible with T*.");
+ ptr = reinterpret_cast<const T*>(handle.address());
+ }
+
+ MOZ_IMPLICIT Handle(decltype(nullptr)) {
+ static_assert(mozilla::IsPointer<T>::value,
+ "nullptr_t overload not valid for non-pointer types");
+ ptr = reinterpret_cast<const T*>(&js::ConstNullValue);
+ }
+
+ MOZ_IMPLICIT Handle(MutableHandle<T> handle) {
+ ptr = handle.address();
+ }
+
+ /*
+ * Take care when calling this method!
+ *
+ * This creates a Handle from the raw location of a T.
+ *
+ * It should be called only if the following conditions hold:
+ *
+ * 1) the location of the T is guaranteed to be marked (for some reason
+ * other than being a Rooted), e.g., if it is guaranteed to be reachable
+ * from an implicit root.
+ *
+ * 2) the contents of the location are immutable, or at least cannot change
+ * for the lifetime of the handle, as its users may not expect its value
+ * to change underneath them.
+ */
+ static constexpr Handle fromMarkedLocation(const T* p) {
+ return Handle(p, DeliberatelyChoosingThisOverload,
+ ImUsingThisOnlyInFromFromMarkedLocation);
+ }
+
+ /*
+ * Construct a handle from an explicitly rooted location. This is the
+ * normal way to create a handle, and normally happens implicitly.
+ */
+ template <typename S>
+ inline
+ MOZ_IMPLICIT Handle(const Rooted<S>& root,
+ typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
+
+ template <typename S>
+ inline
+ MOZ_IMPLICIT Handle(const PersistentRooted<S>& root,
+ typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
+
+ /* Construct a read only handle from a mutable handle. */
+ template <typename S>
+ inline
+ MOZ_IMPLICIT Handle(MutableHandle<S>& root,
+ typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
+
+ DECLARE_POINTER_COMPARISON_OPS(T);
+ DECLARE_POINTER_CONSTREF_OPS(T);
+ DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr);
+
+ private:
+ Handle() {}
+ DELETE_ASSIGNMENT_OPS(Handle, T);
+
+ enum Disambiguator { DeliberatelyChoosingThisOverload = 42 };
+ enum CallerIdentity { ImUsingThisOnlyInFromFromMarkedLocation = 17 };
+ constexpr Handle(const T* p, Disambiguator, CallerIdentity) : ptr(p) {}
+
+ const T* ptr;
+};
+
+/**
+ * Similar to a handle, but the underlying storage can be changed. This is
+ * useful for outparams.
+ *
+ * If you want to add additional methods to MutableHandle for a specific
+ * specialization, define a MutableHandleBase<T> specialization containing
+ * them.
+ */
+template <typename T>
+class MOZ_STACK_CLASS MutableHandle : public js::MutableHandleBase<T>
+{
+ public:
+ inline MOZ_IMPLICIT MutableHandle(Rooted<T>* root);
+ inline MOZ_IMPLICIT MutableHandle(PersistentRooted<T>* root);
+
+ private:
+ // Disallow nullptr for overloading purposes.
+ MutableHandle(decltype(nullptr)) = delete;
+
+ public:
+ void set(const T& v) {
+ *ptr = v;
+ }
+ void set(T&& v) {
+ *ptr = mozilla::Move(v);
+ }
+
+ /*
+ * This may be called only if the location of the T is guaranteed
+ * to be marked (for some reason other than being a Rooted),
+ * e.g., if it is guaranteed to be reachable from an implicit root.
+ *
+ * Create a MutableHandle from a raw location of a T.
+ */
+ static MutableHandle fromMarkedLocation(T* p) {
+ MutableHandle h;
+ h.ptr = p;
+ return h;
+ }
+
+ DECLARE_POINTER_CONSTREF_OPS(T);
+ DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr);
+ DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(*ptr);
+
+ private:
+ MutableHandle() {}
+ DELETE_ASSIGNMENT_OPS(MutableHandle, T);
+
+ T* ptr;
+};
+
+} /* namespace JS */
+
+namespace js {
+
+template <typename T>
+struct BarrierMethods<T*>
+{
+ static T* initial() { return nullptr; }
+ static gc::Cell* asGCThingOrNull(T* v) {
+ if (!v)
+ return nullptr;
+ MOZ_ASSERT(uintptr_t(v) > 32);
+ return reinterpret_cast<gc::Cell*>(v);
+ }
+ static void postBarrier(T** vp, T* prev, T* next) {
+ if (next)
+ JS::AssertGCThingIsNotAnObjectSubclass(reinterpret_cast<js::gc::Cell*>(next));
+ }
+ static void exposeToJS(T* t) {
+ if (t)
+ js::gc::ExposeGCThingToActiveJS(JS::GCCellPtr(t));
+ }
+};
+
+template <>
+struct BarrierMethods<JSObject*>
+{
+ static JSObject* initial() { return nullptr; }
+ static gc::Cell* asGCThingOrNull(JSObject* v) {
+ if (!v)
+ return nullptr;
+ MOZ_ASSERT(uintptr_t(v) > 32);
+ return reinterpret_cast<gc::Cell*>(v);
+ }
+ static void postBarrier(JSObject** vp, JSObject* prev, JSObject* next) {
+ JS::HeapObjectPostBarrier(vp, prev, next);
+ }
+ static void exposeToJS(JSObject* obj) {
+ if (obj)
+ JS::ExposeObjectToActiveJS(obj);
+ }
+};
+
+template <>
+struct BarrierMethods<JSFunction*>
+{
+ static JSFunction* initial() { return nullptr; }
+ static gc::Cell* asGCThingOrNull(JSFunction* v) {
+ if (!v)
+ return nullptr;
+ MOZ_ASSERT(uintptr_t(v) > 32);
+ return reinterpret_cast<gc::Cell*>(v);
+ }
+ static void postBarrier(JSFunction** vp, JSFunction* prev, JSFunction* next) {
+ JS::HeapObjectPostBarrier(reinterpret_cast<JSObject**>(vp),
+ reinterpret_cast<JSObject*>(prev),
+ reinterpret_cast<JSObject*>(next));
+ }
+ static void exposeToJS(JSFunction* fun) {
+ if (fun)
+ JS::ExposeObjectToActiveJS(reinterpret_cast<JSObject*>(fun));
+ }
+};
+
+// Provide hash codes for Cell kinds that may be relocated and, thus, not have
+// a stable address to use as the base for a hash code. Instead of the address,
+// this hasher uses Cell::getUniqueId to provide exact matches and as a base
+// for generating hash codes.
+//
+// Note: this hasher, like PointerHasher can "hash" a nullptr. While a nullptr
+// would not likely be a useful key, there are some cases where being able to
+// hash a nullptr is useful, either on purpose or because of bugs:
+// (1) existence checks where the key may happen to be null and (2) some
+// aggregate Lookup kinds embed a JSObject* that is frequently null and do not
+// null test before dispatching to the hasher.
+template <typename T>
+struct JS_PUBLIC_API(MovableCellHasher)
+{
+ using Key = T;
+ using Lookup = T;
+
+ static bool hasHash(const Lookup& l);
+ static bool ensureHash(const Lookup& l);
+ static HashNumber hash(const Lookup& l);
+ static bool match(const Key& k, const Lookup& l);
+ static void rekey(Key& k, const Key& newKey) { k = newKey; }
+};
+
+template <typename T>
+struct JS_PUBLIC_API(MovableCellHasher<JS::Heap<T>>)
+{
+ using Key = JS::Heap<T>;
+ using Lookup = T;
+
+ static bool hasHash(const Lookup& l) { return MovableCellHasher<T>::hasHash(l); }
+ static bool ensureHash(const Lookup& l) { return MovableCellHasher<T>::ensureHash(l); }
+ static HashNumber hash(const Lookup& l) { return MovableCellHasher<T>::hash(l); }
+ static bool match(const Key& k, const Lookup& l) {
+ return MovableCellHasher<T>::match(k.unbarrieredGet(), l);
+ }
+ static void rekey(Key& k, const Key& newKey) { k.unsafeSet(newKey); }
+};
+
+template <typename T>
+struct FallibleHashMethods<MovableCellHasher<T>>
+{
+ template <typename Lookup> static bool hasHash(Lookup&& l) {
+ return MovableCellHasher<T>::hasHash(mozilla::Forward<Lookup>(l));
+ }
+ template <typename Lookup> static bool ensureHash(Lookup&& l) {
+ return MovableCellHasher<T>::ensureHash(mozilla::Forward<Lookup>(l));
+ }
+};
+
+} /* namespace js */
+
+namespace js {
+
+// The alignment must be set because the Rooted and PersistentRooted ptr fields
+// may be accessed through reinterpret_cast<Rooted<ConcreteTraceable>*>, and
+// the compiler may choose a different alignment for the ptr field when it
+// knows the actual type stored in DispatchWrapper<T>.
+//
+// It would make more sense to align only those specific fields of type
+// DispatchWrapper, rather than DispatchWrapper itself, but that causes MSVC to
+// fail when Rooted is used in an IsConvertible test.
+template <typename T>
+class alignas(8) DispatchWrapper
+{
+ static_assert(JS::MapTypeToRootKind<T>::kind == JS::RootKind::Traceable,
+ "DispatchWrapper is intended only for usage with a Traceable");
+
+ using TraceFn = void (*)(JSTracer*, T*, const char*);
+ TraceFn tracer;
+ alignas(gc::CellSize) T storage;
+
+ public:
+ template <typename U>
+ MOZ_IMPLICIT DispatchWrapper(U&& initial)
+ : tracer(&JS::GCPolicy<T>::trace),
+ storage(mozilla::Forward<U>(initial))
+ { }
+
+ // Mimic a pointer type, so that we can drop into Rooted.
+ T* operator &() { return &storage; }
+ const T* operator &() const { return &storage; }
+ operator T&() { return storage; }
+ operator const T&() const { return storage; }
+
+ // Trace the contained storage (of unknown type) using the trace function
+ // we set aside when we did know the type.
+ static void TraceWrapped(JSTracer* trc, T* thingp, const char* name) {
+ auto wrapper = reinterpret_cast<DispatchWrapper*>(
+ uintptr_t(thingp) - offsetof(DispatchWrapper, storage));
+ wrapper->tracer(trc, &wrapper->storage, name);
+ }
+};
+
+} /* namespace js */
+
+namespace JS {
+
+/**
+ * Local variable of type T whose value is always rooted. This is typically
+ * used for local variables, or for non-rooted values being passed to a
+ * function that requires a handle, e.g. Foo(Root<T>(cx, x)).
+ *
+ * If you want to add additional methods to Rooted for a specific
+ * specialization, define a RootedBase<T> specialization containing them.
+ */
+template <typename T>
+class MOZ_RAII Rooted : public js::RootedBase<T>
+{
+ inline void registerWithRootLists(js::RootedListHeads& roots) {
+ this->stack = &roots[JS::MapTypeToRootKind<T>::kind];
+ this->prev = *stack;
+ *stack = reinterpret_cast<Rooted<void*>*>(this);
+ }
+
+ inline js::RootedListHeads& rootLists(JS::RootingContext* cx) {
+ return rootLists(static_cast<js::ContextFriendFields*>(cx));
+ }
+ inline js::RootedListHeads& rootLists(js::ContextFriendFields* cx) {
+ if (JS::Zone* zone = cx->zone_)
+ return JS::shadow::Zone::asShadowZone(zone)->stackRoots_;
+ MOZ_ASSERT(cx->isJSContext);
+ return cx->roots.stackRoots_;
+ }
+ inline js::RootedListHeads& rootLists(JSContext* cx) {
+ return rootLists(js::ContextFriendFields::get(cx));
+ }
+
+ public:
+ template <typename RootingContext>
+ explicit Rooted(const RootingContext& cx)
+ : ptr(GCPolicy<T>::initial())
+ {
+ registerWithRootLists(rootLists(cx));
+ }
+
+ template <typename RootingContext, typename S>
+ Rooted(const RootingContext& cx, S&& initial)
+ : ptr(mozilla::Forward<S>(initial))
+ {
+ registerWithRootLists(rootLists(cx));
+ }
+
+ ~Rooted() {
+ MOZ_ASSERT(*stack == reinterpret_cast<Rooted<void*>*>(this));
+ *stack = prev;
+ }
+
+ Rooted<T>* previous() { return reinterpret_cast<Rooted<T>*>(prev); }
+
+ /*
+ * This method is public for Rooted so that Codegen.py can use a Rooted
+ * interchangeably with a MutableHandleValue.
+ */
+ void set(const T& value) {
+ ptr = value;
+ }
+ void set(T&& value) {
+ ptr = mozilla::Move(value);
+ }
+
+ DECLARE_POINTER_COMPARISON_OPS(T);
+ DECLARE_POINTER_CONSTREF_OPS(T);
+ DECLARE_POINTER_ASSIGN_OPS(Rooted, T);
+ DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);
+ DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr);
+
+ private:
+ /*
+ * These need to be templated on void* to avoid aliasing issues between, for
+ * example, Rooted<JSObject> and Rooted<JSFunction>, which use the same
+ * stack head pointer for different classes.
+ */
+ Rooted<void*>** stack;
+ Rooted<void*>* prev;
+
+ /*
+ * For pointer types, the TraceKind for tracing is based on the list it is
+ * in (selected via MapTypeToRootKind), so no additional storage is
+ * required here. Non-pointer types, however, share the same list, so the
+ * function to call for tracing is stored adjacent to the struct. Since C++
+ * cannot templatize on storage class, this is implemented via the wrapper
+ * class DispatchWrapper.
+ */
+ using MaybeWrapped = typename mozilla::Conditional<
+ MapTypeToRootKind<T>::kind == JS::RootKind::Traceable,
+ js::DispatchWrapper<T>,
+ T>::Type;
+ MaybeWrapped ptr;
+
+ Rooted(const Rooted&) = delete;
+} JS_HAZ_ROOTED;
+
+} /* namespace JS */
+
+namespace js {
+
+/**
+ * Augment the generic Rooted<T> interface when T = JSObject* with
+ * class-querying and downcasting operations.
+ *
+ * Given a Rooted<JSObject*> obj, one can view
+ * Handle<StringObject*> h = obj.as<StringObject*>();
+ * as an optimization of
+ * Rooted<StringObject*> rooted(cx, &obj->as<StringObject*>());
+ * Handle<StringObject*> h = rooted;
+ */
+template <>
+class RootedBase<JSObject*>
+{
+ public:
+ template <class U>
+ JS::Handle<U*> as() const;
+};
+
+/**
+ * Augment the generic Handle<T> interface when T = JSObject* with
+ * downcasting operations.
+ *
+ * Given a Handle<JSObject*> obj, one can view
+ * Handle<StringObject*> h = obj.as<StringObject*>();
+ * as an optimization of
+ * Rooted<StringObject*> rooted(cx, &obj->as<StringObject*>());
+ * Handle<StringObject*> h = rooted;
+ */
+template <>
+class HandleBase<JSObject*>
+{
+ public:
+ template <class U>
+ JS::Handle<U*> as() const;
+};
+
+/** Interface substitute for Rooted<T> which does not root the variable's memory. */
+template <typename T>
+class MOZ_RAII FakeRooted : public RootedBase<T>
+{
+ public:
+ template <typename CX>
+ explicit FakeRooted(CX* cx) : ptr(JS::GCPolicy<T>::initial()) {}
+
+ template <typename CX>
+ FakeRooted(CX* cx, T initial) : ptr(initial) {}
+
+ DECLARE_POINTER_COMPARISON_OPS(T);
+ DECLARE_POINTER_CONSTREF_OPS(T);
+ DECLARE_POINTER_ASSIGN_OPS(FakeRooted, T);
+ DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);
+ DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr);
+
+ private:
+ T ptr;
+
+ void set(const T& value) {
+ ptr = value;
+ }
+
+ FakeRooted(const FakeRooted&) = delete;
+};
+
+/** Interface substitute for MutableHandle<T> which is not required to point to rooted memory. */
+template <typename T>
+class FakeMutableHandle : public js::MutableHandleBase<T>
+{
+ public:
+ MOZ_IMPLICIT FakeMutableHandle(T* t) {
+ ptr = t;
+ }
+
+ MOZ_IMPLICIT FakeMutableHandle(FakeRooted<T>* root) {
+ ptr = root->address();
+ }
+
+ void set(const T& v) {
+ *ptr = v;
+ }
+
+ DECLARE_POINTER_CONSTREF_OPS(T);
+ DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr);
+ DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(*ptr);
+
+ private:
+ FakeMutableHandle() {}
+ DELETE_ASSIGNMENT_OPS(FakeMutableHandle, T);
+
+ T* ptr;
+};
+
+/**
+ * Types for a variable that either should or shouldn't be rooted, depending on
+ * the template parameter allowGC. Used for implementing functions that can
+ * operate on either rooted or unrooted data.
+ *
+ * The toHandle() and toMutableHandle() functions are for calling functions
+ * which require handle types and are only called in the CanGC case. These
+ * allow the calling code to type check.
+ */
+enum AllowGC {
+ NoGC = 0,
+ CanGC = 1
+};
+template <typename T, AllowGC allowGC>
+class MaybeRooted
+{
+};
+
+template <typename T> class MaybeRooted<T, CanGC>
+{
+ public:
+ typedef JS::Handle<T> HandleType;
+ typedef JS::Rooted<T> RootType;
+ typedef JS::MutableHandle<T> MutableHandleType;
+
+ static inline JS::Handle<T> toHandle(HandleType v) {
+ return v;
+ }
+
+ static inline JS::MutableHandle<T> toMutableHandle(MutableHandleType v) {
+ return v;
+ }
+
+ template <typename T2>
+ static inline JS::Handle<T2*> downcastHandle(HandleType v) {
+ return v.template as<T2>();
+ }
+};
+
+template <typename T> class MaybeRooted<T, NoGC>
+{
+ public:
+ typedef const T& HandleType;
+ typedef FakeRooted<T> RootType;
+ typedef FakeMutableHandle<T> MutableHandleType;
+
+ static JS::Handle<T> toHandle(HandleType v) {
+ MOZ_CRASH("Bad conversion");
+ }
+
+ static JS::MutableHandle<T> toMutableHandle(MutableHandleType v) {
+ MOZ_CRASH("Bad conversion");
+ }
+
+ template <typename T2>
+ static inline T2* downcastHandle(HandleType v) {
+ return &v->template as<T2>();
+ }
+};
+
+} /* namespace js */
+
+namespace JS {
+
+template <typename T> template <typename S>
+inline
+Handle<T>::Handle(const Rooted<S>& root,
+ typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
+{
+ ptr = reinterpret_cast<const T*>(root.address());
+}
+
+template <typename T> template <typename S>
+inline
+Handle<T>::Handle(const PersistentRooted<S>& root,
+ typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
+{
+ ptr = reinterpret_cast<const T*>(root.address());
+}
+
+template <typename T> template <typename S>
+inline
+Handle<T>::Handle(MutableHandle<S>& root,
+ typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
+{
+ ptr = reinterpret_cast<const T*>(root.address());
+}
+
+template <typename T>
+inline
+MutableHandle<T>::MutableHandle(Rooted<T>* root)
+{
+ static_assert(sizeof(MutableHandle<T>) == sizeof(T*),
+ "MutableHandle must be binary compatible with T*.");
+ ptr = root->address();
+}
+
+template <typename T>
+inline
+MutableHandle<T>::MutableHandle(PersistentRooted<T>* root)
+{
+ static_assert(sizeof(MutableHandle<T>) == sizeof(T*),
+ "MutableHandle must be binary compatible with T*.");
+ ptr = root->address();
+}
+
+/**
+ * A copyable, assignable global GC root type with arbitrary lifetime, an
+ * infallible constructor, and automatic unrooting on destruction.
+ *
+ * These roots can be used in heap-allocated data structures, so they are not
+ * associated with any particular JSContext or stack. They are registered with
+ * the JSRuntime itself, without locking, so they require a full JSContext to be
+ * initialized, not one of its more restricted superclasses. Initialization may
+ * take place on construction, or in two phases if the no-argument constructor
+ * is called followed by init().
+ *
+ * Note that you must not use an PersistentRooted in an object owned by a JS
+ * object:
+ *
+ * Whenever one object whose lifetime is decided by the GC refers to another
+ * such object, that edge must be traced only if the owning JS object is traced.
+ * This applies not only to JS objects (which obviously are managed by the GC)
+ * but also to C++ objects owned by JS objects.
+ *
+ * If you put a PersistentRooted in such a C++ object, that is almost certainly
+ * a leak. When a GC begins, the referent of the PersistentRooted is treated as
+ * live, unconditionally (because a PersistentRooted is a *root*), even if the
+ * JS object that owns it is unreachable. If there is any path from that
+ * referent back to the JS object, then the C++ object containing the
+ * PersistentRooted will not be destructed, and the whole blob of objects will
+ * not be freed, even if there are no references to them from the outside.
+ *
+ * In the context of Firefox, this is a severe restriction: almost everything in
+ * Firefox is owned by some JS object or another, so using PersistentRooted in
+ * such objects would introduce leaks. For these kinds of edges, Heap<T> or
+ * TenuredHeap<T> would be better types. It's up to the implementor of the type
+ * containing Heap<T> or TenuredHeap<T> members to make sure their referents get
+ * marked when the object itself is marked.
+ */
+template<typename T>
+class PersistentRooted : public js::PersistentRootedBase<T>,
+ private mozilla::LinkedListElement<PersistentRooted<T>>
+{
+ using ListBase = mozilla::LinkedListElement<PersistentRooted<T>>;
+
+ friend class mozilla::LinkedList<PersistentRooted>;
+ friend class mozilla::LinkedListElement<PersistentRooted>;
+
+ void registerWithRootLists(js::RootLists& roots) {
+ MOZ_ASSERT(!initialized());
+ JS::RootKind kind = JS::MapTypeToRootKind<T>::kind;
+ roots.heapRoots_[kind].insertBack(reinterpret_cast<JS::PersistentRooted<void*>*>(this));
+ }
+
+ js::RootLists& rootLists(JSContext* cx) {
+ return rootLists(JS::RootingContext::get(cx));
+ }
+ js::RootLists& rootLists(JS::RootingContext* cx) {
+ MOZ_ASSERT(cx->isJSContext);
+ return cx->roots;
+ }
+
+ // Disallow ExclusiveContext*.
+ js::RootLists& rootLists(js::ContextFriendFields* cx) = delete;
+
+ public:
+ PersistentRooted() : ptr(GCPolicy<T>::initial()) {}
+
+ template <typename RootingContext>
+ explicit PersistentRooted(const RootingContext& cx)
+ : ptr(GCPolicy<T>::initial())
+ {
+ registerWithRootLists(rootLists(cx));
+ }
+
+ template <typename RootingContext, typename U>
+ PersistentRooted(const RootingContext& cx, U&& initial)
+ : ptr(mozilla::Forward<U>(initial))
+ {
+ registerWithRootLists(rootLists(cx));
+ }
+
+ PersistentRooted(const PersistentRooted& rhs)
+ : mozilla::LinkedListElement<PersistentRooted<T>>(),
+ ptr(rhs.ptr)
+ {
+ /*
+ * Copy construction takes advantage of the fact that the original
+ * is already inserted, and simply adds itself to whatever list the
+ * original was on - no JSRuntime pointer needed.
+ *
+ * This requires mutating rhs's links, but those should be 'mutable'
+ * anyway. C++ doesn't let us declare mutable base classes.
+ */
+ const_cast<PersistentRooted&>(rhs).setNext(this);
+ }
+
+ bool initialized() {
+ return ListBase::isInList();
+ }
+
+ template <typename RootingContext>
+ void init(const RootingContext& cx) {
+ init(cx, GCPolicy<T>::initial());
+ }
+
+ template <typename RootingContext, typename U>
+ void init(const RootingContext& cx, U&& initial) {
+ ptr = mozilla::Forward<U>(initial);
+ registerWithRootLists(rootLists(cx));
+ }
+
+ void reset() {
+ if (initialized()) {
+ set(GCPolicy<T>::initial());
+ ListBase::remove();
+ }
+ }
+
+ DECLARE_POINTER_COMPARISON_OPS(T);
+ DECLARE_POINTER_CONSTREF_OPS(T);
+ DECLARE_POINTER_ASSIGN_OPS(PersistentRooted, T);
+ DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);
+
+ // These are the same as DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS, except
+ // they check that |this| is initialized in case the caller later stores
+ // something in |ptr|.
+ T* address() {
+ MOZ_ASSERT(initialized());
+ return &ptr;
+ }
+ T& get() {
+ MOZ_ASSERT(initialized());
+ return ptr;
+ }
+
+ private:
+ template <typename U>
+ void set(U&& value) {
+ MOZ_ASSERT(initialized());
+ ptr = mozilla::Forward<U>(value);
+ }
+
+ // See the comment above Rooted::ptr.
+ using MaybeWrapped = typename mozilla::Conditional<
+ MapTypeToRootKind<T>::kind == JS::RootKind::Traceable,
+ js::DispatchWrapper<T>,
+ T>::Type;
+ MaybeWrapped ptr;
+} JS_HAZ_ROOTED;
+
+class JS_PUBLIC_API(ObjectPtr)
+{
+ Heap<JSObject*> value;
+
+ public:
+ ObjectPtr() : value(nullptr) {}
+
+ explicit ObjectPtr(JSObject* obj) : value(obj) {}
+
+ ObjectPtr(const ObjectPtr& other) : value(other.value) {}
+
+ ObjectPtr(ObjectPtr&& other)
+ : value(other.value)
+ {
+ other.value = nullptr;
+ }
+
+ /* Always call finalize before the destructor. */
+ ~ObjectPtr() { MOZ_ASSERT(!value); }
+
+ void finalize(JSRuntime* rt);
+ void finalize(JSContext* cx);
+
+ void init(JSObject* obj) { value = obj; }
+
+ JSObject* get() const { return value; }
+ JSObject* unbarrieredGet() const { return value.unbarrieredGet(); }
+
+ void writeBarrierPre(JSContext* cx) {
+ IncrementalObjectBarrier(value);
+ }
+
+ void updateWeakPointerAfterGC();
+
+ ObjectPtr& operator=(JSObject* obj) {
+ IncrementalObjectBarrier(value);
+ value = obj;
+ return *this;
+ }
+
+ void trace(JSTracer* trc, const char* name);
+
+ JSObject& operator*() const { return *value; }
+ JSObject* operator->() const { return value; }
+ operator JSObject*() const { return value; }
+
+ explicit operator bool() const { return value.unbarrieredGet(); }
+ explicit operator bool() { return value.unbarrieredGet(); }
+};
+
+} /* namespace JS */
+
+namespace js {
+
+template <typename Outer, typename T, typename D>
+class UniquePtrOperations
+{
+ const UniquePtr<T, D>& uniquePtr() const { return static_cast<const Outer*>(this)->get(); }
+
+ public:
+ explicit operator bool() const { return !!uniquePtr(); }
+ T* get() const { return uniquePtr().get(); }
+ T* operator->() const { return get(); }
+ T& operator*() const { return *uniquePtr(); }
+};
+
+template <typename Outer, typename T, typename D>
+class MutableUniquePtrOperations : public UniquePtrOperations<Outer, T, D>
+{
+ UniquePtr<T, D>& uniquePtr() { return static_cast<Outer*>(this)->get(); }
+
+ public:
+ MOZ_MUST_USE typename UniquePtr<T, D>::Pointer release() { return uniquePtr().release(); }
+ void reset(T* ptr = T()) { uniquePtr().reset(ptr); }
+};
+
+template <typename T, typename D>
+class RootedBase<UniquePtr<T, D>>
+ : public MutableUniquePtrOperations<JS::Rooted<UniquePtr<T, D>>, T, D>
+{ };
+
+template <typename T, typename D>
+class MutableHandleBase<UniquePtr<T, D>>
+ : public MutableUniquePtrOperations<JS::MutableHandle<UniquePtr<T, D>>, T, D>
+{ };
+
+template <typename T, typename D>
+class HandleBase<UniquePtr<T, D>>
+ : public UniquePtrOperations<JS::Handle<UniquePtr<T, D>>, T, D>
+{ };
+
+template <typename T, typename D>
+class PersistentRootedBase<UniquePtr<T, D>>
+ : public MutableUniquePtrOperations<JS::PersistentRooted<UniquePtr<T, D>>, T, D>
+{ };
+
+namespace gc {
+
+template <typename T, typename TraceCallbacks>
+void
+CallTraceCallbackOnNonHeap(T* v, const TraceCallbacks& aCallbacks, const char* aName, void* aClosure)
+{
+ static_assert(sizeof(T) == sizeof(JS::Heap<T>), "T and Heap<T> must be compatible.");
+ MOZ_ASSERT(v);
+ mozilla::DebugOnly<Cell*> cell = BarrierMethods<T>::asGCThingOrNull(*v);
+ MOZ_ASSERT(cell);
+ MOZ_ASSERT(!IsInsideNursery(cell));
+ JS::Heap<T>* asHeapT = reinterpret_cast<JS::Heap<T>*>(v);
+ aCallbacks.Trace(asHeapT, aName, aClosure);
+}
+
+} /* namespace gc */
+} /* namespace js */
+
+// mozilla::Swap uses a stack temporary, which prevents classes like Heap<T>
+// from being declared MOZ_HEAP_CLASS.
+namespace mozilla {
+
+template <typename T>
+inline void
+Swap(JS::Heap<T>& aX, JS::Heap<T>& aY)
+{
+ T tmp = aX;
+ aX = aY;
+ aY = tmp;
+}
+
+template <typename T>
+inline void
+Swap(JS::TenuredHeap<T>& aX, JS::TenuredHeap<T>& aY)
+{
+ T tmp = aX;
+ aX = aY;
+ aY = tmp;
+}
+
+} /* namespace mozilla */
+
+#undef DELETE_ASSIGNMENT_OPS
+
+#endif /* js_RootingAPI_h */