summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/regexcmp.cpp
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /intl/icu/source/i18n/regexcmp.cpp
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'intl/icu/source/i18n/regexcmp.cpp')
-rw-r--r--intl/icu/source/i18n/regexcmp.cpp4642
1 files changed, 4642 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/regexcmp.cpp b/intl/icu/source/i18n/regexcmp.cpp
new file mode 100644
index 000000000..2657cf37c
--- /dev/null
+++ b/intl/icu/source/i18n/regexcmp.cpp
@@ -0,0 +1,4642 @@
+// Copyright (C) 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+//
+// file: regexcmp.cpp
+//
+// Copyright (C) 2002-2016 International Business Machines Corporation and others.
+// All Rights Reserved.
+//
+// This file contains the ICU regular expression compiler, which is responsible
+// for processing a regular expression pattern into the compiled form that
+// is used by the match finding engine.
+//
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_REGULAR_EXPRESSIONS
+
+#include "unicode/ustring.h"
+#include "unicode/unistr.h"
+#include "unicode/uniset.h"
+#include "unicode/uchar.h"
+#include "unicode/uchriter.h"
+#include "unicode/parsepos.h"
+#include "unicode/parseerr.h"
+#include "unicode/regex.h"
+#include "unicode/utf.h"
+#include "unicode/utf16.h"
+#include "patternprops.h"
+#include "putilimp.h"
+#include "cmemory.h"
+#include "cstring.h"
+#include "uvectr32.h"
+#include "uvectr64.h"
+#include "uassert.h"
+#include "uinvchar.h"
+
+#include "regeximp.h"
+#include "regexcst.h" // Contains state table for the regex pattern parser.
+ // generated by a Perl script.
+#include "regexcmp.h"
+#include "regexst.h"
+#include "regextxt.h"
+
+
+
+U_NAMESPACE_BEGIN
+
+
+//------------------------------------------------------------------------------
+//
+// Constructor.
+//
+//------------------------------------------------------------------------------
+RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) :
+ fParenStack(status), fSetStack(status), fSetOpStack(status)
+{
+ // Lazy init of all shared global sets (needed for init()'s empty text)
+ RegexStaticSets::initGlobals(&status);
+
+ fStatus = &status;
+
+ fRXPat = rxp;
+ fScanIndex = 0;
+ fLastChar = -1;
+ fPeekChar = -1;
+ fLineNum = 1;
+ fCharNum = 0;
+ fQuoteMode = FALSE;
+ fInBackslashQuote = FALSE;
+ fModeFlags = fRXPat->fFlags | 0x80000000;
+ fEOLComments = TRUE;
+
+ fMatchOpenParen = -1;
+ fMatchCloseParen = -1;
+ fCaptureName = NULL;
+ fLastSetLiteral = U_SENTINEL;
+
+ if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) {
+ status = rxp->fDeferredStatus;
+ }
+}
+
+static const UChar chAmp = 0x26; // '&'
+static const UChar chDash = 0x2d; // '-'
+
+
+//------------------------------------------------------------------------------
+//
+// Destructor
+//
+//------------------------------------------------------------------------------
+RegexCompile::~RegexCompile() {
+ delete fCaptureName; // Normally will be NULL, but can exist if pattern
+ // compilation stops with a syntax error.
+}
+
+static inline void addCategory(UnicodeSet *set, int32_t value, UErrorCode& ec) {
+ set->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, value, ec));
+}
+
+//------------------------------------------------------------------------------
+//
+// Compile regex pattern. The state machine for rexexp pattern parsing is here.
+// The state tables are hand-written in the file regexcst.txt,
+// and converted to the form used here by a perl
+// script regexcst.pl
+//
+//------------------------------------------------------------------------------
+void RegexCompile::compile(
+ const UnicodeString &pat, // Source pat to be compiled.
+ UParseError &pp, // Error position info
+ UErrorCode &e) // Error Code
+{
+ fRXPat->fPatternString = new UnicodeString(pat);
+ UText patternText = UTEXT_INITIALIZER;
+ utext_openConstUnicodeString(&patternText, fRXPat->fPatternString, &e);
+
+ if (U_SUCCESS(e)) {
+ compile(&patternText, pp, e);
+ utext_close(&patternText);
+ }
+}
+
+//
+// compile, UText mode
+// All the work is actually done here.
+//
+void RegexCompile::compile(
+ UText *pat, // Source pat to be compiled.
+ UParseError &pp, // Error position info
+ UErrorCode &e) // Error Code
+{
+ fStatus = &e;
+ fParseErr = &pp;
+ fStackPtr = 0;
+ fStack[fStackPtr] = 0;
+
+ if (U_FAILURE(*fStatus)) {
+ return;
+ }
+
+ // There should be no pattern stuff in the RegexPattern object. They can not be reused.
+ U_ASSERT(fRXPat->fPattern == NULL || utext_nativeLength(fRXPat->fPattern) == 0);
+
+ // Prepare the RegexPattern object to receive the compiled pattern.
+ fRXPat->fPattern = utext_clone(fRXPat->fPattern, pat, FALSE, TRUE, fStatus);
+ if (U_FAILURE(*fStatus)) {
+ return;
+ }
+ fRXPat->fStaticSets = RegexStaticSets::gStaticSets->fPropSets;
+ fRXPat->fStaticSets8 = RegexStaticSets::gStaticSets->fPropSets8;
+
+
+ // Initialize the pattern scanning state machine
+ fPatternLength = utext_nativeLength(pat);
+ uint16_t state = 1;
+ const RegexTableEl *tableEl;
+
+ // UREGEX_LITERAL force entire pattern to be treated as a literal string.
+ if (fModeFlags & UREGEX_LITERAL) {
+ fQuoteMode = TRUE;
+ }
+
+ nextChar(fC); // Fetch the first char from the pattern string.
+
+ //
+ // Main loop for the regex pattern parsing state machine.
+ // Runs once per state transition.
+ // Each time through optionally performs, depending on the state table,
+ // - an advance to the the next pattern char
+ // - an action to be performed.
+ // - pushing or popping a state to/from the local state return stack.
+ // file regexcst.txt is the source for the state table. The logic behind
+ // recongizing the pattern syntax is there, not here.
+ //
+ for (;;) {
+ // Bail out if anything has gone wrong.
+ // Regex pattern parsing stops on the first error encountered.
+ if (U_FAILURE(*fStatus)) {
+ break;
+ }
+
+ U_ASSERT(state != 0);
+
+ // Find the state table element that matches the input char from the pattern, or the
+ // class of the input character. Start with the first table row for this
+ // state, then linearly scan forward until we find a row that matches the
+ // character. The last row for each state always matches all characters, so
+ // the search will stop there, if not before.
+ //
+ tableEl = &gRuleParseStateTable[state];
+ REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ",
+ fC.fChar, fLineNum, fCharNum, RegexStateNames[state]));
+
+ for (;;) { // loop through table rows belonging to this state, looking for one
+ // that matches the current input char.
+ REGEX_SCAN_DEBUG_PRINTF(("."));
+ if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) {
+ // Table row specified an individual character, not a set, and
+ // the input character is not quoted, and
+ // the input character matched it.
+ break;
+ }
+ if (tableEl->fCharClass == 255) {
+ // Table row specified default, match anything character class.
+ break;
+ }
+ if (tableEl->fCharClass == 254 && fC.fQuoted) {
+ // Table row specified "quoted" and the char was quoted.
+ break;
+ }
+ if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) {
+ // Table row specified eof and we hit eof on the input.
+ break;
+ }
+
+ if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
+ fC.fQuoted == FALSE && // char is not escaped &&
+ fC.fChar != (UChar32)-1) { // char is not EOF
+ U_ASSERT(tableEl->fCharClass <= 137);
+ if (RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
+ // Table row specified a character class, or set of characters,
+ // and the current char matches it.
+ break;
+ }
+ }
+
+ // No match on this row, advance to the next row for this state,
+ tableEl++;
+ }
+ REGEX_SCAN_DEBUG_PRINTF(("\n"));
+
+ //
+ // We've found the row of the state table that matches the current input
+ // character from the rules string.
+ // Perform any action specified by this row in the state table.
+ if (doParseActions(tableEl->fAction) == FALSE) {
+ // Break out of the state machine loop if the
+ // the action signalled some kind of error, or
+ // the action was to exit, occurs on normal end-of-rules-input.
+ break;
+ }
+
+ if (tableEl->fPushState != 0) {
+ fStackPtr++;
+ if (fStackPtr >= kStackSize) {
+ error(U_REGEX_INTERNAL_ERROR);
+ REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n"));
+ fStackPtr--;
+ }
+ fStack[fStackPtr] = tableEl->fPushState;
+ }
+
+ //
+ // NextChar. This is where characters are actually fetched from the pattern.
+ // Happens under control of the 'n' tag in the state table.
+ //
+ if (tableEl->fNextChar) {
+ nextChar(fC);
+ }
+
+ // Get the next state from the table entry, or from the
+ // state stack if the next state was specified as "pop".
+ if (tableEl->fNextState != 255) {
+ state = tableEl->fNextState;
+ } else {
+ state = fStack[fStackPtr];
+ fStackPtr--;
+ if (fStackPtr < 0) {
+ // state stack underflow
+ // This will occur if the user pattern has mis-matched parentheses,
+ // with extra close parens.
+ //
+ fStackPtr++;
+ error(U_REGEX_MISMATCHED_PAREN);
+ }
+ }
+
+ }
+
+ if (U_FAILURE(*fStatus)) {
+ // Bail out if the pattern had errors.
+ // Set stack cleanup: a successful compile would have left it empty,
+ // but errors can leave temporary sets hanging around.
+ while (!fSetStack.empty()) {
+ delete (UnicodeSet *)fSetStack.pop();
+ }
+ return;
+ }
+
+ //
+ // The pattern has now been read and processed, and the compiled code generated.
+ //
+
+ //
+ // The pattern's fFrameSize so far has accumulated the requirements for
+ // storage for capture parentheses, counters, etc. that are encountered
+ // in the pattern. Add space for the two variables that are always
+ // present in the saved state: the input string position (int64_t) and
+ // the position in the compiled pattern.
+ //
+ allocateStackData(RESTACKFRAME_HDRCOUNT);
+
+ //
+ // Optimization pass 1: NOPs, back-references, and case-folding
+ //
+ stripNOPs();
+
+ //
+ // Get bounds for the minimum and maximum length of a string that this
+ // pattern can match. Used to avoid looking for matches in strings that
+ // are too short.
+ //
+ fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1);
+
+ //
+ // Optimization pass 2: match start type
+ //
+ matchStartType();
+
+ //
+ // Set up fast latin-1 range sets
+ //
+ int32_t numSets = fRXPat->fSets->size();
+ fRXPat->fSets8 = new Regex8BitSet[numSets];
+ // Null pointer check.
+ if (fRXPat->fSets8 == NULL) {
+ e = *fStatus = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ int32_t i;
+ for (i=0; i<numSets; i++) {
+ UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i);
+ fRXPat->fSets8[i].init(s);
+ }
+
+}
+
+
+
+
+
+//------------------------------------------------------------------------------
+//
+// doParseAction Do some action during regex pattern parsing.
+// Called by the parse state machine.
+//
+// Generation of the match engine PCode happens here, or
+// in functions called from the parse actions defined here.
+//
+//
+//------------------------------------------------------------------------------
+UBool RegexCompile::doParseActions(int32_t action)
+{
+ UBool returnVal = TRUE;
+
+ switch ((Regex_PatternParseAction)action) {
+
+ case doPatStart:
+ // Start of pattern compiles to:
+ //0 SAVE 2 Fall back to position of FAIL
+ //1 jmp 3
+ //2 FAIL Stop if we ever reach here.
+ //3 NOP Dummy, so start of pattern looks the same as
+ // the start of an ( grouping.
+ //4 NOP Resreved, will be replaced by a save if there are
+ // OR | operators at the top level
+ appendOp(URX_STATE_SAVE, 2);
+ appendOp(URX_JMP, 3);
+ appendOp(URX_FAIL, 0);
+
+ // Standard open nonCapture paren action emits the two NOPs and
+ // sets up the paren stack frame.
+ doParseActions(doOpenNonCaptureParen);
+ break;
+
+ case doPatFinish:
+ // We've scanned to the end of the pattern
+ // The end of pattern compiles to:
+ // URX_END
+ // which will stop the runtime match engine.
+ // Encountering end of pattern also behaves like a close paren,
+ // and forces fixups of the State Save at the beginning of the compiled pattern
+ // and of any OR operations at the top level.
+ //
+ handleCloseParen();
+ if (fParenStack.size() > 0) {
+ // Missing close paren in pattern.
+ error(U_REGEX_MISMATCHED_PAREN);
+ }
+
+ // add the END operation to the compiled pattern.
+ appendOp(URX_END, 0);
+
+ // Terminate the pattern compilation state machine.
+ returnVal = FALSE;
+ break;
+
+
+
+ case doOrOperator:
+ // Scanning a '|', as in (A|B)
+ {
+ // Generate code for any pending literals preceding the '|'
+ fixLiterals(FALSE);
+
+ // Insert a SAVE operation at the start of the pattern section preceding
+ // this OR at this level. This SAVE will branch the match forward
+ // to the right hand side of the OR in the event that the left hand
+ // side fails to match and backtracks. Locate the position for the
+ // save from the location on the top of the parentheses stack.
+ int32_t savePosition = fParenStack.popi();
+ int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(savePosition);
+ U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location
+ op = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
+ fRXPat->fCompiledPat->setElementAt(op, savePosition);
+
+ // Append an JMP operation into the compiled pattern. The operand for
+ // the JMP will eventually be the location following the ')' for the
+ // group. This will be patched in later, when the ')' is encountered.
+ appendOp(URX_JMP, 0);
+
+ // Push the position of the newly added JMP op onto the parentheses stack.
+ // This registers if for fixup when this block's close paren is encountered.
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
+
+ // Append a NOP to the compiled pattern. This is the slot reserved
+ // for a SAVE in the event that there is yet another '|' following
+ // this one.
+ appendOp(URX_NOP, 0);
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
+ }
+ break;
+
+
+ case doBeginNamedCapture:
+ // Scanning (?<letter.
+ // The first letter of the name will come through again under doConinueNamedCapture.
+ fCaptureName = new UnicodeString();
+ if (fCaptureName == NULL) {
+ error(U_MEMORY_ALLOCATION_ERROR);
+ }
+ break;
+
+ case doContinueNamedCapture:
+ fCaptureName->append(fC.fChar);
+ break;
+
+ case doBadNamedCapture:
+ error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
+ break;
+
+ case doOpenCaptureParen:
+ // Open Capturing Paren, possibly named.
+ // Compile to a
+ // - NOP, which later may be replaced by a save-state if the
+ // parenthesized group gets a * quantifier, followed by
+ // - START_CAPTURE n where n is stack frame offset to the capture group variables.
+ // - NOP, which may later be replaced by a save-state if there
+ // is an '|' alternation within the parens.
+ //
+ // Each capture group gets three slots in the save stack frame:
+ // 0: Capture Group start position (in input string being matched.)
+ // 1: Capture Group end position.
+ // 2: Start of Match-in-progress.
+ // The first two locations are for a completed capture group, and are
+ // referred to by back references and the like.
+ // The third location stores the capture start position when an START_CAPTURE is
+ // encountered. This will be promoted to a completed capture when (and if) the corresponding
+ // END_CAPTURE is encountered.
+ {
+ fixLiterals();
+ appendOp(URX_NOP, 0);
+ int32_t varsLoc = allocateStackData(3); // Reserve three slots in match stack frame.
+ appendOp(URX_START_CAPTURE, varsLoc);
+ appendOp(URX_NOP, 0);
+
+ // On the Parentheses stack, start a new frame and add the postions
+ // of the two NOPs. Depending on what follows in the pattern, the
+ // NOPs may be changed to SAVE_STATE or JMP ops, with a target
+ // address of the end of the parenthesized group.
+ fParenStack.push(fModeFlags, *fStatus); // Match mode state
+ fParenStack.push(capturing, *fStatus); // Frame type.
+ fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
+
+ // Save the mapping from group number to stack frame variable position.
+ fRXPat->fGroupMap->addElement(varsLoc, *fStatus);
+
+ // If this is a named capture group, add the name->group number mapping.
+ if (fCaptureName != NULL) {
+ int32_t groupNumber = fRXPat->fGroupMap->size();
+ int32_t previousMapping = uhash_puti(fRXPat->fNamedCaptureMap, fCaptureName, groupNumber, fStatus);
+ fCaptureName = NULL; // hash table takes ownership of the name (key) string.
+ if (previousMapping > 0 && U_SUCCESS(*fStatus)) {
+ error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
+ }
+ }
+ }
+ break;
+
+ case doOpenNonCaptureParen:
+ // Open non-caputuring (grouping only) Paren.
+ // Compile to a
+ // - NOP, which later may be replaced by a save-state if the
+ // parenthesized group gets a * quantifier, followed by
+ // - NOP, which may later be replaced by a save-state if there
+ // is an '|' alternation within the parens.
+ {
+ fixLiterals();
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
+
+ // On the Parentheses stack, start a new frame and add the postions
+ // of the two NOPs.
+ fParenStack.push(fModeFlags, *fStatus); // Match mode state
+ fParenStack.push(plain, *fStatus); // Begin a new frame.
+ fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
+ }
+ break;
+
+
+ case doOpenAtomicParen:
+ // Open Atomic Paren. (?>
+ // Compile to a
+ // - NOP, which later may be replaced if the parenthesized group
+ // has a quantifier, followed by
+ // - STO_SP save state stack position, so it can be restored at the ")"
+ // - NOP, which may later be replaced by a save-state if there
+ // is an '|' alternation within the parens.
+ {
+ fixLiterals();
+ appendOp(URX_NOP, 0);
+ int32_t varLoc = allocateData(1); // Reserve a data location for saving the state stack ptr.
+ appendOp(URX_STO_SP, varLoc);
+ appendOp(URX_NOP, 0);
+
+ // On the Parentheses stack, start a new frame and add the postions
+ // of the two NOPs. Depending on what follows in the pattern, the
+ // NOPs may be changed to SAVE_STATE or JMP ops, with a target
+ // address of the end of the parenthesized group.
+ fParenStack.push(fModeFlags, *fStatus); // Match mode state
+ fParenStack.push(atomic, *fStatus); // Frame type.
+ fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
+ }
+ break;
+
+
+ case doOpenLookAhead:
+ // Positive Look-ahead (?= stuff )
+ //
+ // Note: Addition of transparent input regions, with the need to
+ // restore the original regions when failing out of a lookahead
+ // block, complicated this sequence. Some conbined opcodes
+ // might make sense - or might not, lookahead aren't that common.
+ //
+ // Caution: min match length optimization knows about this
+ // sequence; don't change without making updates there too.
+ //
+ // Compiles to
+ // 1 START_LA dataLoc Saves SP, Input Pos
+ // 2. STATE_SAVE 4 on failure of lookahead, goto 4
+ // 3 JMP 6 continue ...
+ //
+ // 4. LA_END Look Ahead failed. Restore regions.
+ // 5. BACKTRACK and back track again.
+ //
+ // 6. NOP reserved for use by quantifiers on the block.
+ // Look-ahead can't have quantifiers, but paren stack
+ // compile time conventions require the slot anyhow.
+ // 7. NOP may be replaced if there is are '|' ops in the block.
+ // 8. code for parenthesized stuff.
+ // 9. LA_END
+ //
+ // Two data slots are reserved, for saving the stack ptr and the input position.
+ {
+ fixLiterals();
+ int32_t dataLoc = allocateData(2);
+ appendOp(URX_LA_START, dataLoc);
+ appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2);
+ appendOp(URX_JMP, fRXPat->fCompiledPat->size()+ 3);
+ appendOp(URX_LA_END, dataLoc);
+ appendOp(URX_BACKTRACK, 0);
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
+
+ // On the Parentheses stack, start a new frame and add the postions
+ // of the NOPs.
+ fParenStack.push(fModeFlags, *fStatus); // Match mode state
+ fParenStack.push(lookAhead, *fStatus); // Frame type.
+ fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
+ }
+ break;
+
+ case doOpenLookAheadNeg:
+ // Negated Lookahead. (?! stuff )
+ // Compiles to
+ // 1. START_LA dataloc
+ // 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state,
+ // // which continues with the match.
+ // 3. NOP // Std. Open Paren sequence, for possible '|'
+ // 4. code for parenthesized stuff.
+ // 5. END_LA // Cut back stack, remove saved state from step 2.
+ // 6. BACKTRACK // code in block succeeded, so neg. lookahead fails.
+ // 7. END_LA // Restore match region, in case look-ahead was using
+ // an alternate (transparent) region.
+ {
+ fixLiterals();
+ int32_t dataLoc = allocateData(2);
+ appendOp(URX_LA_START, dataLoc);
+ appendOp(URX_STATE_SAVE, 0); // dest address will be patched later.
+ appendOp(URX_NOP, 0);
+
+ // On the Parentheses stack, start a new frame and add the postions
+ // of the StateSave and NOP.
+ fParenStack.push(fModeFlags, *fStatus); // Match mode state
+ fParenStack.push(negLookAhead, *fStatus); // Frame type
+ fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
+
+ // Instructions #5 - #7 will be added when the ')' is encountered.
+ }
+ break;
+
+ case doOpenLookBehind:
+ {
+ // Compile a (?<= look-behind open paren.
+ //
+ // Compiles to
+ // 0 URX_LB_START dataLoc
+ // 1 URX_LB_CONT dataLoc
+ // 2 MinMatchLen
+ // 3 MaxMatchLen
+ // 4 URX_NOP Standard '(' boilerplate.
+ // 5 URX_NOP Reserved slot for use with '|' ops within (block).
+ // 6 <code for LookBehind expression>
+ // 7 URX_LB_END dataLoc # Check match len, restore input len
+ // 8 URX_LA_END dataLoc # Restore stack, input pos
+ //
+ // Allocate a block of matcher data, to contain (when running a match)
+ // 0: Stack ptr on entry
+ // 1: Input Index on entry
+ // 2: Start index of match current match attempt.
+ // 3: Original Input String len.
+
+ // Generate match code for any pending literals.
+ fixLiterals();
+
+ // Allocate data space
+ int32_t dataLoc = allocateData(4);
+
+ // Emit URX_LB_START
+ appendOp(URX_LB_START, dataLoc);
+
+ // Emit URX_LB_CONT
+ appendOp(URX_LB_CONT, dataLoc);
+ appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
+ appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
+
+ // Emit the NOPs
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
+
+ // On the Parentheses stack, start a new frame and add the postions
+ // of the URX_LB_CONT and the NOP.
+ fParenStack.push(fModeFlags, *fStatus); // Match mode state
+ fParenStack.push(lookBehind, *fStatus); // Frame type
+ fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
+
+ // The final two instructions will be added when the ')' is encountered.
+ }
+
+ break;
+
+ case doOpenLookBehindNeg:
+ {
+ // Compile a (?<! negated look-behind open paren.
+ //
+ // Compiles to
+ // 0 URX_LB_START dataLoc # Save entry stack, input len
+ // 1 URX_LBN_CONT dataLoc # Iterate possible match positions
+ // 2 MinMatchLen
+ // 3 MaxMatchLen
+ // 4 continueLoc (9)
+ // 5 URX_NOP Standard '(' boilerplate.
+ // 6 URX_NOP Reserved slot for use with '|' ops within (block).
+ // 7 <code for LookBehind expression>
+ // 8 URX_LBN_END dataLoc # Check match len, cause a FAIL
+ // 9 ...
+ //
+ // Allocate a block of matcher data, to contain (when running a match)
+ // 0: Stack ptr on entry
+ // 1: Input Index on entry
+ // 2: Start index of match current match attempt.
+ // 3: Original Input String len.
+
+ // Generate match code for any pending literals.
+ fixLiterals();
+
+ // Allocate data space
+ int32_t dataLoc = allocateData(4);
+
+ // Emit URX_LB_START
+ appendOp(URX_LB_START, dataLoc);
+
+ // Emit URX_LBN_CONT
+ appendOp(URX_LBN_CONT, dataLoc);
+ appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
+ appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
+ appendOp(URX_RESERVED_OP, 0); // Continue Loc. To be filled later.
+
+ // Emit the NOPs
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
+
+ // On the Parentheses stack, start a new frame and add the postions
+ // of the URX_LB_CONT and the NOP.
+ fParenStack.push(fModeFlags, *fStatus); // Match mode state
+ fParenStack.push(lookBehindN, *fStatus); // Frame type
+ fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
+
+ // The final two instructions will be added when the ')' is encountered.
+ }
+ break;
+
+ case doConditionalExpr:
+ // Conditionals such as (?(1)a:b)
+ case doPerlInline:
+ // Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them.
+ error(U_REGEX_UNIMPLEMENTED);
+ break;
+
+
+ case doCloseParen:
+ handleCloseParen();
+ if (fParenStack.size() <= 0) {
+ // Extra close paren, or missing open paren.
+ error(U_REGEX_MISMATCHED_PAREN);
+ }
+ break;
+
+ case doNOP:
+ break;
+
+
+ case doBadOpenParenType:
+ case doRuleError:
+ error(U_REGEX_RULE_SYNTAX);
+ break;
+
+
+ case doMismatchedParenErr:
+ error(U_REGEX_MISMATCHED_PAREN);
+ break;
+
+ case doPlus:
+ // Normal '+' compiles to
+ // 1. stuff to be repeated (already built)
+ // 2. jmp-sav 1
+ // 3. ...
+ //
+ // Or, if the item to be repeated can match a zero length string,
+ // 1. STO_INP_LOC data-loc
+ // 2. body of stuff to be repeated
+ // 3. JMP_SAV_X 2
+ // 4. ...
+
+ //
+ // Or, if the item to be repeated is simple
+ // 1. Item to be repeated.
+ // 2. LOOP_SR_I set number (assuming repeated item is a set ref)
+ // 3. LOOP_C stack location
+ {
+ int32_t topLoc = blockTopLoc(FALSE); // location of item #1
+ int32_t frameLoc;
+
+ // Check for simple constructs, which may get special optimized code.
+ if (topLoc == fRXPat->fCompiledPat->size() - 1) {
+ int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
+
+ if (URX_TYPE(repeatedOp) == URX_SETREF) {
+ // Emit optimized code for [char set]+
+ appendOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
+ frameLoc = allocateStackData(1);
+ appendOp(URX_LOOP_C, frameLoc);
+ break;
+ }
+
+ if (URX_TYPE(repeatedOp) == URX_DOTANY ||
+ URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
+ URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
+ // Emit Optimized code for .+ operations.
+ int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
+ if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
+ // URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode.
+ loopOpI |= 1;
+ }
+ if (fModeFlags & UREGEX_UNIX_LINES) {
+ loopOpI |= 2;
+ }
+ appendOp(loopOpI);
+ frameLoc = allocateStackData(1);
+ appendOp(URX_LOOP_C, frameLoc);
+ break;
+ }
+
+ }
+
+ // General case.
+
+ // Check for minimum match length of zero, which requires
+ // extra loop-breaking code.
+ if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) {
+ // Zero length match is possible.
+ // Emit the code sequence that can handle it.
+ insertOp(topLoc);
+ frameLoc = allocateStackData(1);
+
+ int32_t op = buildOp(URX_STO_INP_LOC, frameLoc);
+ fRXPat->fCompiledPat->setElementAt(op, topLoc);
+
+ appendOp(URX_JMP_SAV_X, topLoc+1);
+ } else {
+ // Simpler code when the repeated body must match something non-empty
+ appendOp(URX_JMP_SAV, topLoc);
+ }
+ }
+ break;
+
+ case doNGPlus:
+ // Non-greedy '+?' compiles to
+ // 1. stuff to be repeated (already built)
+ // 2. state-save 1
+ // 3. ...
+ {
+ int32_t topLoc = blockTopLoc(FALSE);
+ appendOp(URX_STATE_SAVE, topLoc);
+ }
+ break;
+
+
+ case doOpt:
+ // Normal (greedy) ? quantifier.
+ // Compiles to
+ // 1. state save 3
+ // 2. body of optional block
+ // 3. ...
+ // Insert the state save into the compiled pattern, and we're done.
+ {
+ int32_t saveStateLoc = blockTopLoc(TRUE);
+ int32_t saveStateOp = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
+ fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
+ }
+ break;
+
+ case doNGOpt:
+ // Non-greedy ?? quantifier
+ // compiles to
+ // 1. jmp 4
+ // 2. body of optional block
+ // 3 jmp 5
+ // 4. state save 2
+ // 5 ...
+ // This code is less than ideal, with two jmps instead of one, because we can only
+ // insert one instruction at the top of the block being iterated.
+ {
+ int32_t jmp1_loc = blockTopLoc(TRUE);
+ int32_t jmp2_loc = fRXPat->fCompiledPat->size();
+
+ int32_t jmp1_op = buildOp(URX_JMP, jmp2_loc+1);
+ fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc);
+
+ appendOp(URX_JMP, jmp2_loc+2);
+
+ appendOp(URX_STATE_SAVE, jmp1_loc+1);
+ }
+ break;
+
+
+ case doStar:
+ // Normal (greedy) * quantifier.
+ // Compiles to
+ // 1. STATE_SAVE 4
+ // 2. body of stuff being iterated over
+ // 3. JMP_SAV 2
+ // 4. ...
+ //
+ // Or, if the body is a simple [Set],
+ // 1. LOOP_SR_I set number
+ // 2. LOOP_C stack location
+ // ...
+ //
+ // Or if this is a .*
+ // 1. LOOP_DOT_I (. matches all mode flag)
+ // 2. LOOP_C stack location
+ //
+ // Or, if the body can match a zero-length string, to inhibit infinite loops,
+ // 1. STATE_SAVE 5
+ // 2. STO_INP_LOC data-loc
+ // 3. body of stuff
+ // 4. JMP_SAV_X 2
+ // 5. ...
+ {
+ // location of item #1, the STATE_SAVE
+ int32_t topLoc = blockTopLoc(FALSE);
+ int32_t dataLoc = -1;
+
+ // Check for simple *, where the construct being repeated
+ // compiled to single opcode, and might be optimizable.
+ if (topLoc == fRXPat->fCompiledPat->size() - 1) {
+ int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
+
+ if (URX_TYPE(repeatedOp) == URX_SETREF) {
+ // Emit optimized code for a [char set]*
+ int32_t loopOpI = buildOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
+ fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
+ dataLoc = allocateStackData(1);
+ appendOp(URX_LOOP_C, dataLoc);
+ break;
+ }
+
+ if (URX_TYPE(repeatedOp) == URX_DOTANY ||
+ URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
+ URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
+ // Emit Optimized code for .* operations.
+ int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
+ if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
+ // URX_LOOP_DOT_I operand is a flag indicating . matches any mode.
+ loopOpI |= 1;
+ }
+ if ((fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ loopOpI |= 2;
+ }
+ fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
+ dataLoc = allocateStackData(1);
+ appendOp(URX_LOOP_C, dataLoc);
+ break;
+ }
+ }
+
+ // Emit general case code for this *
+ // The optimizations did not apply.
+
+ int32_t saveStateLoc = blockTopLoc(TRUE);
+ int32_t jmpOp = buildOp(URX_JMP_SAV, saveStateLoc+1);
+
+ // Check for minimum match length of zero, which requires
+ // extra loop-breaking code.
+ if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) {
+ insertOp(saveStateLoc);
+ dataLoc = allocateStackData(1);
+
+ int32_t op = buildOp(URX_STO_INP_LOC, dataLoc);
+ fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1);
+ jmpOp = buildOp(URX_JMP_SAV_X, saveStateLoc+2);
+ }
+
+ // Locate the position in the compiled pattern where the match will continue
+ // after completing the *. (4 or 5 in the comment above)
+ int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
+
+ // Put together the save state op and store it into the compiled code.
+ int32_t saveStateOp = buildOp(URX_STATE_SAVE, continueLoc);
+ fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
+
+ // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern.
+ appendOp(jmpOp);
+ }
+ break;
+
+ case doNGStar:
+ // Non-greedy *? quantifier
+ // compiles to
+ // 1. JMP 3
+ // 2. body of stuff being iterated over
+ // 3. STATE_SAVE 2
+ // 4 ...
+ {
+ int32_t jmpLoc = blockTopLoc(TRUE); // loc 1.
+ int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3.
+ int32_t jmpOp = buildOp(URX_JMP, saveLoc);
+ fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc);
+ appendOp(URX_STATE_SAVE, jmpLoc+1);
+ }
+ break;
+
+
+ case doIntervalInit:
+ // The '{' opening an interval quantifier was just scanned.
+ // Init the counter varaiables that will accumulate the values as the digits
+ // are scanned.
+ fIntervalLow = 0;
+ fIntervalUpper = -1;
+ break;
+
+ case doIntevalLowerDigit:
+ // Scanned a digit from the lower value of an {lower,upper} interval
+ {
+ int32_t digitValue = u_charDigitValue(fC.fChar);
+ U_ASSERT(digitValue >= 0);
+ int64_t val = (int64_t)fIntervalLow*10 + digitValue;
+ if (val > INT32_MAX) {
+ error(U_REGEX_NUMBER_TOO_BIG);
+ } else {
+ fIntervalLow = (int32_t)val;
+ }
+ }
+ break;
+
+ case doIntervalUpperDigit:
+ // Scanned a digit from the upper value of an {lower,upper} interval
+ {
+ if (fIntervalUpper < 0) {
+ fIntervalUpper = 0;
+ }
+ int32_t digitValue = u_charDigitValue(fC.fChar);
+ U_ASSERT(digitValue >= 0);
+ int64_t val = (int64_t)fIntervalUpper*10 + digitValue;
+ if (val > INT32_MAX) {
+ error(U_REGEX_NUMBER_TOO_BIG);
+ } else {
+ fIntervalUpper = (int32_t)val;
+ }
+ }
+ break;
+
+ case doIntervalSame:
+ // Scanned a single value interval like {27}. Upper = Lower.
+ fIntervalUpper = fIntervalLow;
+ break;
+
+ case doInterval:
+ // Finished scanning a normal {lower,upper} interval. Generate the code for it.
+ if (compileInlineInterval() == FALSE) {
+ compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
+ }
+ break;
+
+ case doPossessiveInterval:
+ // Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it.
+ {
+ // Remember the loc for the top of the block being looped over.
+ // (Can not reserve a slot in the compiled pattern at this time, because
+ // compileInterval needs to reserve also, and blockTopLoc can only reserve
+ // once per block.)
+ int32_t topLoc = blockTopLoc(FALSE);
+
+ // Produce normal looping code.
+ compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
+
+ // Surround the just-emitted normal looping code with a STO_SP ... LD_SP
+ // just as if the loop was inclosed in atomic parentheses.
+
+ // First the STO_SP before the start of the loop
+ insertOp(topLoc);
+
+ int32_t varLoc = allocateData(1); // Reserve a data location for saving the
+ int32_t op = buildOp(URX_STO_SP, varLoc);
+ fRXPat->fCompiledPat->setElementAt(op, topLoc);
+
+ int32_t loopOp = (int32_t)fRXPat->fCompiledPat->popi();
+ U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc);
+ loopOp++; // point LoopOp after the just-inserted STO_SP
+ fRXPat->fCompiledPat->push(loopOp, *fStatus);
+
+ // Then the LD_SP after the end of the loop
+ appendOp(URX_LD_SP, varLoc);
+ }
+
+ break;
+
+ case doNGInterval:
+ // Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it.
+ compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG);
+ break;
+
+ case doIntervalError:
+ error(U_REGEX_BAD_INTERVAL);
+ break;
+
+ case doLiteralChar:
+ // We've just scanned a "normal" character from the pattern,
+ literalChar(fC.fChar);
+ break;
+
+
+ case doEscapedLiteralChar:
+ // We've just scanned an backslashed escaped character with no
+ // special meaning. It represents itself.
+ if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
+ ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
+ (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ }
+ literalChar(fC.fChar);
+ break;
+
+
+ case doDotAny:
+ // scanned a ".", match any single character.
+ {
+ fixLiterals(FALSE);
+ if (fModeFlags & UREGEX_DOTALL) {
+ appendOp(URX_DOTANY_ALL, 0);
+ } else if (fModeFlags & UREGEX_UNIX_LINES) {
+ appendOp(URX_DOTANY_UNIX, 0);
+ } else {
+ appendOp(URX_DOTANY, 0);
+ }
+ }
+ break;
+
+ case doCaret:
+ {
+ fixLiterals(FALSE);
+ if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
+ appendOp(URX_CARET, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
+ appendOp(URX_CARET_M, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ appendOp(URX_CARET, 0); // Only testing true start of input.
+ } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ appendOp(URX_CARET_M_UNIX, 0);
+ }
+ }
+ break;
+
+ case doDollar:
+ {
+ fixLiterals(FALSE);
+ if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
+ appendOp(URX_DOLLAR, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
+ appendOp(URX_DOLLAR_M, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ appendOp(URX_DOLLAR_D, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ appendOp(URX_DOLLAR_MD, 0);
+ }
+ }
+ break;
+
+ case doBackslashA:
+ fixLiterals(FALSE);
+ appendOp(URX_CARET, 0);
+ break;
+
+ case doBackslashB:
+ {
+ #if UCONFIG_NO_BREAK_ITERATION==1
+ if (fModeFlags & UREGEX_UWORD) {
+ error(U_UNSUPPORTED_ERROR);
+ }
+ #endif
+ fixLiterals(FALSE);
+ int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
+ appendOp(op, 1);
+ }
+ break;
+
+ case doBackslashb:
+ {
+ #if UCONFIG_NO_BREAK_ITERATION==1
+ if (fModeFlags & UREGEX_UWORD) {
+ error(U_UNSUPPORTED_ERROR);
+ }
+ #endif
+ fixLiterals(FALSE);
+ int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
+ appendOp(op, 0);
+ }
+ break;
+
+ case doBackslashD:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_D, 1);
+ break;
+
+ case doBackslashd:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_D, 0);
+ break;
+
+ case doBackslashG:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_G, 0);
+ break;
+
+ case doBackslashH:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_H, 1);
+ break;
+
+ case doBackslashh:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_H, 0);
+ break;
+
+ case doBackslashR:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_R, 0);
+ break;
+
+ case doBackslashS:
+ fixLiterals(FALSE);
+ appendOp(URX_STAT_SETREF_N, URX_ISSPACE_SET);
+ break;
+
+ case doBackslashs:
+ fixLiterals(FALSE);
+ appendOp(URX_STATIC_SETREF, URX_ISSPACE_SET);
+ break;
+
+ case doBackslashV:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_V, 1);
+ break;
+
+ case doBackslashv:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_V, 0);
+ break;
+
+ case doBackslashW:
+ fixLiterals(FALSE);
+ appendOp(URX_STAT_SETREF_N, URX_ISWORD_SET);
+ break;
+
+ case doBackslashw:
+ fixLiterals(FALSE);
+ appendOp(URX_STATIC_SETREF, URX_ISWORD_SET);
+ break;
+
+ case doBackslashX:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_X, 0);
+ break;
+
+
+ case doBackslashZ:
+ fixLiterals(FALSE);
+ appendOp(URX_DOLLAR, 0);
+ break;
+
+ case doBackslashz:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_Z, 0);
+ break;
+
+ case doEscapeError:
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ break;
+
+ case doExit:
+ fixLiterals(FALSE);
+ returnVal = FALSE;
+ break;
+
+ case doProperty:
+ {
+ fixLiterals(FALSE);
+ UnicodeSet *theSet = scanProp();
+ compileSet(theSet);
+ }
+ break;
+
+ case doNamedChar:
+ {
+ UChar32 c = scanNamedChar();
+ literalChar(c);
+ }
+ break;
+
+
+ case doBackRef:
+ // BackReference. Somewhat unusual in that the front-end can not completely parse
+ // the regular expression, because the number of digits to be consumed
+ // depends on the number of capture groups that have been defined. So
+ // we have to do it here instead.
+ {
+ int32_t numCaptureGroups = fRXPat->fGroupMap->size();
+ int32_t groupNum = 0;
+ UChar32 c = fC.fChar;
+
+ for (;;) {
+ // Loop once per digit, for max allowed number of digits in a back reference.
+ int32_t digit = u_charDigitValue(c);
+ groupNum = groupNum * 10 + digit;
+ if (groupNum >= numCaptureGroups) {
+ break;
+ }
+ c = peekCharLL();
+ if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == FALSE) {
+ break;
+ }
+ nextCharLL();
+ }
+
+ // Scan of the back reference in the source regexp is complete. Now generate
+ // the compiled code for it.
+ // Because capture groups can be forward-referenced by back-references,
+ // we fill the operand with the capture group number. At the end
+ // of compilation, it will be changed to the variable's location.
+ U_ASSERT(groupNum > 0); // Shouldn't happen. '\0' begins an octal escape sequence,
+ // and shouldn't enter this code path at all.
+ fixLiterals(FALSE);
+ if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
+ appendOp(URX_BACKREF_I, groupNum);
+ } else {
+ appendOp(URX_BACKREF, groupNum);
+ }
+ }
+ break;
+
+ case doBeginNamedBackRef:
+ U_ASSERT(fCaptureName == NULL);
+ fCaptureName = new UnicodeString;
+ if (fCaptureName == NULL) {
+ error(U_MEMORY_ALLOCATION_ERROR);
+ }
+ break;
+
+ case doContinueNamedBackRef:
+ fCaptureName->append(fC.fChar);
+ break;
+
+ case doCompleteNamedBackRef:
+ {
+ int32_t groupNumber = uhash_geti(fRXPat->fNamedCaptureMap, fCaptureName);
+ if (groupNumber == 0) {
+ // Group name has not been defined.
+ // Could be a forward reference. If we choose to support them at some
+ // future time, extra mechanism will be required at this point.
+ error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
+ } else {
+ // Given the number, handle identically to a \n numbered back reference.
+ // See comments above, under doBackRef
+ fixLiterals(FALSE);
+ if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
+ appendOp(URX_BACKREF_I, groupNumber);
+ } else {
+ appendOp(URX_BACKREF, groupNumber);
+ }
+ }
+ delete fCaptureName;
+ fCaptureName = NULL;
+ break;
+ }
+
+ case doPossessivePlus:
+ // Possessive ++ quantifier.
+ // Compiles to
+ // 1. STO_SP
+ // 2. body of stuff being iterated over
+ // 3. STATE_SAVE 5
+ // 4. JMP 2
+ // 5. LD_SP
+ // 6. ...
+ //
+ // Note: TODO: This is pretty inefficient. A mass of saved state is built up
+ // then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056
+ //
+ {
+ // Emit the STO_SP
+ int32_t topLoc = blockTopLoc(TRUE);
+ int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
+ int32_t op = buildOp(URX_STO_SP, stoLoc);
+ fRXPat->fCompiledPat->setElementAt(op, topLoc);
+
+ // Emit the STATE_SAVE
+ appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2);
+
+ // Emit the JMP
+ appendOp(URX_JMP, topLoc+1);
+
+ // Emit the LD_SP
+ appendOp(URX_LD_SP, stoLoc);
+ }
+ break;
+
+ case doPossessiveStar:
+ // Possessive *+ quantifier.
+ // Compiles to
+ // 1. STO_SP loc
+ // 2. STATE_SAVE 5
+ // 3. body of stuff being iterated over
+ // 4. JMP 2
+ // 5. LD_SP loc
+ // 6 ...
+ // TODO: do something to cut back the state stack each time through the loop.
+ {
+ // Reserve two slots at the top of the block.
+ int32_t topLoc = blockTopLoc(TRUE);
+ insertOp(topLoc);
+
+ // emit STO_SP loc
+ int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
+ int32_t op = buildOp(URX_STO_SP, stoLoc);
+ fRXPat->fCompiledPat->setElementAt(op, topLoc);
+
+ // Emit the SAVE_STATE 5
+ int32_t L7 = fRXPat->fCompiledPat->size()+1;
+ op = buildOp(URX_STATE_SAVE, L7);
+ fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
+
+ // Append the JMP operation.
+ appendOp(URX_JMP, topLoc+1);
+
+ // Emit the LD_SP loc
+ appendOp(URX_LD_SP, stoLoc);
+ }
+ break;
+
+ case doPossessiveOpt:
+ // Possessive ?+ quantifier.
+ // Compiles to
+ // 1. STO_SP loc
+ // 2. SAVE_STATE 5
+ // 3. body of optional block
+ // 4. LD_SP loc
+ // 5. ...
+ //
+ {
+ // Reserve two slots at the top of the block.
+ int32_t topLoc = blockTopLoc(TRUE);
+ insertOp(topLoc);
+
+ // Emit the STO_SP
+ int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
+ int32_t op = buildOp(URX_STO_SP, stoLoc);
+ fRXPat->fCompiledPat->setElementAt(op, topLoc);
+
+ // Emit the SAVE_STATE
+ int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
+ op = buildOp(URX_STATE_SAVE, continueLoc);
+ fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
+
+ // Emit the LD_SP
+ appendOp(URX_LD_SP, stoLoc);
+ }
+ break;
+
+
+ case doBeginMatchMode:
+ fNewModeFlags = fModeFlags;
+ fSetModeFlag = TRUE;
+ break;
+
+ case doMatchMode: // (?i) and similar
+ {
+ int32_t bit = 0;
+ switch (fC.fChar) {
+ case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break;
+ case 0x64: /* 'd' */ bit = UREGEX_UNIX_LINES; break;
+ case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break;
+ case 0x73: /* 's' */ bit = UREGEX_DOTALL; break;
+ case 0x75: /* 'u' */ bit = 0; /* Unicode casing */ break;
+ case 0x77: /* 'w' */ bit = UREGEX_UWORD; break;
+ case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break;
+ case 0x2d: /* '-' */ fSetModeFlag = FALSE; break;
+ default:
+ U_ASSERT(FALSE); // Should never happen. Other chars are filtered out
+ // by the scanner.
+ }
+ if (fSetModeFlag) {
+ fNewModeFlags |= bit;
+ } else {
+ fNewModeFlags &= ~bit;
+ }
+ }
+ break;
+
+ case doSetMatchMode:
+ // Emit code to match any pending literals, using the not-yet changed match mode.
+ fixLiterals();
+
+ // We've got a (?i) or similar. The match mode is being changed, but
+ // the change is not scoped to a parenthesized block.
+ U_ASSERT(fNewModeFlags < 0);
+ fModeFlags = fNewModeFlags;
+
+ break;
+
+
+ case doMatchModeParen:
+ // We've got a (?i: or similar. Begin a parenthesized block, save old
+ // mode flags so they can be restored at the close of the block.
+ //
+ // Compile to a
+ // - NOP, which later may be replaced by a save-state if the
+ // parenthesized group gets a * quantifier, followed by
+ // - NOP, which may later be replaced by a save-state if there
+ // is an '|' alternation within the parens.
+ {
+ fixLiterals(FALSE);
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
+
+ // On the Parentheses stack, start a new frame and add the postions
+ // of the two NOPs (a normal non-capturing () frame, except for the
+ // saving of the orignal mode flags.)
+ fParenStack.push(fModeFlags, *fStatus);
+ fParenStack.push(flags, *fStatus); // Frame Marker
+ fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP
+ fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
+
+ // Set the current mode flags to the new values.
+ U_ASSERT(fNewModeFlags < 0);
+ fModeFlags = fNewModeFlags;
+ }
+ break;
+
+ case doBadModeFlag:
+ error(U_REGEX_INVALID_FLAG);
+ break;
+
+ case doSuppressComments:
+ // We have just scanned a '(?'. We now need to prevent the character scanner from
+ // treating a '#' as a to-the-end-of-line comment.
+ // (This Perl compatibility just gets uglier and uglier to do...)
+ fEOLComments = FALSE;
+ break;
+
+
+ case doSetAddAmp:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->add(chAmp);
+ }
+ break;
+
+ case doSetAddDash:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->add(chDash);
+ }
+ break;
+
+ case doSetBackslash_s:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
+ break;
+ }
+
+ case doSetBackslash_S:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
+ SSet.complement();
+ set->addAll(SSet);
+ break;
+ }
+
+ case doSetBackslash_d:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ // TODO - make a static set, ticket 6058.
+ addCategory(set, U_GC_ND_MASK, *fStatus);
+ break;
+ }
+
+ case doSetBackslash_D:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet digits;
+ // TODO - make a static set, ticket 6058.
+ digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
+ digits.complement();
+ set->addAll(digits);
+ break;
+ }
+
+ case doSetBackslash_h:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet h;
+ h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
+ h.add((UChar32)9); // Tab
+ set->addAll(h);
+ break;
+ }
+
+ case doSetBackslash_H:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet h;
+ h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
+ h.add((UChar32)9); // Tab
+ h.complement();
+ set->addAll(h);
+ break;
+ }
+
+ case doSetBackslash_v:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->add((UChar32)0x0a, (UChar32)0x0d); // add range
+ set->add((UChar32)0x85);
+ set->add((UChar32)0x2028, (UChar32)0x2029);
+ break;
+ }
+
+ case doSetBackslash_V:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet v;
+ v.add((UChar32)0x0a, (UChar32)0x0d); // add range
+ v.add((UChar32)0x85);
+ v.add((UChar32)0x2028, (UChar32)0x2029);
+ v.complement();
+ set->addAll(v);
+ break;
+ }
+
+ case doSetBackslash_w:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
+ break;
+ }
+
+ case doSetBackslash_W:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
+ SSet.complement();
+ set->addAll(SSet);
+ break;
+ }
+
+ case doSetBegin:
+ fixLiterals(FALSE);
+ fSetStack.push(new UnicodeSet(), *fStatus);
+ fSetOpStack.push(setStart, *fStatus);
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
+ fSetOpStack.push(setCaseClose, *fStatus);
+ }
+ break;
+
+ case doSetBeginDifference1:
+ // We have scanned something like [[abc]-[
+ // Set up a new UnicodeSet for the set beginning with the just-scanned '['
+ // Push a Difference operator, which will cause the new set to be subtracted from what
+ // went before once it is created.
+ setPushOp(setDifference1);
+ fSetOpStack.push(setStart, *fStatus);
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
+ fSetOpStack.push(setCaseClose, *fStatus);
+ }
+ break;
+
+ case doSetBeginIntersection1:
+ // We have scanned something like [[abc]&[
+ // Need both the '&' operator and the open '[' operator.
+ setPushOp(setIntersection1);
+ fSetOpStack.push(setStart, *fStatus);
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
+ fSetOpStack.push(setCaseClose, *fStatus);
+ }
+ break;
+
+ case doSetBeginUnion:
+ // We have scanned something like [[abc][
+ // Need to handle the union operation explicitly [[abc] | [
+ setPushOp(setUnion);
+ fSetOpStack.push(setStart, *fStatus);
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
+ fSetOpStack.push(setCaseClose, *fStatus);
+ }
+ break;
+
+ case doSetDifference2:
+ // We have scanned something like [abc--
+ // Consider this to unambiguously be a set difference operator.
+ setPushOp(setDifference2);
+ break;
+
+ case doSetEnd:
+ // Have encountered the ']' that closes a set.
+ // Force the evaluation of any pending operations within this set,
+ // leave the completed set on the top of the set stack.
+ setEval(setEnd);
+ U_ASSERT(fSetOpStack.peeki()==setStart);
+ fSetOpStack.popi();
+ break;
+
+ case doSetFinish:
+ {
+ // Finished a complete set expression, including all nested sets.
+ // The close bracket has already triggered clearing out pending set operators,
+ // the operator stack should be empty and the operand stack should have just
+ // one entry, the result set.
+ U_ASSERT(fSetOpStack.empty());
+ UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop();
+ U_ASSERT(fSetStack.empty());
+ compileSet(theSet);
+ break;
+ }
+
+ case doSetIntersection2:
+ // Have scanned something like [abc&&
+ setPushOp(setIntersection2);
+ break;
+
+ case doSetLiteral:
+ // Union the just-scanned literal character into the set being built.
+ // This operation is the highest precedence set operation, so we can always do
+ // it immediately, without waiting to see what follows. It is necessary to perform
+ // any pending '-' or '&' operation first, because these have the same precedence
+ // as union-ing in a literal'
+ {
+ setEval(setUnion);
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(fC.fChar);
+ fLastSetLiteral = fC.fChar;
+ break;
+ }
+
+ case doSetLiteralEscaped:
+ // A back-slash escaped literal character was encountered.
+ // Processing is the same as with setLiteral, above, with the addition of
+ // the optional check for errors on escaped ASCII letters.
+ {
+ if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
+ ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
+ (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ }
+ setEval(setUnion);
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(fC.fChar);
+ fLastSetLiteral = fC.fChar;
+ break;
+ }
+
+ case doSetNamedChar:
+ // Scanning a \N{UNICODE CHARACTER NAME}
+ // Aside from the source of the character, the processing is identical to doSetLiteral,
+ // above.
+ {
+ UChar32 c = scanNamedChar();
+ setEval(setUnion);
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(c);
+ fLastSetLiteral = c;
+ break;
+ }
+
+ case doSetNamedRange:
+ // We have scanned literal-\N{CHAR NAME}. Add the range to the set.
+ // The left character is already in the set, and is saved in fLastSetLiteral.
+ // The right side needs to be picked up, the scan is at the 'N'.
+ // Lower Limit > Upper limit being an error matches both Java
+ // and ICU UnicodeSet behavior.
+ {
+ UChar32 c = scanNamedChar();
+ if (U_SUCCESS(*fStatus) && (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > c)) {
+ error(U_REGEX_INVALID_RANGE);
+ }
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(fLastSetLiteral, c);
+ fLastSetLiteral = c;
+ break;
+ }
+
+
+ case doSetNegate:
+ // Scanned a '^' at the start of a set.
+ // Push the negation operator onto the set op stack.
+ // A twist for case-insensitive matching:
+ // the case closure operation must happen _before_ negation.
+ // But the case closure operation will already be on the stack if it's required.
+ // This requires checking for case closure, and swapping the stack order
+ // if it is present.
+ {
+ int32_t tosOp = fSetOpStack.peeki();
+ if (tosOp == setCaseClose) {
+ fSetOpStack.popi();
+ fSetOpStack.push(setNegation, *fStatus);
+ fSetOpStack.push(setCaseClose, *fStatus);
+ } else {
+ fSetOpStack.push(setNegation, *fStatus);
+ }
+ }
+ break;
+
+ case doSetNoCloseError:
+ error(U_REGEX_MISSING_CLOSE_BRACKET);
+ break;
+
+ case doSetOpError:
+ error(U_REGEX_RULE_SYNTAX); // -- or && at the end of a set. Illegal.
+ break;
+
+ case doSetPosixProp:
+ {
+ UnicodeSet *s = scanPosixProp();
+ if (s != NULL) {
+ UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
+ tos->addAll(*s);
+ delete s;
+ } // else error. scanProp() reported the error status already.
+ }
+ break;
+
+ case doSetProp:
+ // Scanned a \p \P within [brackets].
+ {
+ UnicodeSet *s = scanProp();
+ if (s != NULL) {
+ UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
+ tos->addAll(*s);
+ delete s;
+ } // else error. scanProp() reported the error status already.
+ }
+ break;
+
+
+ case doSetRange:
+ // We have scanned literal-literal. Add the range to the set.
+ // The left character is already in the set, and is saved in fLastSetLiteral.
+ // The right side is the current character.
+ // Lower Limit > Upper limit being an error matches both Java
+ // and ICU UnicodeSet behavior.
+ {
+
+ if (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > fC.fChar) {
+ error(U_REGEX_INVALID_RANGE);
+ }
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(fLastSetLiteral, fC.fChar);
+ break;
+ }
+
+ default:
+ U_ASSERT(FALSE);
+ error(U_REGEX_INTERNAL_ERROR);
+ break;
+ }
+
+ if (U_FAILURE(*fStatus)) {
+ returnVal = FALSE;
+ }
+
+ return returnVal;
+}
+
+
+
+//------------------------------------------------------------------------------
+//
+// literalChar We've encountered a literal character from the pattern,
+// or an escape sequence that reduces to a character.
+// Add it to the string containing all literal chars/strings from
+// the pattern.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::literalChar(UChar32 c) {
+ fLiteralChars.append(c);
+}
+
+
+//------------------------------------------------------------------------------
+//
+// fixLiterals When compiling something that can follow a literal
+// string in a pattern, emit the code to match the
+// accumulated literal string.
+//
+// Optionally, split the last char of the string off into
+// a single "ONE_CHAR" operation, so that quantifiers can
+// apply to that char alone. Example: abc*
+// The * must apply to the 'c' only.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::fixLiterals(UBool split) {
+
+ // If no literal characters have been scanned but not yet had code generated
+ // for them, nothing needs to be done.
+ if (fLiteralChars.length() == 0) {
+ return;
+ }
+
+ int32_t indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
+ UChar32 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
+
+ // Split: We need to ensure that the last item in the compiled pattern
+ // refers only to the last literal scanned in the pattern, so that
+ // quantifiers (*, +, etc.) affect only it, and not a longer string.
+ // Split before case folding for case insensitive matches.
+
+ if (split) {
+ fLiteralChars.truncate(indexOfLastCodePoint);
+ fixLiterals(FALSE); // Recursive call, emit code to match the first part of the string.
+ // Note that the truncated literal string may be empty, in which case
+ // nothing will be emitted.
+
+ literalChar(lastCodePoint); // Re-add the last code point as if it were a new literal.
+ fixLiterals(FALSE); // Second recursive call, code for the final code point.
+ return;
+ }
+
+ // If we are doing case-insensitive matching, case fold the string. This may expand
+ // the string, e.g. the German sharp-s turns into "ss"
+ if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
+ fLiteralChars.foldCase();
+ indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
+ lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
+ }
+
+ if (indexOfLastCodePoint == 0) {
+ // Single character, emit a URX_ONECHAR op to match it.
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) &&
+ u_hasBinaryProperty(lastCodePoint, UCHAR_CASE_SENSITIVE)) {
+ appendOp(URX_ONECHAR_I, lastCodePoint);
+ } else {
+ appendOp(URX_ONECHAR, lastCodePoint);
+ }
+ } else {
+ // Two or more chars, emit a URX_STRING to match them.
+ if (fLiteralChars.length() > 0x00ffffff || fRXPat->fLiteralText.length() > 0x00ffffff) {
+ error(U_REGEX_PATTERN_TOO_BIG);
+ }
+ if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
+ appendOp(URX_STRING_I, fRXPat->fLiteralText.length());
+ } else {
+ // TODO here: add optimization to split case sensitive strings of length two
+ // into two single char ops, for efficiency.
+ appendOp(URX_STRING, fRXPat->fLiteralText.length());
+ }
+ appendOp(URX_STRING_LEN, fLiteralChars.length());
+
+ // Add this string into the accumulated strings of the compiled pattern.
+ fRXPat->fLiteralText.append(fLiteralChars);
+ }
+
+ fLiteralChars.remove();
+}
+
+
+int32_t RegexCompile::buildOp(int32_t type, int32_t val) {
+ if (U_FAILURE(*fStatus)) {
+ return 0;
+ }
+ if (type < 0 || type > 255) {
+ U_ASSERT(FALSE);
+ error(U_REGEX_INTERNAL_ERROR);
+ type = URX_RESERVED_OP;
+ }
+ if (val > 0x00ffffff) {
+ U_ASSERT(FALSE);
+ error(U_REGEX_INTERNAL_ERROR);
+ val = 0;
+ }
+ if (val < 0) {
+ if (!(type == URX_RESERVED_OP_N || type == URX_RESERVED_OP)) {
+ U_ASSERT(FALSE);
+ error(U_REGEX_INTERNAL_ERROR);
+ return -1;
+ }
+ if (URX_TYPE(val) != 0xff) {
+ U_ASSERT(FALSE);
+ error(U_REGEX_INTERNAL_ERROR);
+ return -1;
+ }
+ type = URX_RESERVED_OP_N;
+ }
+ return (type << 24) | val;
+}
+
+
+//------------------------------------------------------------------------------
+//
+// appendOp() Append a new instruction onto the compiled pattern
+// Includes error checking, limiting the size of the
+// pattern to lengths that can be represented in the
+// 24 bit operand field of an instruction.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::appendOp(int32_t op) {
+ if (U_FAILURE(*fStatus)) {
+ return;
+ }
+ fRXPat->fCompiledPat->addElement(op, *fStatus);
+ if ((fRXPat->fCompiledPat->size() > 0x00fffff0) && U_SUCCESS(*fStatus)) {
+ error(U_REGEX_PATTERN_TOO_BIG);
+ }
+}
+
+void RegexCompile::appendOp(int32_t type, int32_t val) {
+ appendOp(buildOp(type, val));
+}
+
+
+//------------------------------------------------------------------------------
+//
+// insertOp() Insert a slot for a new opcode into the already
+// compiled pattern code.
+//
+// Fill the slot with a NOP. Our caller will replace it
+// with what they really wanted.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::insertOp(int32_t where) {
+ UVector64 *code = fRXPat->fCompiledPat;
+ U_ASSERT(where>0 && where < code->size());
+
+ int32_t nop = buildOp(URX_NOP, 0);
+ code->insertElementAt(nop, where, *fStatus);
+
+ // Walk through the pattern, looking for any ops with targets that
+ // were moved down by the insert. Fix them.
+ int32_t loc;
+ for (loc=0; loc<code->size(); loc++) {
+ int32_t op = (int32_t)code->elementAti(loc);
+ int32_t opType = URX_TYPE(op);
+ int32_t opValue = URX_VAL(op);
+ if ((opType == URX_JMP ||
+ opType == URX_JMPX ||
+ opType == URX_STATE_SAVE ||
+ opType == URX_CTR_LOOP ||
+ opType == URX_CTR_LOOP_NG ||
+ opType == URX_JMP_SAV ||
+ opType == URX_JMP_SAV_X ||
+ opType == URX_RELOC_OPRND) && opValue > where) {
+ // Target location for this opcode is after the insertion point and
+ // needs to be incremented to adjust for the insertion.
+ opValue++;
+ op = buildOp(opType, opValue);
+ code->setElementAt(op, loc);
+ }
+ }
+
+ // Now fix up the parentheses stack. All positive values in it are locations in
+ // the compiled pattern. (Negative values are frame boundaries, and don't need fixing.)
+ for (loc=0; loc<fParenStack.size(); loc++) {
+ int32_t x = fParenStack.elementAti(loc);
+ U_ASSERT(x < code->size());
+ if (x>where) {
+ x++;
+ fParenStack.setElementAt(x, loc);
+ }
+ }
+
+ if (fMatchCloseParen > where) {
+ fMatchCloseParen++;
+ }
+ if (fMatchOpenParen > where) {
+ fMatchOpenParen++;
+ }
+}
+
+
+//------------------------------------------------------------------------------
+//
+// allocateData() Allocate storage in the matcher's static data area.
+// Return the index for the newly allocated data.
+// The storage won't actually exist until we are running a match
+// operation, but the storage indexes are inserted into various
+// opcodes while compiling the pattern.
+//
+//------------------------------------------------------------------------------
+int32_t RegexCompile::allocateData(int32_t size) {
+ if (U_FAILURE(*fStatus)) {
+ return 0;
+ }
+ if (size <= 0 || size > 0x100 || fRXPat->fDataSize < 0) {
+ error(U_REGEX_INTERNAL_ERROR);
+ return 0;
+ }
+ int32_t dataIndex = fRXPat->fDataSize;
+ fRXPat->fDataSize += size;
+ if (fRXPat->fDataSize >= 0x00fffff0) {
+ error(U_REGEX_INTERNAL_ERROR);
+ }
+ return dataIndex;
+}
+
+
+//------------------------------------------------------------------------------
+//
+// allocateStackData() Allocate space in the back-tracking stack frame.
+// Return the index for the newly allocated data.
+// The frame indexes are inserted into various
+// opcodes while compiling the pattern, meaning that frame
+// size must be restricted to the size that will fit
+// as an operand (24 bits).
+//
+//------------------------------------------------------------------------------
+int32_t RegexCompile::allocateStackData(int32_t size) {
+ if (U_FAILURE(*fStatus)) {
+ return 0;
+ }
+ if (size <= 0 || size > 0x100 || fRXPat->fFrameSize < 0) {
+ error(U_REGEX_INTERNAL_ERROR);
+ return 0;
+ }
+ int32_t dataIndex = fRXPat->fFrameSize;
+ fRXPat->fFrameSize += size;
+ if (fRXPat->fFrameSize >= 0x00fffff0) {
+ error(U_REGEX_PATTERN_TOO_BIG);
+ }
+ return dataIndex;
+}
+
+
+//------------------------------------------------------------------------------
+//
+// blockTopLoc() Find or create a location in the compiled pattern
+// at the start of the operation or block that has
+// just been compiled. Needed when a quantifier (* or
+// whatever) appears, and we need to add an operation
+// at the start of the thing being quantified.
+//
+// (Parenthesized Blocks) have a slot with a NOP that
+// is reserved for this purpose. .* or similar don't
+// and a slot needs to be added.
+//
+// parameter reserveLoc : TRUE - ensure that there is space to add an opcode
+// at the returned location.
+// FALSE - just return the address,
+// do not reserve a location there.
+//
+//------------------------------------------------------------------------------
+int32_t RegexCompile::blockTopLoc(UBool reserveLoc) {
+ int32_t theLoc;
+ fixLiterals(TRUE); // Emit code for any pending literals.
+ // If last item was a string, emit separate op for the its last char.
+ if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
+ {
+ // The item just processed is a parenthesized block.
+ theLoc = fMatchOpenParen; // A slot is already reserved for us.
+ U_ASSERT(theLoc > 0);
+ U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP);
+ }
+ else {
+ // Item just compiled is a single thing, a ".", or a single char, a string or a set reference.
+ // No slot for STATE_SAVE was pre-reserved in the compiled code.
+ // We need to make space now.
+ theLoc = fRXPat->fCompiledPat->size()-1;
+ int32_t opAtTheLoc = (int32_t)fRXPat->fCompiledPat->elementAti(theLoc);
+ if (URX_TYPE(opAtTheLoc) == URX_STRING_LEN) {
+ // Strings take two opcode, we want the position of the first one.
+ // We can have a string at this point if a single character case-folded to two.
+ theLoc--;
+ }
+ if (reserveLoc) {
+ int32_t nop = buildOp(URX_NOP, 0);
+ fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
+ }
+ }
+ return theLoc;
+}
+
+
+
+//------------------------------------------------------------------------------
+//
+// handleCloseParen When compiling a close paren, we need to go back
+// and fix up any JMP or SAVE operations within the
+// parenthesized block that need to target the end
+// of the block. The locations of these are kept on
+// the paretheses stack.
+//
+// This function is called both when encountering a
+// real ) and at the end of the pattern.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::handleCloseParen() {
+ int32_t patIdx;
+ int32_t patOp;
+ if (fParenStack.size() <= 0) {
+ error(U_REGEX_MISMATCHED_PAREN);
+ return;
+ }
+
+ // Emit code for any pending literals.
+ fixLiterals(FALSE);
+
+ // Fixup any operations within the just-closed parenthesized group
+ // that need to reference the end of the (block).
+ // (The first one popped from the stack is an unused slot for
+ // alternation (OR) state save, but applying the fixup to it does no harm.)
+ for (;;) {
+ patIdx = fParenStack.popi();
+ if (patIdx < 0) {
+ // value < 0 flags the start of the frame on the paren stack.
+ break;
+ }
+ U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size());
+ patOp = (int32_t)fRXPat->fCompiledPat->elementAti(patIdx);
+ U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set.
+ patOp |= fRXPat->fCompiledPat->size(); // Set it now.
+ fRXPat->fCompiledPat->setElementAt(patOp, patIdx);
+ fMatchOpenParen = patIdx;
+ }
+
+ // At the close of any parenthesized block, restore the match mode flags to
+ // the value they had at the open paren. Saved value is
+ // at the top of the paren stack.
+ fModeFlags = fParenStack.popi();
+ U_ASSERT(fModeFlags < 0);
+
+ // DO any additional fixups, depending on the specific kind of
+ // parentesized grouping this is
+
+ switch (patIdx) {
+ case plain:
+ case flags:
+ // No additional fixups required.
+ // (Grouping-only parentheses)
+ break;
+ case capturing:
+ // Capturing Parentheses.
+ // Insert a End Capture op into the pattern.
+ // The frame offset of the variables for this cg is obtained from the
+ // start capture op and put it into the end-capture op.
+ {
+ int32_t captureOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
+ U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE);
+
+ int32_t frameVarLocation = URX_VAL(captureOp);
+ appendOp(URX_END_CAPTURE, frameVarLocation);
+ }
+ break;
+ case atomic:
+ // Atomic Parenthesis.
+ // Insert a LD_SP operation to restore the state stack to the position
+ // it was when the atomic parens were entered.
+ {
+ int32_t stoOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
+ U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP);
+ int32_t stoLoc = URX_VAL(stoOp);
+ appendOp(URX_LD_SP, stoLoc);
+ }
+ break;
+
+ case lookAhead:
+ {
+ int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
+ U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
+ int32_t dataLoc = URX_VAL(startOp);
+ appendOp(URX_LA_END, dataLoc);
+ }
+ break;
+
+ case negLookAhead:
+ {
+ // See comment at doOpenLookAheadNeg
+ int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
+ U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
+ int32_t dataLoc = URX_VAL(startOp);
+ appendOp(URX_LA_END, dataLoc);
+ appendOp(URX_BACKTRACK, 0);
+ appendOp(URX_LA_END, dataLoc);
+
+ // Patch the URX_SAVE near the top of the block.
+ // The destination of the SAVE is the final LA_END that was just added.
+ int32_t saveOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen);
+ U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE);
+ int32_t dest = fRXPat->fCompiledPat->size()-1;
+ saveOp = buildOp(URX_STATE_SAVE, dest);
+ fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen);
+ }
+ break;
+
+ case lookBehind:
+ {
+ // See comment at doOpenLookBehind.
+
+ // Append the URX_LB_END and URX_LA_END to the compiled pattern.
+ int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4);
+ U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
+ int32_t dataLoc = URX_VAL(startOp);
+ appendOp(URX_LB_END, dataLoc);
+ appendOp(URX_LA_END, dataLoc);
+
+ // Determine the min and max bounds for the length of the
+ // string that the pattern can match.
+ // An unbounded upper limit is an error.
+ int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
+ int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
+ int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
+ if (URX_TYPE(maxML) != 0) {
+ error(U_REGEX_LOOK_BEHIND_LIMIT);
+ break;
+ }
+ if (maxML == INT32_MAX) {
+ error(U_REGEX_LOOK_BEHIND_LIMIT);
+ break;
+ }
+ U_ASSERT(minML <= maxML);
+
+ // Insert the min and max match len bounds into the URX_LB_CONT op that
+ // appears at the top of the look-behind block, at location fMatchOpenParen+1
+ fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-2);
+ fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-1);
+
+ }
+ break;
+
+
+
+ case lookBehindN:
+ {
+ // See comment at doOpenLookBehindNeg.
+
+ // Append the URX_LBN_END to the compiled pattern.
+ int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
+ U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
+ int32_t dataLoc = URX_VAL(startOp);
+ appendOp(URX_LBN_END, dataLoc);
+
+ // Determine the min and max bounds for the length of the
+ // string that the pattern can match.
+ // An unbounded upper limit is an error.
+ int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
+ int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
+ int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
+ if (URX_TYPE(maxML) != 0) {
+ error(U_REGEX_LOOK_BEHIND_LIMIT);
+ break;
+ }
+ if (maxML == INT32_MAX) {
+ error(U_REGEX_LOOK_BEHIND_LIMIT);
+ break;
+ }
+ U_ASSERT(minML <= maxML);
+
+ // Insert the min and max match len bounds into the URX_LB_CONT op that
+ // appears at the top of the look-behind block, at location fMatchOpenParen+1
+ fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-3);
+ fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-2);
+
+ // Insert the pattern location to continue at after a successful match
+ // as the last operand of the URX_LBN_CONT
+ int32_t op = buildOp(URX_RELOC_OPRND, fRXPat->fCompiledPat->size());
+ fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1);
+ }
+ break;
+
+
+
+ default:
+ U_ASSERT(FALSE);
+ }
+
+ // remember the next location in the compiled pattern.
+ // The compilation of Quantifiers will look at this to see whether its looping
+ // over a parenthesized block or a single item
+ fMatchCloseParen = fRXPat->fCompiledPat->size();
+}
+
+
+
+//------------------------------------------------------------------------------
+//
+// compileSet Compile the pattern operations for a reference to a
+// UnicodeSet.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::compileSet(UnicodeSet *theSet)
+{
+ if (theSet == NULL) {
+ return;
+ }
+ // Remove any strings from the set.
+ // There shoudn't be any, but just in case.
+ // (Case Closure can add them; if we had a simple case closure avaialble that
+ // ignored strings, that would be better.)
+ theSet->removeAllStrings();
+ int32_t setSize = theSet->size();
+
+ switch (setSize) {
+ case 0:
+ {
+ // Set of no elements. Always fails to match.
+ appendOp(URX_BACKTRACK, 0);
+ delete theSet;
+ }
+ break;
+
+ case 1:
+ {
+ // The set contains only a single code point. Put it into
+ // the compiled pattern as a single char operation rather
+ // than a set, and discard the set itself.
+ literalChar(theSet->charAt(0));
+ delete theSet;
+ }
+ break;
+
+ default:
+ {
+ // The set contains two or more chars. (the normal case)
+ // Put it into the compiled pattern as a set.
+ int32_t setNumber = fRXPat->fSets->size();
+ fRXPat->fSets->addElement(theSet, *fStatus);
+ appendOp(URX_SETREF, setNumber);
+ }
+ }
+}
+
+
+//------------------------------------------------------------------------------
+//
+// compileInterval Generate the code for a {min, max} style interval quantifier.
+// Except for the specific opcodes used, the code is the same
+// for all three types (greedy, non-greedy, possessive) of
+// intervals. The opcodes are supplied as parameters.
+// (There are two sets of opcodes - greedy & possessive use the
+// same ones, while non-greedy has it's own.)
+//
+// The code for interval loops has this form:
+// 0 CTR_INIT counter loc (in stack frame)
+// 1 5 patt address of CTR_LOOP at bottom of block
+// 2 min count
+// 3 max count (-1 for unbounded)
+// 4 ... block to be iterated over
+// 5 CTR_LOOP
+//
+// In
+//------------------------------------------------------------------------------
+void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp)
+{
+ // The CTR_INIT op at the top of the block with the {n,m} quantifier takes
+ // four slots in the compiled code. Reserve them.
+ int32_t topOfBlock = blockTopLoc(TRUE);
+ insertOp(topOfBlock);
+ insertOp(topOfBlock);
+ insertOp(topOfBlock);
+
+ // The operands for the CTR_INIT opcode include the index in the matcher data
+ // of the counter. Allocate it now. There are two data items
+ // counterLoc --> Loop counter
+ // +1 --> Input index (for breaking non-progressing loops)
+ // (Only present if unbounded upper limit on loop)
+ int32_t dataSize = fIntervalUpper < 0 ? 2 : 1;
+ int32_t counterLoc = allocateStackData(dataSize);
+
+ int32_t op = buildOp(InitOp, counterLoc);
+ fRXPat->fCompiledPat->setElementAt(op, topOfBlock);
+
+ // The second operand of CTR_INIT is the location following the end of the loop.
+ // Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the
+ // compilation of something later on causes the code to grow and the target
+ // position to move.
+ int32_t loopEnd = fRXPat->fCompiledPat->size();
+ op = buildOp(URX_RELOC_OPRND, loopEnd);
+ fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1);
+
+ // Followed by the min and max counts.
+ fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2);
+ fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3);
+
+ // Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op.
+ // Goes at end of the block being looped over, so just append to the code so far.
+ appendOp(LoopOp, topOfBlock);
+
+ if ((fIntervalLow & 0xff000000) != 0 ||
+ (fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0)) {
+ error(U_REGEX_NUMBER_TOO_BIG);
+ }
+
+ if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) {
+ error(U_REGEX_MAX_LT_MIN);
+ }
+}
+
+
+
+UBool RegexCompile::compileInlineInterval() {
+ if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) {
+ // Too big to inline. Fail, which will cause looping code to be generated.
+ // (Upper < Lower picks up unbounded upper and errors, both.)
+ return FALSE;
+ }
+
+ int32_t topOfBlock = blockTopLoc(FALSE);
+ if (fIntervalUpper == 0) {
+ // Pathological case. Attempt no matches, as if the block doesn't exist.
+ // Discard the generated code for the block.
+ // If the block included parens, discard the info pertaining to them as well.
+ fRXPat->fCompiledPat->setSize(topOfBlock);
+ if (fMatchOpenParen >= topOfBlock) {
+ fMatchOpenParen = -1;
+ }
+ if (fMatchCloseParen >= topOfBlock) {
+ fMatchCloseParen = -1;
+ }
+ return TRUE;
+ }
+
+ if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) {
+ // The thing being repeated is not a single op, but some
+ // more complex block. Do it as a loop, not inlines.
+ // Note that things "repeated" a max of once are handled as inline, because
+ // the one copy of the code already generated is just fine.
+ return FALSE;
+ }
+
+ // Pick up the opcode that is to be repeated
+ //
+ int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(topOfBlock);
+
+ // Compute the pattern location where the inline sequence
+ // will end, and set up the state save op that will be needed.
+ //
+ int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1
+ + fIntervalUpper + (fIntervalUpper-fIntervalLow);
+ int32_t saveOp = buildOp(URX_STATE_SAVE, endOfSequenceLoc);
+ if (fIntervalLow == 0) {
+ insertOp(topOfBlock);
+ fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock);
+ }
+
+
+
+ // Loop, emitting the op for the thing being repeated each time.
+ // Loop starts at 1 because one instance of the op already exists in the pattern,
+ // it was put there when it was originally encountered.
+ int32_t i;
+ for (i=1; i<fIntervalUpper; i++ ) {
+ if (i >= fIntervalLow) {
+ appendOp(saveOp);
+ }
+ appendOp(op);
+ }
+ return TRUE;
+}
+
+
+
+//------------------------------------------------------------------------------
+//
+// caseInsensitiveStart given a single code point from a pattern string, determine the
+// set of characters that could potentially begin a case-insensitive
+// match of a string beginning with that character, using full Unicode
+// case insensitive matching.
+//
+// This is used in optimizing find().
+//
+// closeOver(USET_CASE_INSENSITIVE) does most of what is needed, but
+// misses cases like this:
+// A string from the pattern begins with 'ss' (although all we know
+// in this context is that it begins with 's')
+// The pattern could match a string beginning with a German sharp-s
+//
+// To the ordinary case closure for a character c, we add all other
+// characters cx where the case closure of cx incudes a string form that begins
+// with the original character c.
+//
+// This function could be made smarter. The full pattern string is available
+// and it would be possible to verify that the extra characters being added
+// to the starting set fully match, rather than having just a first-char of the
+// folded form match.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::findCaseInsensitiveStarters(UChar32 c, UnicodeSet *starterChars) {
+
+// Machine Generated below.
+// It may need updating with new versions of Unicode.
+// Intltest test RegexTest::TestCaseInsensitiveStarters will fail if an update is needed.
+// The update tool is here: svn+ssh://source.icu-project.org/repos/icu/tools/trunk/unicode/c/genregexcasing
+
+// Machine Generated Data. Do not hand edit.
+ static const UChar32 RECaseFixCodePoints[] = {
+ 0x61, 0x66, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x77, 0x79, 0x2bc,
+ 0x3ac, 0x3ae, 0x3b1, 0x3b7, 0x3b9, 0x3c1, 0x3c5, 0x3c9, 0x3ce, 0x565,
+ 0x574, 0x57e, 0x1f00, 0x1f01, 0x1f02, 0x1f03, 0x1f04, 0x1f05, 0x1f06, 0x1f07,
+ 0x1f20, 0x1f21, 0x1f22, 0x1f23, 0x1f24, 0x1f25, 0x1f26, 0x1f27, 0x1f60, 0x1f61,
+ 0x1f62, 0x1f63, 0x1f64, 0x1f65, 0x1f66, 0x1f67, 0x1f70, 0x1f74, 0x1f7c, 0x110000};
+
+ static const int16_t RECaseFixStringOffsets[] = {
+ 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xd, 0xe, 0xf, 0x10,
+ 0x11, 0x12, 0x13, 0x17, 0x1b, 0x20, 0x21, 0x2a, 0x2e, 0x2f,
+ 0x30, 0x34, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, 0x41, 0x43,
+ 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57,
+ 0x59, 0x5b, 0x5d, 0x5f, 0x61, 0x63, 0x65, 0x66, 0x67, 0};
+
+ static const int16_t RECaseFixCounts[] = {
+ 0x1, 0x5, 0x1, 0x1, 0x1, 0x4, 0x1, 0x1, 0x1, 0x1,
+ 0x1, 0x1, 0x4, 0x4, 0x5, 0x1, 0x9, 0x4, 0x1, 0x1,
+ 0x4, 0x1, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
+ 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
+ 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x1, 0x1, 0x1, 0};
+
+ static const UChar RECaseFixData[] = {
+ 0x1e9a, 0xfb00, 0xfb01, 0xfb02, 0xfb03, 0xfb04, 0x1e96, 0x130, 0x1f0, 0xdf,
+ 0x1e9e, 0xfb05, 0xfb06, 0x1e97, 0x1e98, 0x1e99, 0x149, 0x1fb4, 0x1fc4, 0x1fb3,
+ 0x1fb6, 0x1fb7, 0x1fbc, 0x1fc3, 0x1fc6, 0x1fc7, 0x1fcc, 0x390, 0x1fd2, 0x1fd3,
+ 0x1fd6, 0x1fd7, 0x1fe4, 0x3b0, 0x1f50, 0x1f52, 0x1f54, 0x1f56, 0x1fe2, 0x1fe3,
+ 0x1fe6, 0x1fe7, 0x1ff3, 0x1ff6, 0x1ff7, 0x1ffc, 0x1ff4, 0x587, 0xfb13, 0xfb14,
+ 0xfb15, 0xfb17, 0xfb16, 0x1f80, 0x1f88, 0x1f81, 0x1f89, 0x1f82, 0x1f8a, 0x1f83,
+ 0x1f8b, 0x1f84, 0x1f8c, 0x1f85, 0x1f8d, 0x1f86, 0x1f8e, 0x1f87, 0x1f8f, 0x1f90,
+ 0x1f98, 0x1f91, 0x1f99, 0x1f92, 0x1f9a, 0x1f93, 0x1f9b, 0x1f94, 0x1f9c, 0x1f95,
+ 0x1f9d, 0x1f96, 0x1f9e, 0x1f97, 0x1f9f, 0x1fa0, 0x1fa8, 0x1fa1, 0x1fa9, 0x1fa2,
+ 0x1faa, 0x1fa3, 0x1fab, 0x1fa4, 0x1fac, 0x1fa5, 0x1fad, 0x1fa6, 0x1fae, 0x1fa7,
+ 0x1faf, 0x1fb2, 0x1fc2, 0x1ff2, 0};
+
+// End of machine generated data.
+
+ if (c < UCHAR_MIN_VALUE || c > UCHAR_MAX_VALUE) {
+ // This function should never be called with an invalid input character.
+ U_ASSERT(FALSE);
+ starterChars->clear();
+ } else if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
+ UChar32 caseFoldedC = u_foldCase(c, U_FOLD_CASE_DEFAULT);
+ starterChars->set(caseFoldedC, caseFoldedC);
+
+ int32_t i;
+ for (i=0; RECaseFixCodePoints[i]<c ; i++) {
+ // Simple linear search through the sorted list of interesting code points.
+ }
+
+ if (RECaseFixCodePoints[i] == c) {
+ int32_t dataIndex = RECaseFixStringOffsets[i];
+ int32_t numCharsToAdd = RECaseFixCounts[i];
+ UChar32 cpToAdd = 0;
+ for (int32_t j=0; j<numCharsToAdd; j++) {
+ U16_NEXT_UNSAFE(RECaseFixData, dataIndex, cpToAdd);
+ starterChars->add(cpToAdd);
+ }
+ }
+
+ starterChars->closeOver(USET_CASE_INSENSITIVE);
+ starterChars->removeAllStrings();
+ } else {
+ // Not a cased character. Just return it alone.
+ starterChars->set(c, c);
+ }
+}
+
+
+
+
+//------------------------------------------------------------------------------
+//
+// matchStartType Determine how a match can start.
+// Used to optimize find() operations.
+//
+// Operation is very similar to minMatchLength(). Walk the compiled
+// pattern, keeping an on-going minimum-match-length. For any
+// op where the min match coming in is zero, add that ops possible
+// starting matches to the possible starts for the overall pattern.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::matchStartType() {
+ if (U_FAILURE(*fStatus)) {
+ return;
+ }
+
+
+ int32_t loc; // Location in the pattern of the current op being processed.
+ int32_t op; // The op being processed
+ int32_t opType; // The opcode type of the op
+ int32_t currentLen = 0; // Minimum length of a match to this point (loc) in the pattern
+ int32_t numInitialStrings = 0; // Number of strings encountered that could match at start.
+
+ UBool atStart = TRUE; // True if no part of the pattern yet encountered
+ // could have advanced the position in a match.
+ // (Maximum match length so far == 0)
+
+ // forwardedLength is a vector holding minimum-match-length values that
+ // are propagated forward in the pattern by JMP or STATE_SAVE operations.
+ // It must be one longer than the pattern being checked because some ops
+ // will jmp to a end-of-block+1 location from within a block, and we must
+ // count those when checking the block.
+ int32_t end = fRXPat->fCompiledPat->size();
+ UVector32 forwardedLength(end+1, *fStatus);
+ forwardedLength.setSize(end+1);
+ for (loc=3; loc<end; loc++) {
+ forwardedLength.setElementAt(INT32_MAX, loc);
+ }
+
+ for (loc = 3; loc<end; loc++) {
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ opType = URX_TYPE(op);
+
+ // The loop is advancing linearly through the pattern.
+ // If the op we are now at was the destination of a branch in the pattern,
+ // and that path has a shorter minimum length than the current accumulated value,
+ // replace the current accumulated value.
+ if (forwardedLength.elementAti(loc) < currentLen) {
+ currentLen = forwardedLength.elementAti(loc);
+ U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
+ }
+
+ switch (opType) {
+ // Ops that don't change the total length matched
+ case URX_RESERVED_OP:
+ case URX_END:
+ case URX_FAIL:
+ case URX_STRING_LEN:
+ case URX_NOP:
+ case URX_START_CAPTURE:
+ case URX_END_CAPTURE:
+ case URX_BACKSLASH_B:
+ case URX_BACKSLASH_BU:
+ case URX_BACKSLASH_G:
+ case URX_BACKSLASH_Z:
+ case URX_DOLLAR:
+ case URX_DOLLAR_M:
+ case URX_DOLLAR_D:
+ case URX_DOLLAR_MD:
+ case URX_RELOC_OPRND:
+ case URX_STO_INP_LOC:
+ case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
+ case URX_BACKREF_I:
+
+ case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
+ case URX_LD_SP:
+ break;
+
+ case URX_CARET:
+ if (atStart) {
+ fRXPat->fStartType = START_START;
+ }
+ break;
+
+ case URX_CARET_M:
+ case URX_CARET_M_UNIX:
+ if (atStart) {
+ fRXPat->fStartType = START_LINE;
+ }
+ break;
+
+ case URX_ONECHAR:
+ if (currentLen == 0) {
+ // This character could appear at the start of a match.
+ // Add it to the set of possible starting characters.
+ fRXPat->fInitialChars->add(URX_VAL(op));
+ numInitialStrings += 2;
+ }
+ currentLen++;
+ atStart = FALSE;
+ break;
+
+
+ case URX_SETREF:
+ if (currentLen == 0) {
+ int32_t sn = URX_VAL(op);
+ U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
+ const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
+ fRXPat->fInitialChars->addAll(*s);
+ numInitialStrings += 2;
+ }
+ currentLen++;
+ atStart = FALSE;
+ break;
+
+ case URX_LOOP_SR_I:
+ // [Set]*, like a SETREF, above, in what it can match,
+ // but may not match at all, so currentLen is not incremented.
+ if (currentLen == 0) {
+ int32_t sn = URX_VAL(op);
+ U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
+ const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
+ fRXPat->fInitialChars->addAll(*s);
+ numInitialStrings += 2;
+ }
+ atStart = FALSE;
+ break;
+
+ case URX_LOOP_DOT_I:
+ if (currentLen == 0) {
+ // .* at the start of a pattern.
+ // Any character can begin the match.
+ fRXPat->fInitialChars->clear();
+ fRXPat->fInitialChars->complement();
+ numInitialStrings += 2;
+ }
+ atStart = FALSE;
+ break;
+
+
+ case URX_STATIC_SETREF:
+ if (currentLen == 0) {
+ int32_t sn = URX_VAL(op);
+ U_ASSERT(sn>0 && sn<URX_LAST_SET);
+ const UnicodeSet *s = fRXPat->fStaticSets[sn];
+ fRXPat->fInitialChars->addAll(*s);
+ numInitialStrings += 2;
+ }
+ currentLen++;
+ atStart = FALSE;
+ break;
+
+
+
+ case URX_STAT_SETREF_N:
+ if (currentLen == 0) {
+ int32_t sn = URX_VAL(op);
+ const UnicodeSet *s = fRXPat->fStaticSets[sn];
+ UnicodeSet sc(*s);
+ sc.complement();
+ fRXPat->fInitialChars->addAll(sc);
+ numInitialStrings += 2;
+ }
+ currentLen++;
+ atStart = FALSE;
+ break;
+
+
+
+ case URX_BACKSLASH_D:
+ // Digit Char
+ if (currentLen == 0) {
+ UnicodeSet s;
+ s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
+ if (URX_VAL(op) != 0) {
+ s.complement();
+ }
+ fRXPat->fInitialChars->addAll(s);
+ numInitialStrings += 2;
+ }
+ currentLen++;
+ atStart = FALSE;
+ break;
+
+
+ case URX_BACKSLASH_H:
+ // Horiz white space
+ if (currentLen == 0) {
+ UnicodeSet s;
+ s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
+ s.add((UChar32)9); // Tab
+ if (URX_VAL(op) != 0) {
+ s.complement();
+ }
+ fRXPat->fInitialChars->addAll(s);
+ numInitialStrings += 2;
+ }
+ currentLen++;
+ atStart = FALSE;
+ break;
+
+
+ case URX_BACKSLASH_R: // Any line ending sequence
+ case URX_BACKSLASH_V: // Any line ending code point, with optional negation
+ if (currentLen == 0) {
+ UnicodeSet s;
+ s.add((UChar32)0x0a, (UChar32)0x0d); // add range
+ s.add((UChar32)0x85);
+ s.add((UChar32)0x2028, (UChar32)0x2029);
+ if (URX_VAL(op) != 0) {
+ // Complement option applies to URX_BACKSLASH_V only.
+ s.complement();
+ }
+ fRXPat->fInitialChars->addAll(s);
+ numInitialStrings += 2;
+ }
+ currentLen++;
+ atStart = FALSE;
+ break;
+
+
+
+ case URX_ONECHAR_I:
+ // Case Insensitive Single Character.
+ if (currentLen == 0) {
+ UChar32 c = URX_VAL(op);
+ if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
+ UnicodeSet starters(c, c);
+ starters.closeOver(USET_CASE_INSENSITIVE);
+ // findCaseInsensitiveStarters(c, &starters);
+ // For ONECHAR_I, no need to worry about text chars that expand on folding into strings.
+ // The expanded folding can't match the pattern.
+ fRXPat->fInitialChars->addAll(starters);
+ } else {
+ // Char has no case variants. Just add it as-is to the
+ // set of possible starting chars.
+ fRXPat->fInitialChars->add(c);
+ }
+ numInitialStrings += 2;
+ }
+ currentLen++;
+ atStart = FALSE;
+ break;
+
+
+ case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
+ case URX_DOTANY_ALL: // . matches one or two.
+ case URX_DOTANY:
+ case URX_DOTANY_UNIX:
+ if (currentLen == 0) {
+ // These constructs are all bad news when they appear at the start
+ // of a match. Any character can begin the match.
+ fRXPat->fInitialChars->clear();
+ fRXPat->fInitialChars->complement();
+ numInitialStrings += 2;
+ }
+ currentLen++;
+ atStart = FALSE;
+ break;
+
+
+ case URX_JMPX:
+ loc++; // Except for extra operand on URX_JMPX, same as URX_JMP.
+ U_FALLTHROUGH;
+ case URX_JMP:
+ {
+ int32_t jmpDest = URX_VAL(op);
+ if (jmpDest < loc) {
+ // Loop of some kind. Can safely ignore, the worst that will happen
+ // is that we understate the true minimum length
+ currentLen = forwardedLength.elementAti(loc+1);
+
+ } else {
+ // Forward jump. Propagate the current min length to the target loc of the jump.
+ U_ASSERT(jmpDest <= end+1);
+ if (forwardedLength.elementAti(jmpDest) > currentLen) {
+ forwardedLength.setElementAt(currentLen, jmpDest);
+ }
+ }
+ }
+ atStart = FALSE;
+ break;
+
+ case URX_JMP_SAV:
+ case URX_JMP_SAV_X:
+ // Combo of state save to the next loc, + jmp backwards.
+ // Net effect on min. length computation is nothing.
+ atStart = FALSE;
+ break;
+
+ case URX_BACKTRACK:
+ // Fails are kind of like a branch, except that the min length was
+ // propagated already, by the state save.
+ currentLen = forwardedLength.elementAti(loc+1);
+ atStart = FALSE;
+ break;
+
+
+ case URX_STATE_SAVE:
+ {
+ // State Save, for forward jumps, propagate the current minimum.
+ // of the state save.
+ int32_t jmpDest = URX_VAL(op);
+ if (jmpDest > loc) {
+ if (currentLen < forwardedLength.elementAti(jmpDest)) {
+ forwardedLength.setElementAt(currentLen, jmpDest);
+ }
+ }
+ }
+ atStart = FALSE;
+ break;
+
+
+
+
+ case URX_STRING:
+ {
+ loc++;
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ int32_t stringLen = URX_VAL(stringLenOp);
+ U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
+ U_ASSERT(stringLenOp >= 2);
+ if (currentLen == 0) {
+ // Add the starting character of this string to the set of possible starting
+ // characters for this pattern.
+ int32_t stringStartIdx = URX_VAL(op);
+ UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
+ fRXPat->fInitialChars->add(c);
+
+ // Remember this string. After the entire pattern has been checked,
+ // if nothing else is identified that can start a match, we'll use it.
+ numInitialStrings++;
+ fRXPat->fInitialStringIdx = stringStartIdx;
+ fRXPat->fInitialStringLen = stringLen;
+ }
+
+ currentLen += stringLen;
+ atStart = FALSE;
+ }
+ break;
+
+ case URX_STRING_I:
+ {
+ // Case-insensitive string. Unlike exact-match strings, we won't
+ // attempt a string search for possible match positions. But we
+ // do update the set of possible starting characters.
+ loc++;
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ int32_t stringLen = URX_VAL(stringLenOp);
+ U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
+ U_ASSERT(stringLenOp >= 2);
+ if (currentLen == 0) {
+ // Add the starting character of this string to the set of possible starting
+ // characters for this pattern.
+ int32_t stringStartIdx = URX_VAL(op);
+ UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
+ UnicodeSet s;
+ findCaseInsensitiveStarters(c, &s);
+ fRXPat->fInitialChars->addAll(s);
+ numInitialStrings += 2; // Matching on an initial string not possible.
+ }
+ currentLen += stringLen;
+ atStart = FALSE;
+ }
+ break;
+
+ case URX_CTR_INIT:
+ case URX_CTR_INIT_NG:
+ {
+ // Loop Init Ops. These don't change the min length, but they are 4 word ops
+ // so location must be updated accordingly.
+ // Loop Init Ops.
+ // If the min loop count == 0
+ // move loc forwards to the end of the loop, skipping over the body.
+ // If the min count is > 0,
+ // continue normal processing of the body of the loop.
+ int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
+ loopEndLoc = URX_VAL(loopEndLoc);
+ int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
+ if (minLoopCount == 0) {
+ // Min Loop Count of 0, treat like a forward branch and
+ // move the current minimum length up to the target
+ // (end of loop) location.
+ U_ASSERT(loopEndLoc <= end+1);
+ if (forwardedLength.elementAti(loopEndLoc) > currentLen) {
+ forwardedLength.setElementAt(currentLen, loopEndLoc);
+ }
+ }
+ loc+=3; // Skips over operands of CTR_INIT
+ }
+ atStart = FALSE;
+ break;
+
+
+ case URX_CTR_LOOP:
+ case URX_CTR_LOOP_NG:
+ // Loop ops.
+ // The jump is conditional, backwards only.
+ atStart = FALSE;
+ break;
+
+ case URX_LOOP_C:
+ // More loop ops. These state-save to themselves.
+ // don't change the minimum match
+ atStart = FALSE;
+ break;
+
+
+ case URX_LA_START:
+ case URX_LB_START:
+ {
+ // Look-around. Scan forward until the matching look-ahead end,
+ // without processing the look-around block. This is overly pessimistic.
+
+ // Keep track of the nesting depth of look-around blocks. Boilerplate code for
+ // lookahead contains two LA_END instructions, so count goes up by two
+ // for each LA_START.
+ int32_t depth = (opType == URX_LA_START? 2: 1);
+ for (;;) {
+ loc++;
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ if (URX_TYPE(op) == URX_LA_START) {
+ depth+=2;
+ }
+ if (URX_TYPE(op) == URX_LB_START) {
+ depth++;
+ }
+ if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
+ depth--;
+ if (depth == 0) {
+ break;
+ }
+ }
+ if (URX_TYPE(op) == URX_STATE_SAVE) {
+ // Need this because neg lookahead blocks will FAIL to outside
+ // of the block.
+ int32_t jmpDest = URX_VAL(op);
+ if (jmpDest > loc) {
+ if (currentLen < forwardedLength.elementAti(jmpDest)) {
+ forwardedLength.setElementAt(currentLen, jmpDest);
+ }
+ }
+ }
+ U_ASSERT(loc <= end);
+ }
+ }
+ break;
+
+ case URX_LA_END:
+ case URX_LB_CONT:
+ case URX_LB_END:
+ case URX_LBN_CONT:
+ case URX_LBN_END:
+ U_ASSERT(FALSE); // Shouldn't get here. These ops should be
+ // consumed by the scan in URX_LA_START and LB_START
+
+ break;
+
+ default:
+ U_ASSERT(FALSE);
+ }
+
+ }
+
+
+ // We have finished walking through the ops. Check whether some forward jump
+ // propagated a shorter length to location end+1.
+ if (forwardedLength.elementAti(end+1) < currentLen) {
+ currentLen = forwardedLength.elementAti(end+1);
+ }
+
+
+ fRXPat->fInitialChars8->init(fRXPat->fInitialChars);
+
+
+ // Sort out what we should check for when looking for candidate match start positions.
+ // In order of preference,
+ // 1. Start of input text buffer.
+ // 2. A literal string.
+ // 3. Start of line in multi-line mode.
+ // 4. A single literal character.
+ // 5. A character from a set of characters.
+ //
+ if (fRXPat->fStartType == START_START) {
+ // Match only at the start of an input text string.
+ // start type is already set. We're done.
+ } else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) {
+ // Match beginning only with a literal string.
+ UChar32 c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx);
+ U_ASSERT(fRXPat->fInitialChars->contains(c));
+ fRXPat->fStartType = START_STRING;
+ fRXPat->fInitialChar = c;
+ } else if (fRXPat->fStartType == START_LINE) {
+ // Match at start of line in Multi-Line mode.
+ // Nothing to do here; everything is already set.
+ } else if (fRXPat->fMinMatchLen == 0) {
+ // Zero length match possible. We could start anywhere.
+ fRXPat->fStartType = START_NO_INFO;
+ } else if (fRXPat->fInitialChars->size() == 1) {
+ // All matches begin with the same char.
+ fRXPat->fStartType = START_CHAR;
+ fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0);
+ U_ASSERT(fRXPat->fInitialChar != (UChar32)-1);
+ } else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == FALSE &&
+ fRXPat->fMinMatchLen > 0) {
+ // Matches start with a set of character smaller than the set of all chars.
+ fRXPat->fStartType = START_SET;
+ } else {
+ // Matches can start with anything
+ fRXPat->fStartType = START_NO_INFO;
+ }
+
+ return;
+}
+
+
+
+//------------------------------------------------------------------------------
+//
+// minMatchLength Calculate the length of the shortest string that could
+// match the specified pattern.
+// Length is in 16 bit code units, not code points.
+//
+// The calculated length may not be exact. The returned
+// value may be shorter than the actual minimum; it must
+// never be longer.
+//
+// start and end are the range of p-code operations to be
+// examined. The endpoints are included in the range.
+//
+//------------------------------------------------------------------------------
+int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) {
+ if (U_FAILURE(*fStatus)) {
+ return 0;
+ }
+
+ U_ASSERT(start <= end);
+ U_ASSERT(end < fRXPat->fCompiledPat->size());
+
+
+ int32_t loc;
+ int32_t op;
+ int32_t opType;
+ int32_t currentLen = 0;
+
+
+ // forwardedLength is a vector holding minimum-match-length values that
+ // are propagated forward in the pattern by JMP or STATE_SAVE operations.
+ // It must be one longer than the pattern being checked because some ops
+ // will jmp to a end-of-block+1 location from within a block, and we must
+ // count those when checking the block.
+ UVector32 forwardedLength(end+2, *fStatus);
+ forwardedLength.setSize(end+2);
+ for (loc=start; loc<=end+1; loc++) {
+ forwardedLength.setElementAt(INT32_MAX, loc);
+ }
+
+ for (loc = start; loc<=end; loc++) {
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ opType = URX_TYPE(op);
+
+ // The loop is advancing linearly through the pattern.
+ // If the op we are now at was the destination of a branch in the pattern,
+ // and that path has a shorter minimum length than the current accumulated value,
+ // replace the current accumulated value.
+ // U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); // MinLength == INT32_MAX for some
+ // no-match-possible cases.
+ if (forwardedLength.elementAti(loc) < currentLen) {
+ currentLen = forwardedLength.elementAti(loc);
+ U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
+ }
+
+ switch (opType) {
+ // Ops that don't change the total length matched
+ case URX_RESERVED_OP:
+ case URX_END:
+ case URX_STRING_LEN:
+ case URX_NOP:
+ case URX_START_CAPTURE:
+ case URX_END_CAPTURE:
+ case URX_BACKSLASH_B:
+ case URX_BACKSLASH_BU:
+ case URX_BACKSLASH_G:
+ case URX_BACKSLASH_Z:
+ case URX_CARET:
+ case URX_DOLLAR:
+ case URX_DOLLAR_M:
+ case URX_DOLLAR_D:
+ case URX_DOLLAR_MD:
+ case URX_RELOC_OPRND:
+ case URX_STO_INP_LOC:
+ case URX_CARET_M:
+ case URX_CARET_M_UNIX:
+ case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
+ case URX_BACKREF_I:
+
+ case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
+ case URX_LD_SP:
+
+ case URX_JMP_SAV:
+ case URX_JMP_SAV_X:
+ break;
+
+
+ // Ops that match a minimum of one character (one or two 16 bit code units.)
+ //
+ case URX_ONECHAR:
+ case URX_STATIC_SETREF:
+ case URX_STAT_SETREF_N:
+ case URX_SETREF:
+ case URX_BACKSLASH_D:
+ case URX_BACKSLASH_H:
+ case URX_BACKSLASH_R:
+ case URX_BACKSLASH_V:
+ case URX_ONECHAR_I:
+ case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
+ case URX_DOTANY_ALL: // . matches one or two.
+ case URX_DOTANY:
+ case URX_DOTANY_UNIX:
+ currentLen++;
+ break;
+
+
+ case URX_JMPX:
+ loc++; // URX_JMPX has an extra operand, ignored here,
+ // otherwise processed identically to URX_JMP.
+ U_FALLTHROUGH;
+ case URX_JMP:
+ {
+ int32_t jmpDest = URX_VAL(op);
+ if (jmpDest < loc) {
+ // Loop of some kind. Can safely ignore, the worst that will happen
+ // is that we understate the true minimum length
+ currentLen = forwardedLength.elementAti(loc+1);
+ } else {
+ // Forward jump. Propagate the current min length to the target loc of the jump.
+ U_ASSERT(jmpDest <= end+1);
+ if (forwardedLength.elementAti(jmpDest) > currentLen) {
+ forwardedLength.setElementAt(currentLen, jmpDest);
+ }
+ }
+ }
+ break;
+
+ case URX_BACKTRACK:
+ {
+ // Back-tracks are kind of like a branch, except that the min length was
+ // propagated already, by the state save.
+ currentLen = forwardedLength.elementAti(loc+1);
+ }
+ break;
+
+
+ case URX_STATE_SAVE:
+ {
+ // State Save, for forward jumps, propagate the current minimum.
+ // of the state save.
+ int32_t jmpDest = URX_VAL(op);
+ if (jmpDest > loc) {
+ if (currentLen < forwardedLength.elementAti(jmpDest)) {
+ forwardedLength.setElementAt(currentLen, jmpDest);
+ }
+ }
+ }
+ break;
+
+
+ case URX_STRING:
+ {
+ loc++;
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ currentLen += URX_VAL(stringLenOp);
+ }
+ break;
+
+
+ case URX_STRING_I:
+ {
+ loc++;
+ // TODO: with full case folding, matching input text may be shorter than
+ // the string we have here. More smarts could put some bounds on it.
+ // Assume a min length of one for now. A min length of zero causes
+ // optimization failures for a pattern like "string"+
+ // currentLen += URX_VAL(stringLenOp);
+ currentLen += 1;
+ }
+ break;
+
+ case URX_CTR_INIT:
+ case URX_CTR_INIT_NG:
+ {
+ // Loop Init Ops.
+ // If the min loop count == 0
+ // move loc forwards to the end of the loop, skipping over the body.
+ // If the min count is > 0,
+ // continue normal processing of the body of the loop.
+ int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
+ loopEndLoc = URX_VAL(loopEndLoc);
+ int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
+ if (minLoopCount == 0) {
+ loc = loopEndLoc;
+ } else {
+ loc+=3; // Skips over operands of CTR_INIT
+ }
+ }
+ break;
+
+
+ case URX_CTR_LOOP:
+ case URX_CTR_LOOP_NG:
+ // Loop ops.
+ // The jump is conditional, backwards only.
+ break;
+
+ case URX_LOOP_SR_I:
+ case URX_LOOP_DOT_I:
+ case URX_LOOP_C:
+ // More loop ops. These state-save to themselves.
+ // don't change the minimum match - could match nothing at all.
+ break;
+
+
+ case URX_LA_START:
+ case URX_LB_START:
+ {
+ // Look-around. Scan forward until the matching look-ahead end,
+ // without processing the look-around block. This is overly pessimistic for look-ahead,
+ // it assumes that the look-ahead match might be zero-length.
+ // TODO: Positive lookahead could recursively do the block, then continue
+ // with the longer of the block or the value coming in. Ticket 6060
+ int32_t depth = (opType == URX_LA_START? 2: 1);;
+ for (;;) {
+ loc++;
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ if (URX_TYPE(op) == URX_LA_START) {
+ // The boilerplate for look-ahead includes two LA_END insturctions,
+ // Depth will be decremented by each one when it is seen.
+ depth += 2;
+ }
+ if (URX_TYPE(op) == URX_LB_START) {
+ depth++;
+ }
+ if (URX_TYPE(op) == URX_LA_END) {
+ depth--;
+ if (depth == 0) {
+ break;
+ }
+ }
+ if (URX_TYPE(op)==URX_LBN_END) {
+ depth--;
+ if (depth == 0) {
+ break;
+ }
+ }
+ if (URX_TYPE(op) == URX_STATE_SAVE) {
+ // Need this because neg lookahead blocks will FAIL to outside
+ // of the block.
+ int32_t jmpDest = URX_VAL(op);
+ if (jmpDest > loc) {
+ if (currentLen < forwardedLength.elementAti(jmpDest)) {
+ forwardedLength.setElementAt(currentLen, jmpDest);
+ }
+ }
+ }
+ U_ASSERT(loc <= end);
+ }
+ }
+ break;
+
+ case URX_LA_END:
+ case URX_LB_CONT:
+ case URX_LB_END:
+ case URX_LBN_CONT:
+ case URX_LBN_END:
+ // Only come here if the matching URX_LA_START or URX_LB_START was not in the
+ // range being sized, which happens when measuring size of look-behind blocks.
+ break;
+
+ default:
+ U_ASSERT(FALSE);
+ }
+
+ }
+
+ // We have finished walking through the ops. Check whether some forward jump
+ // propagated a shorter length to location end+1.
+ if (forwardedLength.elementAti(end+1) < currentLen) {
+ currentLen = forwardedLength.elementAti(end+1);
+ U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
+ }
+
+ return currentLen;
+}
+
+// Increment with overflow check.
+// val and delta will both be positive.
+
+static int32_t safeIncrement(int32_t val, int32_t delta) {
+ if (INT32_MAX - val > delta) {
+ return val + delta;
+ } else {
+ return INT32_MAX;
+ }
+}
+
+
+//------------------------------------------------------------------------------
+//
+// maxMatchLength Calculate the length of the longest string that could
+// match the specified pattern.
+// Length is in 16 bit code units, not code points.
+//
+// The calculated length may not be exact. The returned
+// value may be longer than the actual maximum; it must
+// never be shorter.
+//
+//------------------------------------------------------------------------------
+int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) {
+ if (U_FAILURE(*fStatus)) {
+ return 0;
+ }
+ U_ASSERT(start <= end);
+ U_ASSERT(end < fRXPat->fCompiledPat->size());
+
+
+ int32_t loc;
+ int32_t op;
+ int32_t opType;
+ int32_t currentLen = 0;
+ UVector32 forwardedLength(end+1, *fStatus);
+ forwardedLength.setSize(end+1);
+
+ for (loc=start; loc<=end; loc++) {
+ forwardedLength.setElementAt(0, loc);
+ }
+
+ for (loc = start; loc<=end; loc++) {
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ opType = URX_TYPE(op);
+
+ // The loop is advancing linearly through the pattern.
+ // If the op we are now at was the destination of a branch in the pattern,
+ // and that path has a longer maximum length than the current accumulated value,
+ // replace the current accumulated value.
+ if (forwardedLength.elementAti(loc) > currentLen) {
+ currentLen = forwardedLength.elementAti(loc);
+ }
+
+ switch (opType) {
+ // Ops that don't change the total length matched
+ case URX_RESERVED_OP:
+ case URX_END:
+ case URX_STRING_LEN:
+ case URX_NOP:
+ case URX_START_CAPTURE:
+ case URX_END_CAPTURE:
+ case URX_BACKSLASH_B:
+ case URX_BACKSLASH_BU:
+ case URX_BACKSLASH_G:
+ case URX_BACKSLASH_Z:
+ case URX_CARET:
+ case URX_DOLLAR:
+ case URX_DOLLAR_M:
+ case URX_DOLLAR_D:
+ case URX_DOLLAR_MD:
+ case URX_RELOC_OPRND:
+ case URX_STO_INP_LOC:
+ case URX_CARET_M:
+ case URX_CARET_M_UNIX:
+
+ case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
+ case URX_LD_SP:
+
+ case URX_LB_END:
+ case URX_LB_CONT:
+ case URX_LBN_CONT:
+ case URX_LBN_END:
+ break;
+
+
+ // Ops that increase that cause an unbounded increase in the length
+ // of a matched string, or that increase it a hard to characterize way.
+ // Call the max length unbounded, and stop further checking.
+ case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
+ case URX_BACKREF_I:
+ case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
+ currentLen = INT32_MAX;
+ break;
+
+
+ // Ops that match a max of one character (possibly two 16 bit code units.)
+ //
+ case URX_STATIC_SETREF:
+ case URX_STAT_SETREF_N:
+ case URX_SETREF:
+ case URX_BACKSLASH_D:
+ case URX_BACKSLASH_H:
+ case URX_BACKSLASH_R:
+ case URX_BACKSLASH_V:
+ case URX_ONECHAR_I:
+ case URX_DOTANY_ALL:
+ case URX_DOTANY:
+ case URX_DOTANY_UNIX:
+ currentLen = safeIncrement(currentLen, 2);
+ break;
+
+ // Single literal character. Increase current max length by one or two,
+ // depending on whether the char is in the supplementary range.
+ case URX_ONECHAR:
+ currentLen = safeIncrement(currentLen, 1);
+ if (URX_VAL(op) > 0x10000) {
+ currentLen = safeIncrement(currentLen, 1);
+ }
+ break;
+
+ // Jumps.
+ //
+ case URX_JMP:
+ case URX_JMPX:
+ case URX_JMP_SAV:
+ case URX_JMP_SAV_X:
+ {
+ int32_t jmpDest = URX_VAL(op);
+ if (jmpDest < loc) {
+ // Loop of some kind. Max match length is unbounded.
+ currentLen = INT32_MAX;
+ } else {
+ // Forward jump. Propagate the current min length to the target loc of the jump.
+ if (forwardedLength.elementAti(jmpDest) < currentLen) {
+ forwardedLength.setElementAt(currentLen, jmpDest);
+ }
+ currentLen = 0;
+ }
+ }
+ break;
+
+ case URX_BACKTRACK:
+ // back-tracks are kind of like a branch, except that the max length was
+ // propagated already, by the state save.
+ currentLen = forwardedLength.elementAti(loc+1);
+ break;
+
+
+ case URX_STATE_SAVE:
+ {
+ // State Save, for forward jumps, propagate the current minimum.
+ // of the state save.
+ // For backwards jumps, they create a loop, maximum
+ // match length is unbounded.
+ int32_t jmpDest = URX_VAL(op);
+ if (jmpDest > loc) {
+ if (currentLen > forwardedLength.elementAti(jmpDest)) {
+ forwardedLength.setElementAt(currentLen, jmpDest);
+ }
+ } else {
+ currentLen = INT32_MAX;
+ }
+ }
+ break;
+
+
+
+
+ case URX_STRING:
+ {
+ loc++;
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
+ break;
+ }
+
+ case URX_STRING_I:
+ // TODO: This code assumes that any user string that matches will be no longer
+ // than our compiled string, with case insensitive matching.
+ // Our compiled string has been case-folded already.
+ //
+ // Any matching user string will have no more code points than our
+ // compiled (folded) string. Folding may add code points, but
+ // not remove them.
+ //
+ // There is a potential problem if a supplemental code point
+ // case-folds to a BMP code point. In this case our compiled string
+ // could be shorter (in code units) than a matching user string.
+ //
+ // At this time (Unicode 6.1) there are no such characters, and this case
+ // is not being handled. A test, intltest regex/Bug9283, will fail if
+ // any problematic characters are added to Unicode.
+ //
+ // If this happens, we can make a set of the BMP chars that the
+ // troublesome supplementals fold to, scan our string, and bump the
+ // currentLen one extra for each that is found.
+ //
+ {
+ loc++;
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
+ }
+ break;
+
+ case URX_CTR_INIT:
+ case URX_CTR_INIT_NG:
+ // For Loops, recursively call this function on the pattern for the loop body,
+ // then multiply the result by the maximum loop count.
+ {
+ int32_t loopEndLoc = URX_VAL(fRXPat->fCompiledPat->elementAti(loc+1));
+ if (loopEndLoc == loc+4) {
+ // Loop has an empty body. No affect on max match length.
+ // Continue processing with code after the loop end.
+ loc = loopEndLoc;
+ break;
+ }
+
+ int32_t maxLoopCount = static_cast<int32_t>(fRXPat->fCompiledPat->elementAti(loc+3));
+ if (maxLoopCount == -1) {
+ // Unbounded Loop. No upper bound on match length.
+ currentLen = INT32_MAX;
+ break;
+ }
+
+ U_ASSERT(loopEndLoc >= loc+4);
+ int64_t blockLen = maxMatchLength(loc+4, loopEndLoc-1); // Recursive call.
+ int64_t updatedLen = (int64_t)currentLen + blockLen * maxLoopCount;
+ if (updatedLen >= INT32_MAX) {
+ currentLen = INT32_MAX;
+ break;
+ }
+ currentLen = (int32_t)updatedLen;
+ loc = loopEndLoc;
+ break;
+ }
+
+ case URX_CTR_LOOP:
+ case URX_CTR_LOOP_NG:
+ // These opcodes will be skipped over by code for URX_CRT_INIT.
+ // We shouldn't encounter them here.
+ U_ASSERT(FALSE);
+ break;
+
+ case URX_LOOP_SR_I:
+ case URX_LOOP_DOT_I:
+ case URX_LOOP_C:
+ // For anything to do with loops, make the match length unbounded.
+ currentLen = INT32_MAX;
+ break;
+
+
+
+ case URX_LA_START:
+ case URX_LA_END:
+ // Look-ahead. Just ignore, treat the look-ahead block as if
+ // it were normal pattern. Gives a too-long match length,
+ // but good enough for now.
+ break;
+
+ // End of look-ahead ops should always be consumed by the processing at
+ // the URX_LA_START op.
+ // U_ASSERT(FALSE);
+ // break;
+
+ case URX_LB_START:
+ {
+ // Look-behind. Scan forward until the matching look-around end,
+ // without processing the look-behind block.
+ int32_t depth = 0;
+ for (;;) {
+ loc++;
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) {
+ depth++;
+ }
+ if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
+ if (depth == 0) {
+ break;
+ }
+ depth--;
+ }
+ U_ASSERT(loc < end);
+ }
+ }
+ break;
+
+ default:
+ U_ASSERT(FALSE);
+ }
+
+
+ if (currentLen == INT32_MAX) {
+ // The maximum length is unbounded.
+ // Stop further processing of the pattern.
+ break;
+ }
+
+ }
+ return currentLen;
+
+}
+
+
+//------------------------------------------------------------------------------
+//
+// stripNOPs Remove any NOP operations from the compiled pattern code.
+// Extra NOPs are inserted for some constructs during the initial
+// code generation to provide locations that may be patched later.
+// Many end up unneeded, and are removed by this function.
+//
+// In order to minimize the number of passes through the pattern,
+// back-reference fixup is also performed here (adjusting
+// back-reference operands to point to the correct frame offsets).
+//
+//------------------------------------------------------------------------------
+void RegexCompile::stripNOPs() {
+
+ if (U_FAILURE(*fStatus)) {
+ return;
+ }
+
+ int32_t end = fRXPat->fCompiledPat->size();
+ UVector32 deltas(end, *fStatus);
+
+ // Make a first pass over the code, computing the amount that things
+ // will be offset at each location in the original code.
+ int32_t loc;
+ int32_t d = 0;
+ for (loc=0; loc<end; loc++) {
+ deltas.addElement(d, *fStatus);
+ int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ if (URX_TYPE(op) == URX_NOP) {
+ d++;
+ }
+ }
+
+ UnicodeString caseStringBuffer;
+
+ // Make a second pass over the code, removing the NOPs by moving following
+ // code up, and patching operands that refer to code locations that
+ // are being moved. The array of offsets from the first step is used
+ // to compute the new operand values.
+ int32_t src;
+ int32_t dst = 0;
+ for (src=0; src<end; src++) {
+ int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(src);
+ int32_t opType = URX_TYPE(op);
+ switch (opType) {
+ case URX_NOP:
+ break;
+
+ case URX_STATE_SAVE:
+ case URX_JMP:
+ case URX_CTR_LOOP:
+ case URX_CTR_LOOP_NG:
+ case URX_RELOC_OPRND:
+ case URX_JMPX:
+ case URX_JMP_SAV:
+ case URX_JMP_SAV_X:
+ // These are instructions with operands that refer to code locations.
+ {
+ int32_t operandAddress = URX_VAL(op);
+ U_ASSERT(operandAddress>=0 && operandAddress<deltas.size());
+ int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress);
+ op = buildOp(opType, fixedOperandAddress);
+ fRXPat->fCompiledPat->setElementAt(op, dst);
+ dst++;
+ break;
+ }
+
+ case URX_BACKREF:
+ case URX_BACKREF_I:
+ {
+ int32_t where = URX_VAL(op);
+ if (where > fRXPat->fGroupMap->size()) {
+ error(U_REGEX_INVALID_BACK_REF);
+ break;
+ }
+ where = fRXPat->fGroupMap->elementAti(where-1);
+ op = buildOp(opType, where);
+ fRXPat->fCompiledPat->setElementAt(op, dst);
+ dst++;
+
+ fRXPat->fNeedsAltInput = TRUE;
+ break;
+ }
+ case URX_RESERVED_OP:
+ case URX_RESERVED_OP_N:
+ case URX_BACKTRACK:
+ case URX_END:
+ case URX_ONECHAR:
+ case URX_STRING:
+ case URX_STRING_LEN:
+ case URX_START_CAPTURE:
+ case URX_END_CAPTURE:
+ case URX_STATIC_SETREF:
+ case URX_STAT_SETREF_N:
+ case URX_SETREF:
+ case URX_DOTANY:
+ case URX_FAIL:
+ case URX_BACKSLASH_B:
+ case URX_BACKSLASH_BU:
+ case URX_BACKSLASH_G:
+ case URX_BACKSLASH_X:
+ case URX_BACKSLASH_Z:
+ case URX_DOTANY_ALL:
+ case URX_BACKSLASH_D:
+ case URX_CARET:
+ case URX_DOLLAR:
+ case URX_CTR_INIT:
+ case URX_CTR_INIT_NG:
+ case URX_DOTANY_UNIX:
+ case URX_STO_SP:
+ case URX_LD_SP:
+ case URX_STO_INP_LOC:
+ case URX_LA_START:
+ case URX_LA_END:
+ case URX_ONECHAR_I:
+ case URX_STRING_I:
+ case URX_DOLLAR_M:
+ case URX_CARET_M:
+ case URX_CARET_M_UNIX:
+ case URX_LB_START:
+ case URX_LB_CONT:
+ case URX_LB_END:
+ case URX_LBN_CONT:
+ case URX_LBN_END:
+ case URX_LOOP_SR_I:
+ case URX_LOOP_DOT_I:
+ case URX_LOOP_C:
+ case URX_DOLLAR_D:
+ case URX_DOLLAR_MD:
+ case URX_BACKSLASH_H:
+ case URX_BACKSLASH_R:
+ case URX_BACKSLASH_V:
+ // These instructions are unaltered by the relocation.
+ fRXPat->fCompiledPat->setElementAt(op, dst);
+ dst++;
+ break;
+
+ default:
+ // Some op is unaccounted for.
+ U_ASSERT(FALSE);
+ error(U_REGEX_INTERNAL_ERROR);
+ }
+ }
+
+ fRXPat->fCompiledPat->setSize(dst);
+}
+
+
+
+
+//------------------------------------------------------------------------------
+//
+// Error Report a rule parse error.
+// Only report it if no previous error has been recorded.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::error(UErrorCode e) {
+ if (U_SUCCESS(*fStatus)) {
+ *fStatus = e;
+ // Hmm. fParseErr (UParseError) line & offset fields are int32_t in public
+ // API (see common/unicode/parseerr.h), while fLineNum and fCharNum are
+ // int64_t. If the values of the latter are out of range for the former,
+ // set them to the appropriate "field not supported" values.
+ if (fLineNum > 0x7FFFFFFF) {
+ fParseErr->line = 0;
+ fParseErr->offset = -1;
+ } else if (fCharNum > 0x7FFFFFFF) {
+ fParseErr->line = (int32_t)fLineNum;
+ fParseErr->offset = -1;
+ } else {
+ fParseErr->line = (int32_t)fLineNum;
+ fParseErr->offset = (int32_t)fCharNum;
+ }
+
+ UErrorCode status = U_ZERO_ERROR; // throwaway status for extracting context
+
+ // Fill in the context.
+ // Note: extractBetween() pins supplied indicies to the string bounds.
+ uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext));
+ uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext));
+ utext_extract(fRXPat->fPattern, fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, fParseErr->preContext, U_PARSE_CONTEXT_LEN, &status);
+ utext_extract(fRXPat->fPattern, fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, fParseErr->postContext, U_PARSE_CONTEXT_LEN, &status);
+ }
+}
+
+
+//
+// Assorted Unicode character constants.
+// Numeric because there is no portable way to enter them as literals.
+// (Think EBCDIC).
+//
+static const UChar chCR = 0x0d; // New lines, for terminating comments.
+static const UChar chLF = 0x0a; // Line Feed
+static const UChar chPound = 0x23; // '#', introduces a comment.
+static const UChar chDigit0 = 0x30; // '0'
+static const UChar chDigit7 = 0x37; // '9'
+static const UChar chColon = 0x3A; // ':'
+static const UChar chE = 0x45; // 'E'
+static const UChar chQ = 0x51; // 'Q'
+//static const UChar chN = 0x4E; // 'N'
+static const UChar chP = 0x50; // 'P'
+static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
+//static const UChar chLBracket = 0x5b; // '['
+static const UChar chRBracket = 0x5d; // ']'
+static const UChar chUp = 0x5e; // '^'
+static const UChar chLowerP = 0x70;
+static const UChar chLBrace = 0x7b; // '{'
+static const UChar chRBrace = 0x7d; // '}'
+static const UChar chNEL = 0x85; // NEL newline variant
+static const UChar chLS = 0x2028; // Unicode Line Separator
+
+
+//------------------------------------------------------------------------------
+//
+// nextCharLL Low Level Next Char from the regex pattern.
+// Get a char from the string, keep track of input position
+// for error reporting.
+//
+//------------------------------------------------------------------------------
+UChar32 RegexCompile::nextCharLL() {
+ UChar32 ch;
+
+ if (fPeekChar != -1) {
+ ch = fPeekChar;
+ fPeekChar = -1;
+ return ch;
+ }
+
+ // assume we're already in the right place
+ ch = UTEXT_NEXT32(fRXPat->fPattern);
+ if (ch == U_SENTINEL) {
+ return ch;
+ }
+
+ if (ch == chCR ||
+ ch == chNEL ||
+ ch == chLS ||
+ (ch == chLF && fLastChar != chCR)) {
+ // Character is starting a new line. Bump up the line number, and
+ // reset the column to 0.
+ fLineNum++;
+ fCharNum=0;
+ }
+ else {
+ // Character is not starting a new line. Except in the case of a
+ // LF following a CR, increment the column position.
+ if (ch != chLF) {
+ fCharNum++;
+ }
+ }
+ fLastChar = ch;
+ return ch;
+}
+
+//------------------------------------------------------------------------------
+//
+// peekCharLL Low Level Character Scanning, sneak a peek at the next
+// character without actually getting it.
+//
+//------------------------------------------------------------------------------
+UChar32 RegexCompile::peekCharLL() {
+ if (fPeekChar == -1) {
+ fPeekChar = nextCharLL();
+ }
+ return fPeekChar;
+}
+
+
+//------------------------------------------------------------------------------
+//
+// nextChar for pattern scanning. At this level, we handle stripping
+// out comments and processing some backslash character escapes.
+// The rest of the pattern grammar is handled at the next level up.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::nextChar(RegexPatternChar &c) {
+
+ fScanIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
+ c.fChar = nextCharLL();
+ c.fQuoted = FALSE;
+
+ if (fQuoteMode) {
+ c.fQuoted = TRUE;
+ if ((c.fChar==chBackSlash && peekCharLL()==chE && ((fModeFlags & UREGEX_LITERAL) == 0)) ||
+ c.fChar == (UChar32)-1) {
+ fQuoteMode = FALSE; // Exit quote mode,
+ nextCharLL(); // discard the E
+ nextChar(c); // recurse to get the real next char
+ }
+ }
+ else if (fInBackslashQuote) {
+ // The current character immediately follows a '\'
+ // Don't check for any further escapes, just return it as-is.
+ // Don't set c.fQuoted, because that would prevent the state machine from
+ // dispatching on the character.
+ fInBackslashQuote = FALSE;
+ }
+ else
+ {
+ // We are not in a \Q quoted region \E of the source.
+ //
+ if (fModeFlags & UREGEX_COMMENTS) {
+ //
+ // We are in free-spacing and comments mode.
+ // Scan through any white space and comments, until we
+ // reach a significant character or the end of inut.
+ for (;;) {
+ if (c.fChar == (UChar32)-1) {
+ break; // End of Input
+ }
+ if (c.fChar == chPound && fEOLComments == TRUE) {
+ // Start of a comment. Consume the rest of it, until EOF or a new line
+ for (;;) {
+ c.fChar = nextCharLL();
+ if (c.fChar == (UChar32)-1 || // EOF
+ c.fChar == chCR ||
+ c.fChar == chLF ||
+ c.fChar == chNEL ||
+ c.fChar == chLS) {
+ break;
+ }
+ }
+ }
+ // TODO: check what Java & Perl do with non-ASCII white spaces. Ticket 6061.
+ if (PatternProps::isWhiteSpace(c.fChar) == FALSE) {
+ break;
+ }
+ c.fChar = nextCharLL();
+ }
+ }
+
+ //
+ // check for backslash escaped characters.
+ //
+ if (c.fChar == chBackSlash) {
+ int64_t pos = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
+ if (RegexStaticSets::gStaticSets->fUnescapeCharSet.contains(peekCharLL())) {
+ //
+ // A '\' sequence that is handled by ICU's standard unescapeAt function.
+ // Includes \uxxxx, \n, \r, many others.
+ // Return the single equivalent character.
+ //
+ nextCharLL(); // get & discard the peeked char.
+ c.fQuoted = TRUE;
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fRXPat->fPattern, fPatternLength)) {
+ int32_t endIndex = (int32_t)pos;
+ c.fChar = u_unescapeAt(uregex_ucstr_unescape_charAt, &endIndex, (int32_t)fPatternLength, (void *)fRXPat->fPattern->chunkContents);
+
+ if (endIndex == pos) {
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ }
+ fCharNum += endIndex - pos;
+ UTEXT_SETNATIVEINDEX(fRXPat->fPattern, endIndex);
+ } else {
+ int32_t offset = 0;
+ struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(fRXPat->fPattern);
+
+ UTEXT_SETNATIVEINDEX(fRXPat->fPattern, pos);
+ c.fChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
+
+ if (offset == 0) {
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ } else if (context.lastOffset == offset) {
+ UTEXT_PREVIOUS32(fRXPat->fPattern);
+ } else if (context.lastOffset != offset-1) {
+ utext_moveIndex32(fRXPat->fPattern, offset - context.lastOffset - 1);
+ }
+ fCharNum += offset;
+ }
+ }
+ else if (peekCharLL() == chDigit0) {
+ // Octal Escape, using Java Regexp Conventions
+ // which are \0 followed by 1-3 octal digits.
+ // Different from ICU Unescape handling of Octal, which does not
+ // require the leading 0.
+ // Java also has the convention of only consuming 2 octal digits if
+ // the three digit number would be > 0xff
+ //
+ c.fChar = 0;
+ nextCharLL(); // Consume the initial 0.
+ int index;
+ for (index=0; index<3; index++) {
+ int32_t ch = peekCharLL();
+ if (ch<chDigit0 || ch>chDigit7) {
+ if (index==0) {
+ // \0 is not followed by any octal digits.
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ }
+ break;
+ }
+ c.fChar <<= 3;
+ c.fChar += ch&7;
+ if (c.fChar <= 255) {
+ nextCharLL();
+ } else {
+ // The last digit made the number too big. Forget we saw it.
+ c.fChar >>= 3;
+ }
+ }
+ c.fQuoted = TRUE;
+ }
+ else if (peekCharLL() == chQ) {
+ // "\Q" enter quote mode, which will continue until "\E"
+ fQuoteMode = TRUE;
+ nextCharLL(); // discard the 'Q'.
+ nextChar(c); // recurse to get the real next char.
+ }
+ else
+ {
+ // We are in a '\' escape that will be handled by the state table scanner.
+ // Just return the backslash, but remember that the following char is to
+ // be taken literally.
+ fInBackslashQuote = TRUE;
+ }
+ }
+ }
+
+ // re-enable # to end-of-line comments, in case they were disabled.
+ // They are disabled by the parser upon seeing '(?', but this lasts for
+ // the fetching of the next character only.
+ fEOLComments = TRUE;
+
+ // putc(c.fChar, stdout);
+}
+
+
+
+//------------------------------------------------------------------------------
+//
+// scanNamedChar
+// Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern.
+//
+// The scan position will be at the 'N'. On return
+// the scan position should be just after the '}'
+//
+// Return the UChar32
+//
+//------------------------------------------------------------------------------
+UChar32 RegexCompile::scanNamedChar() {
+ if (U_FAILURE(*fStatus)) {
+ return 0;
+ }
+
+ nextChar(fC);
+ if (fC.fChar != chLBrace) {
+ error(U_REGEX_PROPERTY_SYNTAX);
+ return 0;
+ }
+
+ UnicodeString charName;
+ for (;;) {
+ nextChar(fC);
+ if (fC.fChar == chRBrace) {
+ break;
+ }
+ if (fC.fChar == -1) {
+ error(U_REGEX_PROPERTY_SYNTAX);
+ return 0;
+ }
+ charName.append(fC.fChar);
+ }
+
+ char name[100];
+ if (!uprv_isInvariantUString(charName.getBuffer(), charName.length()) ||
+ (uint32_t)charName.length()>=sizeof(name)) {
+ // All Unicode character names have only invariant characters.
+ // The API to get a character, given a name, accepts only char *, forcing us to convert,
+ // which requires this error check
+ error(U_REGEX_PROPERTY_SYNTAX);
+ return 0;
+ }
+ charName.extract(0, charName.length(), name, sizeof(name), US_INV);
+
+ UChar32 theChar = u_charFromName(U_UNICODE_CHAR_NAME, name, fStatus);
+ if (U_FAILURE(*fStatus)) {
+ error(U_REGEX_PROPERTY_SYNTAX);
+ }
+
+ nextChar(fC); // Continue overall regex pattern processing with char after the '}'
+ return theChar;
+}
+
+//------------------------------------------------------------------------------
+//
+// scanProp Construct a UnicodeSet from the text at the current scan
+// position, which will be of the form \p{whaterver}
+//
+// The scan position will be at the 'p' or 'P'. On return
+// the scan position should be just after the '}'
+//
+// Return a UnicodeSet, constructed from the \P pattern,
+// or NULL if the pattern is invalid.
+//
+//------------------------------------------------------------------------------
+UnicodeSet *RegexCompile::scanProp() {
+ UnicodeSet *uset = NULL;
+
+ if (U_FAILURE(*fStatus)) {
+ return NULL;
+ }
+ (void)chLowerP; // Suppress compiler unused variable warning.
+ U_ASSERT(fC.fChar == chLowerP || fC.fChar == chP);
+ UBool negated = (fC.fChar == chP);
+
+ UnicodeString propertyName;
+ nextChar(fC);
+ if (fC.fChar != chLBrace) {
+ error(U_REGEX_PROPERTY_SYNTAX);
+ return NULL;
+ }
+ for (;;) {
+ nextChar(fC);
+ if (fC.fChar == chRBrace) {
+ break;
+ }
+ if (fC.fChar == -1) {
+ // Hit the end of the input string without finding the closing '}'
+ error(U_REGEX_PROPERTY_SYNTAX);
+ return NULL;
+ }
+ propertyName.append(fC.fChar);
+ }
+ uset = createSetForProperty(propertyName, negated);
+ nextChar(fC); // Move input scan to position following the closing '}'
+ return uset;
+}
+
+//------------------------------------------------------------------------------
+//
+// scanPosixProp Construct a UnicodeSet from the text at the current scan
+// position, which is expected be of the form [:property expression:]
+//
+// The scan position will be at the opening ':'. On return
+// the scan position must be on the closing ']'
+//
+// Return a UnicodeSet constructed from the pattern,
+// or NULL if this is not a valid POSIX-style set expression.
+// If not a property expression, restore the initial scan position
+// (to the opening ':')
+//
+// Note: the opening '[:' is not sufficient to guarantee that
+// this is a [:property:] expression.
+// [:'+=,] is a perfectly good ordinary set expression that
+// happens to include ':' as one of its characters.
+//
+//------------------------------------------------------------------------------
+UnicodeSet *RegexCompile::scanPosixProp() {
+ UnicodeSet *uset = NULL;
+
+ if (U_FAILURE(*fStatus)) {
+ return NULL;
+ }
+
+ U_ASSERT(fC.fChar == chColon);
+
+ // Save the scanner state.
+ // TODO: move this into the scanner, with the state encapsulated in some way. Ticket 6062
+ int64_t savedScanIndex = fScanIndex;
+ int64_t savedNextIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
+ UBool savedQuoteMode = fQuoteMode;
+ UBool savedInBackslashQuote = fInBackslashQuote;
+ UBool savedEOLComments = fEOLComments;
+ int64_t savedLineNum = fLineNum;
+ int64_t savedCharNum = fCharNum;
+ UChar32 savedLastChar = fLastChar;
+ UChar32 savedPeekChar = fPeekChar;
+ RegexPatternChar savedfC = fC;
+
+ // Scan for a closing ]. A little tricky because there are some perverse
+ // edge cases possible. "[:abc\Qdef:] \E]" is a valid non-property expression,
+ // ending on the second closing ].
+
+ UnicodeString propName;
+ UBool negated = FALSE;
+
+ // Check for and consume the '^' in a negated POSIX property, e.g. [:^Letter:]
+ nextChar(fC);
+ if (fC.fChar == chUp) {
+ negated = TRUE;
+ nextChar(fC);
+ }
+
+ // Scan for the closing ":]", collecting the property name along the way.
+ UBool sawPropSetTerminator = FALSE;
+ for (;;) {
+ propName.append(fC.fChar);
+ nextChar(fC);
+ if (fC.fQuoted || fC.fChar == -1) {
+ // Escaped characters or end of input - either says this isn't a [:Property:]
+ break;
+ }
+ if (fC.fChar == chColon) {
+ nextChar(fC);
+ if (fC.fChar == chRBracket) {
+ sawPropSetTerminator = TRUE;
+ }
+ break;
+ }
+ }
+
+ if (sawPropSetTerminator) {
+ uset = createSetForProperty(propName, negated);
+ }
+ else
+ {
+ // No closing ":]".
+ // Restore the original scan position.
+ // The main scanner will retry the input as a normal set expression,
+ // not a [:Property:] expression.
+ fScanIndex = savedScanIndex;
+ fQuoteMode = savedQuoteMode;
+ fInBackslashQuote = savedInBackslashQuote;
+ fEOLComments = savedEOLComments;
+ fLineNum = savedLineNum;
+ fCharNum = savedCharNum;
+ fLastChar = savedLastChar;
+ fPeekChar = savedPeekChar;
+ fC = savedfC;
+ UTEXT_SETNATIVEINDEX(fRXPat->fPattern, savedNextIndex);
+ }
+ return uset;
+}
+
+static inline void addIdentifierIgnorable(UnicodeSet *set, UErrorCode& ec) {
+ set->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f);
+ addCategory(set, U_GC_CF_MASK, ec);
+}
+
+//
+// Create a Unicode Set from a Unicode Property expression.
+// This is common code underlying both \p{...} ane [:...:] expressions.
+// Includes trying the Java "properties" that aren't supported as
+// normal ICU UnicodeSet properties
+//
+static const UChar posSetPrefix[] = {0x5b, 0x5c, 0x70, 0x7b, 0}; // "[\p{"
+static const UChar negSetPrefix[] = {0x5b, 0x5c, 0x50, 0x7b, 0}; // "[\P{"
+UnicodeSet *RegexCompile::createSetForProperty(const UnicodeString &propName, UBool negated) {
+ UnicodeString setExpr;
+ UnicodeSet *set;
+ uint32_t usetFlags = 0;
+
+ if (U_FAILURE(*fStatus)) {
+ return NULL;
+ }
+
+ //
+ // First try the property as we received it
+ //
+ if (negated) {
+ setExpr.append(negSetPrefix, -1);
+ } else {
+ setExpr.append(posSetPrefix, -1);
+ }
+ setExpr.append(propName);
+ setExpr.append(chRBrace);
+ setExpr.append(chRBracket);
+ if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
+ usetFlags |= USET_CASE_INSENSITIVE;
+ }
+ set = new UnicodeSet(setExpr, usetFlags, NULL, *fStatus);
+ if (U_SUCCESS(*fStatus)) {
+ return set;
+ }
+ delete set;
+ set = NULL;
+
+ //
+ // The property as it was didn't work.
+
+ // Do [:word:]. It is not recognized as a property by UnicodeSet. "word" not standard POSIX
+ // or standard Java, but many other regular expression packages do recognize it.
+
+ if (propName.caseCompare(UNICODE_STRING_SIMPLE("word"), 0) == 0) {
+ *fStatus = U_ZERO_ERROR;
+ set = new UnicodeSet(*(fRXPat->fStaticSets[URX_ISWORD_SET]));
+ if (set == NULL) {
+ *fStatus = U_MEMORY_ALLOCATION_ERROR;
+ return set;
+ }
+ if (negated) {
+ set->complement();
+ }
+ return set;
+ }
+
+
+ // Do Java fixes -
+ // InGreek -> InGreek or Coptic, that being the official Unicode name for that block.
+ // InCombiningMarksforSymbols -> InCombiningDiacriticalMarksforSymbols.
+ //
+ // Note on Spaces: either "InCombiningMarksForSymbols" or "InCombining Marks for Symbols"
+ // is accepted by Java. The property part of the name is compared
+ // case-insenstively. The spaces must be exactly as shown, either
+ // all there, or all omitted, with exactly one at each position
+ // if they are present. From checking against JDK 1.6
+ //
+ // This code should be removed when ICU properties support the Java compatibility names
+ // (ICU 4.0?)
+ //
+ UnicodeString mPropName = propName;
+ if (mPropName.caseCompare(UNICODE_STRING_SIMPLE("InGreek"), 0) == 0) {
+ mPropName = UNICODE_STRING_SIMPLE("InGreek and Coptic");
+ }
+ if (mPropName.caseCompare(UNICODE_STRING_SIMPLE("InCombining Marks for Symbols"), 0) == 0 ||
+ mPropName.caseCompare(UNICODE_STRING_SIMPLE("InCombiningMarksforSymbols"), 0) == 0) {
+ mPropName = UNICODE_STRING_SIMPLE("InCombining Diacritical Marks for Symbols");
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("all")) == 0) {
+ mPropName = UNICODE_STRING_SIMPLE("javaValidCodePoint");
+ }
+
+ // See if the property looks like a Java "InBlockName", which
+ // we will recast as "Block=BlockName"
+ //
+ static const UChar IN[] = {0x49, 0x6E, 0}; // "In"
+ static const UChar BLOCK[] = {0x42, 0x6C, 0x6f, 0x63, 0x6b, 0x3d, 00}; // "Block="
+ if (mPropName.startsWith(IN, 2) && propName.length()>=3) {
+ setExpr.truncate(4); // Leaves "[\p{", or "[\P{"
+ setExpr.append(BLOCK, -1);
+ setExpr.append(UnicodeString(mPropName, 2)); // Property with the leading "In" removed.
+ setExpr.append(chRBrace);
+ setExpr.append(chRBracket);
+ *fStatus = U_ZERO_ERROR;
+ set = new UnicodeSet(setExpr, usetFlags, NULL, *fStatus);
+ if (U_SUCCESS(*fStatus)) {
+ return set;
+ }
+ delete set;
+ set = NULL;
+ }
+
+ if (propName.startsWith(UNICODE_STRING_SIMPLE("java")) ||
+ propName.compare(UNICODE_STRING_SIMPLE("all")) == 0)
+ {
+ UErrorCode localStatus = U_ZERO_ERROR;
+ //setExpr.remove();
+ set = new UnicodeSet();
+ //
+ // Try the various Java specific properties.
+ // These all begin with "java"
+ //
+ if (mPropName.compare(UNICODE_STRING_SIMPLE("javaDefined")) == 0) {
+ addCategory(set, U_GC_CN_MASK, localStatus);
+ set->complement();
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaDigit")) == 0) {
+ addCategory(set, U_GC_ND_MASK, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaIdentifierIgnorable")) == 0) {
+ addIdentifierIgnorable(set, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaISOControl")) == 0) {
+ set->add(0, 0x1F).add(0x7F, 0x9F);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierPart")) == 0) {
+ addCategory(set, U_GC_L_MASK, localStatus);
+ addCategory(set, U_GC_SC_MASK, localStatus);
+ addCategory(set, U_GC_PC_MASK, localStatus);
+ addCategory(set, U_GC_ND_MASK, localStatus);
+ addCategory(set, U_GC_NL_MASK, localStatus);
+ addCategory(set, U_GC_MC_MASK, localStatus);
+ addCategory(set, U_GC_MN_MASK, localStatus);
+ addIdentifierIgnorable(set, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierStart")) == 0) {
+ addCategory(set, U_GC_L_MASK, localStatus);
+ addCategory(set, U_GC_NL_MASK, localStatus);
+ addCategory(set, U_GC_SC_MASK, localStatus);
+ addCategory(set, U_GC_PC_MASK, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLetter")) == 0) {
+ addCategory(set, U_GC_L_MASK, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLetterOrDigit")) == 0) {
+ addCategory(set, U_GC_L_MASK, localStatus);
+ addCategory(set, U_GC_ND_MASK, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLowerCase")) == 0) {
+ addCategory(set, U_GC_LL_MASK, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaMirrored")) == 0) {
+ set->applyIntPropertyValue(UCHAR_BIDI_MIRRORED, 1, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaSpaceChar")) == 0) {
+ addCategory(set, U_GC_Z_MASK, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaSupplementaryCodePoint")) == 0) {
+ set->add(0x10000, UnicodeSet::MAX_VALUE);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaTitleCase")) == 0) {
+ addCategory(set, U_GC_LT_MASK, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierStart")) == 0) {
+ addCategory(set, U_GC_L_MASK, localStatus);
+ addCategory(set, U_GC_NL_MASK, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierPart")) == 0) {
+ addCategory(set, U_GC_L_MASK, localStatus);
+ addCategory(set, U_GC_PC_MASK, localStatus);
+ addCategory(set, U_GC_ND_MASK, localStatus);
+ addCategory(set, U_GC_NL_MASK, localStatus);
+ addCategory(set, U_GC_MC_MASK, localStatus);
+ addCategory(set, U_GC_MN_MASK, localStatus);
+ addIdentifierIgnorable(set, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUpperCase")) == 0) {
+ addCategory(set, U_GC_LU_MASK, localStatus);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaValidCodePoint")) == 0) {
+ set->add(0, UnicodeSet::MAX_VALUE);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaWhitespace")) == 0) {
+ addCategory(set, U_GC_Z_MASK, localStatus);
+ set->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f));
+ set->add(9, 0x0d).add(0x1c, 0x1f);
+ }
+ else if (mPropName.compare(UNICODE_STRING_SIMPLE("all")) == 0) {
+ set->add(0, UnicodeSet::MAX_VALUE);
+ }
+
+ if (U_SUCCESS(localStatus) && !set->isEmpty()) {
+ *fStatus = U_ZERO_ERROR;
+ if (usetFlags & USET_CASE_INSENSITIVE) {
+ set->closeOver(USET_CASE_INSENSITIVE);
+ }
+ if (negated) {
+ set->complement();
+ }
+ return set;
+ }
+ delete set;
+ set = NULL;
+ }
+ error(*fStatus);
+ return NULL;
+}
+
+
+
+//
+// SetEval Part of the evaluation of [set expressions].
+// Perform any pending (stacked) operations with precedence
+// equal or greater to that of the next operator encountered
+// in the expression.
+//
+void RegexCompile::setEval(int32_t nextOp) {
+ UnicodeSet *rightOperand = NULL;
+ UnicodeSet *leftOperand = NULL;
+ for (;;) {
+ U_ASSERT(fSetOpStack.empty()==FALSE);
+ int32_t pendingSetOperation = fSetOpStack.peeki();
+ if ((pendingSetOperation&0xffff0000) < (nextOp&0xffff0000)) {
+ break;
+ }
+ fSetOpStack.popi();
+ U_ASSERT(fSetStack.empty() == FALSE);
+ rightOperand = (UnicodeSet *)fSetStack.peek();
+ switch (pendingSetOperation) {
+ case setNegation:
+ rightOperand->complement();
+ break;
+ case setCaseClose:
+ // TODO: need a simple close function. Ticket 6065
+ rightOperand->closeOver(USET_CASE_INSENSITIVE);
+ rightOperand->removeAllStrings();
+ break;
+ case setDifference1:
+ case setDifference2:
+ fSetStack.pop();
+ leftOperand = (UnicodeSet *)fSetStack.peek();
+ leftOperand->removeAll(*rightOperand);
+ delete rightOperand;
+ break;
+ case setIntersection1:
+ case setIntersection2:
+ fSetStack.pop();
+ leftOperand = (UnicodeSet *)fSetStack.peek();
+ leftOperand->retainAll(*rightOperand);
+ delete rightOperand;
+ break;
+ case setUnion:
+ fSetStack.pop();
+ leftOperand = (UnicodeSet *)fSetStack.peek();
+ leftOperand->addAll(*rightOperand);
+ delete rightOperand;
+ break;
+ default:
+ U_ASSERT(FALSE);
+ break;
+ }
+ }
+ }
+
+void RegexCompile::setPushOp(int32_t op) {
+ setEval(op);
+ fSetOpStack.push(op, *fStatus);
+ fSetStack.push(new UnicodeSet(), *fStatus);
+}
+
+U_NAMESPACE_END
+#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
+