diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /image/test/gtest | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'image/test/gtest')
44 files changed, 8192 insertions, 0 deletions
diff --git a/image/test/gtest/Common.cpp b/image/test/gtest/Common.cpp new file mode 100644 index 000000000..5a24bbb14 --- /dev/null +++ b/image/test/gtest/Common.cpp @@ -0,0 +1,673 @@ +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "Common.h" + +#include <cstdlib> + +#include "nsDirectoryServiceDefs.h" +#include "nsIDirectoryService.h" +#include "nsIFile.h" +#include "nsIInputStream.h" +#include "nsIProperties.h" +#include "nsNetUtil.h" +#include "mozilla/RefPtr.h" +#include "nsStreamUtils.h" +#include "nsString.h" + +namespace mozilla { +namespace image { + +using namespace gfx; + +using std::abs; +using std::vector; + +/////////////////////////////////////////////////////////////////////////////// +// General Helpers +/////////////////////////////////////////////////////////////////////////////// + +// These macros work like gtest's ASSERT_* macros, except that they can be used +// in functions that return values. +#define ASSERT_TRUE_OR_RETURN(e, rv) \ + EXPECT_TRUE(e); \ + if (!(e)) { \ + return rv; \ + } + +#define ASSERT_EQ_OR_RETURN(a, b, rv) \ + EXPECT_EQ(a, b); \ + if ((a) != (b)) { \ + return rv; \ + } + +#define ASSERT_GE_OR_RETURN(a, b, rv) \ + EXPECT_GE(a, b); \ + if (!((a) >= (b))) { \ + return rv; \ + } + +#define ASSERT_LE_OR_RETURN(a, b, rv) \ + EXPECT_LE(a, b); \ + if (!((a) <= (b))) { \ + return rv; \ + } + +#define ASSERT_LT_OR_RETURN(a, b, rv) \ + EXPECT_LT(a, b); \ + if (!((a) < (b))) { \ + return rv; \ + } + +already_AddRefed<nsIInputStream> +LoadFile(const char* aRelativePath) +{ + nsresult rv; + + nsCOMPtr<nsIProperties> dirService = + do_GetService(NS_DIRECTORY_SERVICE_CONTRACTID); + ASSERT_TRUE_OR_RETURN(dirService != nullptr, nullptr); + + // Retrieve the current working directory. + nsCOMPtr<nsIFile> file; + rv = dirService->Get(NS_OS_CURRENT_WORKING_DIR, + NS_GET_IID(nsIFile), getter_AddRefs(file)); + ASSERT_TRUE_OR_RETURN(NS_SUCCEEDED(rv), nullptr); + + // Construct the final path by appending the working path to the current + // working directory. + file->AppendNative(nsDependentCString(aRelativePath)); + + // Construct an input stream for the requested file. + nsCOMPtr<nsIInputStream> inputStream; + rv = NS_NewLocalFileInputStream(getter_AddRefs(inputStream), file); + ASSERT_TRUE_OR_RETURN(NS_SUCCEEDED(rv), nullptr); + + // Ensure the resulting input stream is buffered. + if (!NS_InputStreamIsBuffered(inputStream)) { + nsCOMPtr<nsIInputStream> bufStream; + rv = NS_NewBufferedInputStream(getter_AddRefs(bufStream), + inputStream, 1024); + ASSERT_TRUE_OR_RETURN(NS_SUCCEEDED(rv), nullptr); + inputStream = bufStream; + } + + return inputStream.forget(); +} + +bool +IsSolidColor(SourceSurface* aSurface, + BGRAColor aColor, + uint8_t aFuzz /* = 0 */) +{ + IntSize size = aSurface->GetSize(); + return RectIsSolidColor(aSurface, IntRect(0, 0, size.width, size.height), + aColor, aFuzz); +} + +bool +IsSolidPalettedColor(Decoder* aDecoder, uint8_t aColor) +{ + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + return PalettedRectIsSolidColor(aDecoder, currentFrame->GetRect(), aColor); +} + +bool +RowsAreSolidColor(SourceSurface* aSurface, + int32_t aStartRow, + int32_t aRowCount, + BGRAColor aColor, + uint8_t aFuzz /* = 0 */) +{ + IntSize size = aSurface->GetSize(); + return RectIsSolidColor(aSurface, IntRect(0, aStartRow, size.width, aRowCount), + aColor, aFuzz); +} + +bool +PalettedRowsAreSolidColor(Decoder* aDecoder, + int32_t aStartRow, + int32_t aRowCount, + uint8_t aColor) +{ + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + IntRect frameRect = currentFrame->GetRect(); + IntRect solidColorRect(frameRect.x, aStartRow, frameRect.width, aRowCount); + return PalettedRectIsSolidColor(aDecoder, solidColorRect, aColor); +} + +bool +RectIsSolidColor(SourceSurface* aSurface, + const IntRect& aRect, + BGRAColor aColor, + uint8_t aFuzz /* = 0 */) +{ + IntSize surfaceSize = aSurface->GetSize(); + IntRect rect = + aRect.Intersect(IntRect(0, 0, surfaceSize.width, surfaceSize.height)); + + RefPtr<DataSourceSurface> dataSurface = aSurface->GetDataSurface(); + ASSERT_TRUE_OR_RETURN(dataSurface != nullptr, false); + + ASSERT_EQ_OR_RETURN(dataSurface->Stride(), surfaceSize.width * 4, false); + + DataSourceSurface::ScopedMap mapping(dataSurface, + DataSourceSurface::MapType::READ); + ASSERT_TRUE_OR_RETURN(mapping.IsMapped(), false); + + uint8_t* data = dataSurface->GetData(); + ASSERT_TRUE_OR_RETURN(data != nullptr, false); + + int32_t rowLength = dataSurface->Stride(); + for (int32_t row = rect.y; row < rect.YMost(); ++row) { + for (int32_t col = rect.x; col < rect.XMost(); ++col) { + int32_t i = row * rowLength + col * 4; + if (aFuzz != 0) { + ASSERT_LE_OR_RETURN(abs(aColor.mBlue - data[i + 0]), aFuzz, false); + ASSERT_LE_OR_RETURN(abs(aColor.mGreen - data[i + 1]), aFuzz, false); + ASSERT_LE_OR_RETURN(abs(aColor.mRed - data[i + 2]), aFuzz, false); + ASSERT_LE_OR_RETURN(abs(aColor.mAlpha - data[i + 3]), aFuzz, false); + } else { + ASSERT_EQ_OR_RETURN(aColor.mBlue, data[i + 0], false); + ASSERT_EQ_OR_RETURN(aColor.mGreen, data[i + 1], false); + ASSERT_EQ_OR_RETURN(aColor.mRed, data[i + 2], false); + ASSERT_EQ_OR_RETURN(aColor.mAlpha, data[i + 3], false); + } + } + } + + return true; +} + +bool +PalettedRectIsSolidColor(Decoder* aDecoder, const IntRect& aRect, uint8_t aColor) +{ + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + uint8_t* imageData; + uint32_t imageLength; + currentFrame->GetImageData(&imageData, &imageLength); + ASSERT_TRUE_OR_RETURN(imageData, false); + + // Clamp to the frame rect. If any pixels outside the frame rect are included, + // we immediately fail, because such pixels don't have any "color" in the + // sense this function measures - they're transparent, and that doesn't + // necessarily correspond to any color palette index at all. + IntRect frameRect = currentFrame->GetRect(); + ASSERT_EQ_OR_RETURN(imageLength, uint32_t(frameRect.Area()), false); + IntRect rect = aRect.Intersect(frameRect); + ASSERT_EQ_OR_RETURN(rect.Area(), aRect.Area(), false); + + // Translate |rect| by |frameRect.TopLeft()| to reflect the fact that the + // frame rect's offset doesn't actually mean anything in terms of the + // in-memory representation of the surface. The image data starts at the upper + // left corner of the frame rect, in other words. + rect -= frameRect.TopLeft(); + + // Walk through the image data and make sure that the entire rect has the + // palette index |aColor|. + int32_t rowLength = frameRect.width; + for (int32_t row = rect.y; row < rect.YMost(); ++row) { + for (int32_t col = rect.x; col < rect.XMost(); ++col) { + int32_t i = row * rowLength + col; + ASSERT_EQ_OR_RETURN(aColor, imageData[i], false); + } + } + + return true; +} + +bool +RowHasPixels(SourceSurface* aSurface, + int32_t aRow, + const vector<BGRAColor>& aPixels) +{ + ASSERT_GE_OR_RETURN(aRow, 0, false); + + IntSize surfaceSize = aSurface->GetSize(); + ASSERT_EQ_OR_RETURN(aPixels.size(), size_t(surfaceSize.width), false); + ASSERT_LT_OR_RETURN(aRow, surfaceSize.height, false); + + RefPtr<DataSourceSurface> dataSurface = aSurface->GetDataSurface(); + ASSERT_TRUE_OR_RETURN(dataSurface, false); + + ASSERT_EQ_OR_RETURN(dataSurface->Stride(), surfaceSize.width * 4, false); + + DataSourceSurface::ScopedMap mapping(dataSurface, + DataSourceSurface::MapType::READ); + ASSERT_TRUE_OR_RETURN(mapping.IsMapped(), false); + + uint8_t* data = dataSurface->GetData(); + ASSERT_TRUE_OR_RETURN(data != nullptr, false); + + int32_t rowLength = dataSurface->Stride(); + for (int32_t col = 0; col < surfaceSize.width; ++col) { + int32_t i = aRow * rowLength + col * 4; + ASSERT_EQ_OR_RETURN(aPixels[col].mBlue, data[i + 0], false); + ASSERT_EQ_OR_RETURN(aPixels[col].mGreen, data[i + 1], false); + ASSERT_EQ_OR_RETURN(aPixels[col].mRed, data[i + 2], false); + ASSERT_EQ_OR_RETURN(aPixels[col].mAlpha, data[i + 3], false); + } + + return true; +} + + +/////////////////////////////////////////////////////////////////////////////// +// SurfacePipe Helpers +/////////////////////////////////////////////////////////////////////////////// + +already_AddRefed<Decoder> +CreateTrivialDecoder() +{ + gfxPrefs::GetSingleton(); + DecoderType decoderType = DecoderFactory::GetDecoderType("image/gif"); + NotNull<RefPtr<SourceBuffer>> sourceBuffer = WrapNotNull(new SourceBuffer()); + RefPtr<Decoder> decoder = + DecoderFactory::CreateAnonymousDecoder(decoderType, sourceBuffer, Nothing(), + DefaultSurfaceFlags()); + return decoder.forget(); +} + +void +AssertCorrectPipelineFinalState(SurfaceFilter* aFilter, + const gfx::IntRect& aInputSpaceRect, + const gfx::IntRect& aOutputSpaceRect) +{ + EXPECT_TRUE(aFilter->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(aInputSpaceRect, invalidRect->mInputSpaceRect); + EXPECT_EQ(aOutputSpaceRect, invalidRect->mOutputSpaceRect); +} + +void +CheckGeneratedImage(Decoder* aDecoder, + const IntRect& aRect, + uint8_t aFuzz /* = 0 */) +{ + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + const IntSize surfaceSize = surface->GetSize(); + + // This diagram shows how the surface is divided into regions that the code + // below tests for the correct content. The output rect is the bounds of the + // region labeled 'C'. + // + // +---------------------------+ + // | A | + // +---------+--------+--------+ + // | B | C | D | + // +---------+--------+--------+ + // | E | + // +---------------------------+ + + // Check that the output rect itself is green. (Region 'C'.) + EXPECT_TRUE(RectIsSolidColor(surface, aRect, BGRAColor::Green(), aFuzz)); + + // Check that the area above the output rect is transparent. (Region 'A'.) + EXPECT_TRUE(RectIsSolidColor(surface, + IntRect(0, 0, surfaceSize.width, aRect.y), + BGRAColor::Transparent(), aFuzz)); + + // Check that the area to the left of the output rect is transparent. (Region 'B'.) + EXPECT_TRUE(RectIsSolidColor(surface, + IntRect(0, aRect.y, aRect.x, aRect.YMost()), + BGRAColor::Transparent(), aFuzz)); + + // Check that the area to the right of the output rect is transparent. (Region 'D'.) + const int32_t widthOnRight = surfaceSize.width - aRect.XMost(); + EXPECT_TRUE(RectIsSolidColor(surface, + IntRect(aRect.XMost(), aRect.y, widthOnRight, aRect.YMost()), + BGRAColor::Transparent(), aFuzz)); + + // Check that the area below the output rect is transparent. (Region 'E'.) + const int32_t heightBelow = surfaceSize.height - aRect.YMost(); + EXPECT_TRUE(RectIsSolidColor(surface, + IntRect(0, aRect.YMost(), surfaceSize.width, heightBelow), + BGRAColor::Transparent(), aFuzz)); +} + +void +CheckGeneratedPalettedImage(Decoder* aDecoder, const IntRect& aRect) +{ + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + IntSize imageSize = currentFrame->GetImageSize(); + + // This diagram shows how the surface is divided into regions that the code + // below tests for the correct content. The output rect is the bounds of the + // region labeled 'C'. + // + // +---------------------------+ + // | A | + // +---------+--------+--------+ + // | B | C | D | + // +---------+--------+--------+ + // | E | + // +---------------------------+ + + // Check that the output rect itself is all 255's. (Region 'C'.) + EXPECT_TRUE(PalettedRectIsSolidColor(aDecoder, aRect, 255)); + + // Check that the area above the output rect is all 0's. (Region 'A'.) + EXPECT_TRUE(PalettedRectIsSolidColor(aDecoder, + IntRect(0, 0, imageSize.width, aRect.y), + 0)); + + // Check that the area to the left of the output rect is all 0's. (Region 'B'.) + EXPECT_TRUE(PalettedRectIsSolidColor(aDecoder, + IntRect(0, aRect.y, aRect.x, aRect.YMost()), + 0)); + + // Check that the area to the right of the output rect is all 0's. (Region 'D'.) + const int32_t widthOnRight = imageSize.width - aRect.XMost(); + EXPECT_TRUE(PalettedRectIsSolidColor(aDecoder, + IntRect(aRect.XMost(), aRect.y, widthOnRight, aRect.YMost()), + 0)); + + // Check that the area below the output rect is transparent. (Region 'E'.) + const int32_t heightBelow = imageSize.height - aRect.YMost(); + EXPECT_TRUE(PalettedRectIsSolidColor(aDecoder, + IntRect(0, aRect.YMost(), imageSize.width, heightBelow), + 0)); +} + +void +CheckWritePixels(Decoder* aDecoder, + SurfaceFilter* aFilter, + Maybe<IntRect> aOutputRect /* = Nothing() */, + Maybe<IntRect> aInputRect /* = Nothing() */, + Maybe<IntRect> aInputWriteRect /* = Nothing() */, + Maybe<IntRect> aOutputWriteRect /* = Nothing() */, + uint8_t aFuzz /* = 0 */) +{ + IntRect outputRect = aOutputRect.valueOr(IntRect(0, 0, 100, 100)); + IntRect inputRect = aInputRect.valueOr(IntRect(0, 0, 100, 100)); + IntRect inputWriteRect = aInputWriteRect.valueOr(inputRect); + IntRect outputWriteRect = aOutputWriteRect.valueOr(outputRect); + + // Fill the image. + int32_t count = 0; + auto result = aFilter->WritePixels<uint32_t>([&] { + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(inputWriteRect.width * inputWriteRect.height, count); + + AssertCorrectPipelineFinalState(aFilter, inputRect, outputRect); + + // Attempt to write more data and make sure nothing changes. + const int32_t oldCount = count; + result = aFilter->WritePixels<uint32_t>([&] { + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(oldCount, count); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_TRUE(aFilter->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Attempt to advance to the next row and make sure nothing changes. + aFilter->AdvanceRow(); + EXPECT_TRUE(aFilter->IsSurfaceFinished()); + invalidRect = aFilter->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Check that the generated image is correct. + CheckGeneratedImage(aDecoder, outputWriteRect, aFuzz); +} + +void +CheckPalettedWritePixels(Decoder* aDecoder, + SurfaceFilter* aFilter, + Maybe<IntRect> aOutputRect /* = Nothing() */, + Maybe<IntRect> aInputRect /* = Nothing() */, + Maybe<IntRect> aInputWriteRect /* = Nothing() */, + Maybe<IntRect> aOutputWriteRect /* = Nothing() */, + uint8_t aFuzz /* = 0 */) +{ + IntRect outputRect = aOutputRect.valueOr(IntRect(0, 0, 100, 100)); + IntRect inputRect = aInputRect.valueOr(IntRect(0, 0, 100, 100)); + IntRect inputWriteRect = aInputWriteRect.valueOr(inputRect); + IntRect outputWriteRect = aOutputWriteRect.valueOr(outputRect); + + // Fill the image. + int32_t count = 0; + auto result = aFilter->WritePixels<uint8_t>([&] { + ++count; + return AsVariant(uint8_t(255)); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(inputWriteRect.width * inputWriteRect.height, count); + + AssertCorrectPipelineFinalState(aFilter, inputRect, outputRect); + + // Attempt to write more data and make sure nothing changes. + const int32_t oldCount = count; + result = aFilter->WritePixels<uint8_t>([&] { + ++count; + return AsVariant(uint8_t(255)); + }); + EXPECT_EQ(oldCount, count); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_TRUE(aFilter->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Attempt to advance to the next row and make sure nothing changes. + aFilter->AdvanceRow(); + EXPECT_TRUE(aFilter->IsSurfaceFinished()); + invalidRect = aFilter->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Check that the generated image is correct. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + uint8_t* imageData; + uint32_t imageLength; + currentFrame->GetImageData(&imageData, &imageLength); + ASSERT_TRUE(imageData != nullptr); + ASSERT_EQ(outputWriteRect.width * outputWriteRect.height, int32_t(imageLength)); + for (uint32_t i = 0; i < imageLength; ++i) { + ASSERT_EQ(uint8_t(255), imageData[i]); + } +} + + +/////////////////////////////////////////////////////////////////////////////// +// Test Data +/////////////////////////////////////////////////////////////////////////////// + +ImageTestCase GreenPNGTestCase() +{ + return ImageTestCase("green.png", "image/png", IntSize(100, 100)); +} + +ImageTestCase GreenGIFTestCase() +{ + return ImageTestCase("green.gif", "image/gif", IntSize(100, 100)); +} + +ImageTestCase GreenJPGTestCase() +{ + return ImageTestCase("green.jpg", "image/jpeg", IntSize(100, 100), + TEST_CASE_IS_FUZZY); +} + +ImageTestCase GreenBMPTestCase() +{ + return ImageTestCase("green.bmp", "image/bmp", IntSize(100, 100)); +} + +ImageTestCase GreenICOTestCase() +{ + // This ICO contains a 32-bit BMP, and we use a BMP's alpha data by default + // when the BMP is embedded in an ICO, so it's transparent. + return ImageTestCase("green.ico", "image/x-icon", IntSize(100, 100), + TEST_CASE_IS_TRANSPARENT); +} + +ImageTestCase GreenIconTestCase() +{ + return ImageTestCase("green.icon", "image/icon", IntSize(100, 100), + TEST_CASE_IS_TRANSPARENT); +} + +ImageTestCase GreenFirstFrameAnimatedGIFTestCase() +{ + return ImageTestCase("first-frame-green.gif", "image/gif", IntSize(100, 100), + TEST_CASE_IS_ANIMATED); +} + +ImageTestCase GreenFirstFrameAnimatedPNGTestCase() +{ + return ImageTestCase("first-frame-green.png", "image/png", IntSize(100, 100), + TEST_CASE_IS_TRANSPARENT | TEST_CASE_IS_ANIMATED); +} + +ImageTestCase CorruptTestCase() +{ + return ImageTestCase("corrupt.jpg", "image/jpeg", IntSize(100, 100), + TEST_CASE_HAS_ERROR); +} + +ImageTestCase CorruptBMPWithTruncatedHeader() +{ + // This BMP has a header which is truncated right between the BIH and the + // bitfields, which is a particularly error-prone place w.r.t. the BMP decoder + // state machine. + return ImageTestCase("invalid-truncated-metadata.bmp", "image/bmp", + IntSize(100, 100), TEST_CASE_HAS_ERROR); +} + +ImageTestCase CorruptICOWithBadBMPWidthTestCase() +{ + // This ICO contains a BMP icon which has a width that doesn't match the size + // listed in the corresponding ICO directory entry. + return ImageTestCase("corrupt-with-bad-bmp-width.ico", "image/x-icon", + IntSize(100, 100), TEST_CASE_HAS_ERROR); +} + +ImageTestCase CorruptICOWithBadBMPHeightTestCase() +{ + // This ICO contains a BMP icon which has a height that doesn't match the size + // listed in the corresponding ICO directory entry. + return ImageTestCase("corrupt-with-bad-bmp-height.ico", "image/x-icon", + IntSize(100, 100), TEST_CASE_HAS_ERROR); +} + +ImageTestCase TransparentPNGTestCase() +{ + return ImageTestCase("transparent.png", "image/png", IntSize(32, 32), + TEST_CASE_IS_TRANSPARENT); +} + +ImageTestCase TransparentGIFTestCase() +{ + return ImageTestCase("transparent.gif", "image/gif", IntSize(16, 16), + TEST_CASE_IS_TRANSPARENT); +} + +ImageTestCase FirstFramePaddingGIFTestCase() +{ + return ImageTestCase("transparent.gif", "image/gif", IntSize(16, 16), + TEST_CASE_IS_TRANSPARENT); +} + +ImageTestCase TransparentIfWithinICOBMPTestCase(TestCaseFlags aFlags) +{ + // This is a BMP that is only transparent when decoded as if it is within an + // ICO file. (Note: aFlags needs to be set to TEST_CASE_DEFAULT_FLAGS or + // TEST_CASE_IS_TRANSPARENT accordingly.) + return ImageTestCase("transparent-if-within-ico.bmp", "image/bmp", + IntSize(32, 32), aFlags); +} + +ImageTestCase RLE4BMPTestCase() +{ + return ImageTestCase("rle4.bmp", "image/bmp", IntSize(320, 240), + TEST_CASE_IS_TRANSPARENT); +} + +ImageTestCase RLE8BMPTestCase() +{ + return ImageTestCase("rle8.bmp", "image/bmp", IntSize(32, 32), + TEST_CASE_IS_TRANSPARENT); +} + +ImageTestCase NoFrameDelayGIFTestCase() +{ + // This is an invalid (or at least, questionably valid) GIF that's animated + // even though it specifies a frame delay of zero. It's animated, but it's not + // marked TEST_CASE_IS_ANIMATED because the metadata decoder can't detect that + // it's animated. + return ImageTestCase("no-frame-delay.gif", "image/gif", IntSize(100, 100)); +} + +ImageTestCase ExtraImageSubBlocksAnimatedGIFTestCase() +{ + // This is a corrupt GIF that has extra image sub blocks between the first and + // second frame. + return ImageTestCase("animated-with-extra-image-sub-blocks.gif", "image/gif", + IntSize(100, 100)); +} + +ImageTestCase DownscaledPNGTestCase() +{ + // This testcase (and all the other "downscaled") testcases) consists of 25 + // lines of green, followed by 25 lines of red, followed by 25 lines of green, + // followed by 25 more lines of red. It's intended that tests downscale it + // from 100x100 to 20x20, so we specify a 20x20 output size. + return ImageTestCase("downscaled.png", "image/png", IntSize(100, 100), + IntSize(20, 20)); +} + +ImageTestCase DownscaledGIFTestCase() +{ + return ImageTestCase("downscaled.gif", "image/gif", IntSize(100, 100), + IntSize(20, 20)); +} + +ImageTestCase DownscaledJPGTestCase() +{ + return ImageTestCase("downscaled.jpg", "image/jpeg", IntSize(100, 100), + IntSize(20, 20)); +} + +ImageTestCase DownscaledBMPTestCase() +{ + return ImageTestCase("downscaled.bmp", "image/bmp", IntSize(100, 100), + IntSize(20, 20)); +} + +ImageTestCase DownscaledICOTestCase() +{ + return ImageTestCase("downscaled.ico", "image/x-icon", IntSize(100, 100), + IntSize(20, 20), TEST_CASE_IS_TRANSPARENT); +} + +ImageTestCase DownscaledIconTestCase() +{ + return ImageTestCase("downscaled.icon", "image/icon", IntSize(100, 100), + IntSize(20, 20), TEST_CASE_IS_TRANSPARENT); +} + +ImageTestCase DownscaledTransparentICOWithANDMaskTestCase() +{ + // This test case is an ICO with AND mask transparency. We want to ensure that + // we can downscale it without crashing or triggering ASAN failures, but its + // content isn't simple to verify, so for now we don't check the output. + return ImageTestCase("transparent-ico-with-and-mask.ico", "image/x-icon", + IntSize(32, 32), IntSize(20, 20), + TEST_CASE_IS_TRANSPARENT | TEST_CASE_IGNORE_OUTPUT); +} + +ImageTestCase TruncatedSmallGIFTestCase() +{ + return ImageTestCase("green-1x1-truncated.gif", "image/gif", IntSize(1, 1)); +} + +} // namespace image +} // namespace mozilla diff --git a/image/test/gtest/Common.h b/image/test/gtest/Common.h new file mode 100644 index 000000000..79bed9fc1 --- /dev/null +++ b/image/test/gtest/Common.h @@ -0,0 +1,419 @@ +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef mozilla_image_test_gtest_Common_h +#define mozilla_image_test_gtest_Common_h + +#include <vector> + +#include "gtest/gtest.h" + +#include "mozilla/Maybe.h" +#include "mozilla/UniquePtr.h" +#include "mozilla/gfx/2D.h" +#include "Decoder.h" +#include "gfxColor.h" +#include "imgITools.h" +#include "nsCOMPtr.h" +#include "SurfacePipe.h" +#include "SurfacePipeFactory.h" + +class nsIInputStream; + +namespace mozilla { +namespace image { + +/////////////////////////////////////////////////////////////////////////////// +// Types +/////////////////////////////////////////////////////////////////////////////// + +enum TestCaseFlags +{ + TEST_CASE_DEFAULT_FLAGS = 0, + TEST_CASE_IS_FUZZY = 1 << 0, + TEST_CASE_HAS_ERROR = 1 << 1, + TEST_CASE_IS_TRANSPARENT = 1 << 2, + TEST_CASE_IS_ANIMATED = 1 << 3, + TEST_CASE_IGNORE_OUTPUT = 1 << 4, +}; + +struct ImageTestCase +{ + ImageTestCase(const char* aPath, + const char* aMimeType, + gfx::IntSize aSize, + uint32_t aFlags = TEST_CASE_DEFAULT_FLAGS) + : mPath(aPath) + , mMimeType(aMimeType) + , mSize(aSize) + , mOutputSize(aSize) + , mFlags(aFlags) + { } + + ImageTestCase(const char* aPath, + const char* aMimeType, + gfx::IntSize aSize, + gfx::IntSize aOutputSize, + uint32_t aFlags = TEST_CASE_DEFAULT_FLAGS) + : mPath(aPath) + , mMimeType(aMimeType) + , mSize(aSize) + , mOutputSize(aOutputSize) + , mFlags(aFlags) + { } + + const char* mPath; + const char* mMimeType; + gfx::IntSize mSize; + gfx::IntSize mOutputSize; + uint32_t mFlags; +}; + +struct BGRAColor +{ + BGRAColor() : BGRAColor(0, 0, 0, 0) { } + + BGRAColor(uint8_t aBlue, uint8_t aGreen, uint8_t aRed, uint8_t aAlpha) + : mBlue(aBlue) + , mGreen(aGreen) + , mRed(aRed) + , mAlpha(aAlpha) + { } + + static BGRAColor Green() { return BGRAColor(0x00, 0xFF, 0x00, 0xFF); } + static BGRAColor Red() { return BGRAColor(0x00, 0x00, 0xFF, 0xFF); } + static BGRAColor Blue() { return BGRAColor(0xFF, 0x00, 0x00, 0xFF); } + static BGRAColor Transparent() { return BGRAColor(0x00, 0x00, 0x00, 0x00); } + + uint32_t AsPixel() const { return gfxPackedPixel(mAlpha, mRed, mGreen, mBlue); } + + uint8_t mBlue; + uint8_t mGreen; + uint8_t mRed; + uint8_t mAlpha; +}; + + +/////////////////////////////////////////////////////////////////////////////// +// General Helpers +/////////////////////////////////////////////////////////////////////////////// + +/** + * A RAII class that ensure that ImageLib services are available. Any tests that + * require ImageLib to be initialized (for example, any test that uses the + * SurfaceCache; see image::EnsureModuleInitialized() for the full list) can + * use this class to ensure that ImageLib services are available. Failure to do + * so can result in strange, non-deterministic failures. + */ +struct AutoInitializeImageLib +{ + AutoInitializeImageLib() + { + // Ensure that ImageLib services are initialized. + nsCOMPtr<imgITools> imgTools = do_CreateInstance("@mozilla.org/image/tools;1"); + EXPECT_TRUE(imgTools != nullptr); + } +}; + +/// Loads a file from the current directory. @return an nsIInputStream for it. +already_AddRefed<nsIInputStream> LoadFile(const char* aRelativePath); + +/** + * @returns true if every pixel of @aSurface is @aColor. + * + * If @aFuzz is nonzero, a tolerance of @aFuzz is allowed in each color + * component. This may be necessary for tests that involve JPEG images or + * downscaling. + */ +bool IsSolidColor(gfx::SourceSurface* aSurface, + BGRAColor aColor, + uint8_t aFuzz = 0); + +/** + * @returns true if every pixel of @aDecoder's surface has the palette index + * specified by @aColor. + */ +bool IsSolidPalettedColor(Decoder* aDecoder, uint8_t aColor); + +/** + * @returns true if every pixel in the range of rows specified by @aStartRow and + * @aRowCount of @aSurface is @aColor. + * + * If @aFuzz is nonzero, a tolerance of @aFuzz is allowed in each color + * component. This may be necessary for tests that involve JPEG images or + * downscaling. + */ +bool RowsAreSolidColor(gfx::SourceSurface* aSurface, + int32_t aStartRow, + int32_t aRowCount, + BGRAColor aColor, + uint8_t aFuzz = 0); + +/** + * @returns true if every pixel in the range of rows specified by @aStartRow and + * @aRowCount of @aDecoder's surface has the palette index specified by @aColor. + */ +bool PalettedRowsAreSolidColor(Decoder* aDecoder, + int32_t aStartRow, + int32_t aRowCount, + uint8_t aColor); + +/** + * @returns true if every pixel in the rect specified by @aRect is @aColor. + * + * If @aFuzz is nonzero, a tolerance of @aFuzz is allowed in each color + * component. This may be necessary for tests that involve JPEG images or + * downscaling. + */ +bool RectIsSolidColor(gfx::SourceSurface* aSurface, + const gfx::IntRect& aRect, + BGRAColor aColor, + uint8_t aFuzz = 0); + +/** + * @returns true if every pixel in the rect specified by @aRect has the palette + * index specified by @aColor. + */ +bool PalettedRectIsSolidColor(Decoder* aDecoder, + const gfx::IntRect& aRect, + uint8_t aColor); + +/** + * @returns true if the pixels in @aRow of @aSurface match the pixels given in + * @aPixels. + */ +bool RowHasPixels(gfx::SourceSurface* aSurface, + int32_t aRow, + const std::vector<BGRAColor>& aPixels); + +// ExpectNoResume is an IResumable implementation for use by tests that expect +// Resume() to never get called. +class ExpectNoResume final : public IResumable +{ +public: + NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ExpectNoResume, override) + + void Resume() override { FAIL() << "Resume() should not get called"; } + +private: + ~ExpectNoResume() override { } +}; + +// CountResumes is an IResumable implementation for use by tests that expect +// Resume() to get called a certain number of times. +class CountResumes : public IResumable +{ +public: + NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CountResumes, override) + + CountResumes() : mCount(0) { } + + void Resume() override { mCount++; } + uint32_t Count() const { return mCount; } + +private: + ~CountResumes() override { } + + uint32_t mCount; +}; + + +/////////////////////////////////////////////////////////////////////////////// +// SurfacePipe Helpers +/////////////////////////////////////////////////////////////////////////////// + +/** + * Creates a decoder with no data associated with, suitable for testing code + * that requires a decoder to initialize or to allocate surfaces but doesn't + * actually need the decoder to do any decoding. + * + * XXX(seth): We only need this because SurfaceSink and PalettedSurfaceSink + * defer to the decoder for surface allocation. Once all decoders use + * SurfacePipe we won't need to do that anymore and we can remove this function. + */ +already_AddRefed<Decoder> CreateTrivialDecoder(); + +/** + * Creates a pipeline of SurfaceFilters from a list of Config structs and passes + * it to the provided lambda @aFunc. Assertions that the pipeline is constructly + * correctly and cleanup of any allocated surfaces is handled automatically. + * + * @param aDecoder The decoder to use for allocating surfaces. + * @param aFunc The lambda function to pass the filter pipeline to. + * @param aConfigs The configuration for the pipeline. + */ +template <typename Func, typename... Configs> +void WithFilterPipeline(Decoder* aDecoder, Func aFunc, Configs... aConfigs) +{ + auto pipe = MakeUnique<typename detail::FilterPipeline<Configs...>::Type>(); + nsresult rv = pipe->Configure(aConfigs...); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + aFunc(aDecoder, pipe.get()); + + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + if (currentFrame) { + currentFrame->Finish(); + } +} + +/** + * Creates a pipeline of SurfaceFilters from a list of Config structs and + * asserts that configuring it fails. Cleanup of any allocated surfaces is + * handled automatically. + * + * @param aDecoder The decoder to use for allocating surfaces. + * @param aConfigs The configuration for the pipeline. + */ +template <typename... Configs> +void AssertConfiguringPipelineFails(Decoder* aDecoder, Configs... aConfigs) +{ + auto pipe = MakeUnique<typename detail::FilterPipeline<Configs...>::Type>(); + nsresult rv = pipe->Configure(aConfigs...); + + // Callers expect configuring the pipeline to fail. + ASSERT_TRUE(NS_FAILED(rv)); + + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + if (currentFrame) { + currentFrame->Finish(); + } +} + +/** + * Asserts that the provided filter pipeline is in the correct final state, + * which is to say, the entire surface has been written to (IsSurfaceFinished() + * returns true) and the invalid rects are as expected. + * + * @param aFilter The filter pipeline to check. + * @param aInputSpaceRect The expect invalid rect, in input space. + * @param aoutputSpaceRect The expect invalid rect, in output space. + */ +void AssertCorrectPipelineFinalState(SurfaceFilter* aFilter, + const gfx::IntRect& aInputSpaceRect, + const gfx::IntRect& aOutputSpaceRect); + +/** + * Checks a generated image for correctness. Reports any unexpected deviation + * from the expected image as GTest failures. + * + * @param aDecoder The decoder which contains the image. The decoder's current + * frame will be checked. + * @param aRect The region in the space of the output surface that the filter + * pipeline will actually write to. It's expected that pixels in + * this region are green, while pixels outside this region are + * transparent. + * @param aFuzz The amount of fuzz to use in pixel comparisons. + */ +void CheckGeneratedImage(Decoder* aDecoder, + const gfx::IntRect& aRect, + uint8_t aFuzz = 0); + +/** + * Checks a generated paletted image for correctness. Reports any unexpected + * deviation from the expected image as GTest failures. + * + * @param aDecoder The decoder which contains the image. The decoder's current + * frame will be checked. + * @param aRect The region in the space of the output surface that the filter + * pipeline will actually write to. It's expected that pixels in + * this region have a palette index of 255, while pixels outside + * this region have a palette index of 0. + */ +void CheckGeneratedPalettedImage(Decoder* aDecoder, const gfx::IntRect& aRect); + +/** + * Tests the result of calling WritePixels() using the provided SurfaceFilter + * pipeline. The pipeline must be a normal (i.e., non-paletted) pipeline. + * + * The arguments are specified in the an order intended to minimize the number + * of arguments that most test cases need to pass. + * + * @param aDecoder The decoder whose current frame will be written to. + * @param aFilter The SurfaceFilter pipeline to use. + * @param aOutputRect The region in the space of the output surface that will be + * invalidated by the filter pipeline. Defaults to + * (0, 0, 100, 100). + * @param aInputRect The region in the space of the input image that will be + * invalidated by the filter pipeline. Defaults to + * (0, 0, 100, 100). + * @param aInputWriteRect The region in the space of the input image that the + * filter pipeline will allow writes to. Note the + * difference from @aInputRect: @aInputRect is the actual + * region invalidated, while @aInputWriteRect is the + * region that is written to. These can differ in cases + * where the input is not clipped to the size of the image. + * Defaults to the entire input rect. + * @param aOutputWriteRect The region in the space of the output surface that + * the filter pipeline will actually write to. It's + * expected that pixels in this region are green, while + * pixels outside this region are transparent. Defaults + * to the entire output rect. + */ +void CheckWritePixels(Decoder* aDecoder, + SurfaceFilter* aFilter, + Maybe<gfx::IntRect> aOutputRect = Nothing(), + Maybe<gfx::IntRect> aInputRect = Nothing(), + Maybe<gfx::IntRect> aInputWriteRect = Nothing(), + Maybe<gfx::IntRect> aOutputWriteRect = Nothing(), + uint8_t aFuzz = 0); + +/** + * Tests the result of calling WritePixels() using the provided SurfaceFilter + * pipeline. The pipeline must be a paletted pipeline. + * @see CheckWritePixels() for documentation of the arguments. + */ +void CheckPalettedWritePixels(Decoder* aDecoder, + SurfaceFilter* aFilter, + Maybe<gfx::IntRect> aOutputRect = Nothing(), + Maybe<gfx::IntRect> aInputRect = Nothing(), + Maybe<gfx::IntRect> aInputWriteRect = Nothing(), + Maybe<gfx::IntRect> aOutputWriteRect = Nothing(), + uint8_t aFuzz = 0); + + +/////////////////////////////////////////////////////////////////////////////// +// Test Data +/////////////////////////////////////////////////////////////////////////////// + +ImageTestCase GreenPNGTestCase(); +ImageTestCase GreenGIFTestCase(); +ImageTestCase GreenJPGTestCase(); +ImageTestCase GreenBMPTestCase(); +ImageTestCase GreenICOTestCase(); +ImageTestCase GreenIconTestCase(); + +ImageTestCase GreenFirstFrameAnimatedGIFTestCase(); +ImageTestCase GreenFirstFrameAnimatedPNGTestCase(); + +ImageTestCase CorruptTestCase(); +ImageTestCase CorruptBMPWithTruncatedHeader(); +ImageTestCase CorruptICOWithBadBMPWidthTestCase(); +ImageTestCase CorruptICOWithBadBMPHeightTestCase(); + +ImageTestCase TransparentPNGTestCase(); +ImageTestCase TransparentGIFTestCase(); +ImageTestCase FirstFramePaddingGIFTestCase(); +ImageTestCase NoFrameDelayGIFTestCase(); +ImageTestCase ExtraImageSubBlocksAnimatedGIFTestCase(); + +ImageTestCase TransparentBMPWhenBMPAlphaEnabledTestCase(); +ImageTestCase RLE4BMPTestCase(); +ImageTestCase RLE8BMPTestCase(); + +ImageTestCase DownscaledPNGTestCase(); +ImageTestCase DownscaledGIFTestCase(); +ImageTestCase DownscaledJPGTestCase(); +ImageTestCase DownscaledBMPTestCase(); +ImageTestCase DownscaledICOTestCase(); +ImageTestCase DownscaledIconTestCase(); +ImageTestCase DownscaledTransparentICOWithANDMaskTestCase(); + +ImageTestCase TruncatedSmallGIFTestCase(); + +} // namespace image +} // namespace mozilla + +#endif // mozilla_image_test_gtest_Common_h diff --git a/image/test/gtest/TestADAM7InterpolatingFilter.cpp b/image/test/gtest/TestADAM7InterpolatingFilter.cpp new file mode 100644 index 000000000..d9dab4346 --- /dev/null +++ b/image/test/gtest/TestADAM7InterpolatingFilter.cpp @@ -0,0 +1,671 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include <algorithm> +#include <vector> + +#include "gtest/gtest.h" + +#include "mozilla/gfx/2D.h" +#include "mozilla/Maybe.h" +#include "Common.h" +#include "Decoder.h" +#include "DecoderFactory.h" +#include "SourceBuffer.h" +#include "SurfaceFilters.h" +#include "SurfacePipe.h" + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +using std::generate; +using std::vector; + +template <typename Func> void +WithADAM7InterpolatingFilter(const IntSize& aSize, Func aFunc) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(bool(decoder)); + + WithFilterPipeline(decoder, Forward<Func>(aFunc), + ADAM7InterpolatingConfig { }, + SurfaceConfig { decoder, 0, aSize, + SurfaceFormat::B8G8R8A8, false }); +} + +void +AssertConfiguringADAM7InterpolatingFilterFails(const IntSize& aSize) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(bool(decoder)); + + AssertConfiguringPipelineFails(decoder, + ADAM7InterpolatingConfig { }, + SurfaceConfig { decoder, 0, aSize, + SurfaceFormat::B8G8R8A8, false }); +} + +uint8_t +InterpolateByte(uint8_t aByteA, uint8_t aByteB, float aWeight) +{ + return uint8_t(aByteA * aWeight + aByteB * (1.0f - aWeight)); +} + +BGRAColor +InterpolateColors(BGRAColor aColor1, BGRAColor aColor2, float aWeight) +{ + return BGRAColor(InterpolateByte(aColor1.mBlue, aColor2.mBlue, aWeight), + InterpolateByte(aColor1.mGreen, aColor2.mGreen, aWeight), + InterpolateByte(aColor1.mRed, aColor2.mRed, aWeight), + InterpolateByte(aColor1.mAlpha, aColor2.mAlpha, aWeight)); +} + +enum class ShouldInterpolate +{ + eYes, + eNo +}; + +BGRAColor +HorizontallyInterpolatedPixel(uint32_t aCol, + uint32_t aWidth, + const vector<float>& aWeights, + ShouldInterpolate aShouldInterpolate, + const vector<BGRAColor>& aColors) +{ + // We cycle through the vector of weights forever. + float weight = aWeights[aCol % aWeights.size()]; + + // Find the columns of the two final pixels for this set of weights. + uint32_t finalPixel1 = aCol - aCol % aWeights.size(); + uint32_t finalPixel2 = finalPixel1 + aWeights.size(); + + // If |finalPixel2| is past the end of the row, that means that there is no + // final pixel after the pixel at |finalPixel1|. In that case, we just want to + // duplicate |finalPixel1|'s color until the end of the row. We can do that by + // setting |finalPixel2| equal to |finalPixel1| so that the interpolation has + // no effect. + if (finalPixel2 >= aWidth) { + finalPixel2 = finalPixel1; + } + + // We cycle through the vector of colors forever (subject to the above + // constraint about the end of the row). + BGRAColor color1 = aColors[finalPixel1 % aColors.size()]; + BGRAColor color2 = aColors[finalPixel2 % aColors.size()]; + + // If we're not interpolating, we treat all pixels which aren't final as + // transparent. Since the number of weights we have is equal to the stride + // between final pixels, we can check if |aCol| is a final pixel by checking + // whether |aCol| is a multiple of |aWeights.size()|. + if (aShouldInterpolate == ShouldInterpolate::eNo) { + return aCol % aWeights.size() == 0 ? color1 + : BGRAColor::Transparent(); + } + + // Interpolate. + return InterpolateColors(color1, color2, weight); +} + +vector<float>& +InterpolationWeights(int32_t aStride) +{ + // Precalculated interpolation weights. These are used to interpolate + // between final pixels or between important rows. Although no interpolation + // is actually applied to the previous final pixel or important row value, + // the arrays still start with 1.0f, which is always skipped, primarily + // because otherwise |stride1Weights| would have zero elements. + static vector<float> stride8Weights = + { 1.0f, 7 / 8.0f, 6 / 8.0f, 5 / 8.0f, 4 / 8.0f, 3 / 8.0f, 2 / 8.0f, 1 / 8.0f }; + static vector<float> stride4Weights = { 1.0f, 3 / 4.0f, 2 / 4.0f, 1 / 4.0f }; + static vector<float> stride2Weights = { 1.0f, 1 / 2.0f }; + static vector<float> stride1Weights = { 1.0f }; + + switch (aStride) { + case 8: return stride8Weights; + case 4: return stride4Weights; + case 2: return stride2Weights; + case 1: return stride1Weights; + default: + MOZ_CRASH(); + } +} + +int32_t +ImportantRowStride(uint8_t aPass) +{ + // The stride between important rows for each pass, with a dummy value for + // the nonexistent pass 0 and for pass 8, since the tests run an extra pass to + // make sure nothing breaks. + static int32_t strides[] = { 1, 8, 8, 4, 4, 2, 2, 1, 1 }; + + return strides[aPass]; +} + +size_t +FinalPixelStride(uint8_t aPass) +{ + // The stride between the final pixels in important rows for each pass, with + // a dummy value for the nonexistent pass 0 and for pass 8, since the tests + // run an extra pass to make sure nothing breaks. + static size_t strides[] = { 1, 8, 4, 4, 2, 2, 1, 1, 1 }; + + return strides[aPass]; +} + +bool +IsImportantRow(int32_t aRow, uint8_t aPass) +{ + return aRow % ImportantRowStride(aPass) == 0; +} + +/** + * ADAM7 breaks up the image into 8x8 blocks. On each of the 7 passes, a new + * set of pixels in each block receives their final values, according to the + * following pattern: + * + * 1 6 4 6 2 6 4 6 + * 7 7 7 7 7 7 7 7 + * 5 6 5 6 5 6 5 6 + * 7 7 7 7 7 7 7 7 + * 3 6 4 6 3 6 4 6 + * 7 7 7 7 7 7 7 7 + * 5 6 5 6 5 6 5 6 + * 7 7 7 7 7 7 7 7 + * + * This function produces a row of pixels @aWidth wide, suitable for testing + * horizontal interpolation on pass @aPass. The pattern of pixels used is + * determined by @aPass and @aRow, which determine which pixels are final + * according to the table above, and @aColors, from which the pixel values + * are selected. + * + * There are two different behaviors: if |eNo| is passed for + * @aShouldInterpolate, non-final pixels are treated as transparent. If |eNo| + * is passed, non-final pixels get interpolated in from the surrounding final + * pixels. The intention is that |eNo| is passed to generate input which will + * be run through ADAM7InterpolatingFilter, and |eYes| is passed to generate + * reference data to check that the filter is performing horizontal + * interpolation correctly. + * + * This function does not perform vertical interpolation. Rows which aren't on + * the current pass are filled with transparent pixels. + * + * @return a vector<BGRAColor> representing a row of pixels. + */ +vector<BGRAColor> +ADAM7HorizontallyInterpolatedRow(uint8_t aPass, + uint32_t aRow, + uint32_t aWidth, + ShouldInterpolate aShouldInterpolate, + const vector<BGRAColor>& aColors) +{ + EXPECT_GT(aPass, 0); + EXPECT_LE(aPass, 8); + EXPECT_GT(aColors.size(), 0u); + + vector<BGRAColor> result(aWidth); + + if (IsImportantRow(aRow, aPass)) { + vector<float>& weights = InterpolationWeights(FinalPixelStride(aPass)); + + // Compute the horizontally interpolated row. + uint32_t col = 0; + generate(result.begin(), result.end(), [&]{ + return HorizontallyInterpolatedPixel(col++, aWidth, weights, + aShouldInterpolate, aColors); + }); + } else { + // This is an unimportant row; just make the entire thing transparent. + generate(result.begin(), result.end(), []{ + return BGRAColor::Transparent(); + }); + } + + EXPECT_EQ(result.size(), size_t(aWidth)); + + return result; +} + +WriteState +WriteUninterpolatedPixels(SurfaceFilter* aFilter, + const IntSize& aSize, + uint8_t aPass, + const vector<BGRAColor>& aColors) +{ + WriteState result = WriteState::NEED_MORE_DATA; + + for (int32_t row = 0; row < aSize.height; ++row) { + // Compute uninterpolated pixels for this row. + vector<BGRAColor> pixels = + Move(ADAM7HorizontallyInterpolatedRow(aPass, row, aSize.width, + ShouldInterpolate::eNo, aColors)); + + // Write them to the surface. + auto pixelIterator = pixels.cbegin(); + result = aFilter->WritePixelsToRow<uint32_t>([&]{ + return AsVariant((*pixelIterator++).AsPixel()); + }); + + if (result != WriteState::NEED_MORE_DATA) { + break; + } + } + + return result; +} + +bool +CheckHorizontallyInterpolatedImage(Decoder* aDecoder, + const IntSize& aSize, + uint8_t aPass, + const vector<BGRAColor>& aColors) +{ + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + for (int32_t row = 0; row < aSize.height; ++row) { + if (!IsImportantRow(row, aPass)) { + continue; // Don't check rows which aren't important on this pass. + } + + // Compute the expected pixels, *with* interpolation to match what the + // filter should have done. + vector<BGRAColor> expectedPixels = + Move(ADAM7HorizontallyInterpolatedRow(aPass, row, aSize.width, + ShouldInterpolate::eYes, aColors)); + + if (!RowHasPixels(surface, row, expectedPixels)) { + return false; + } + } + + return true; +} + +void +CheckHorizontalInterpolation(const IntSize& aSize, + const vector<BGRAColor>& aColors) +{ + const IntRect surfaceRect(IntPoint(0, 0), aSize); + + WithADAM7InterpolatingFilter(aSize, + [&](Decoder* aDecoder, SurfaceFilter* aFilter) { + // We check horizontal interpolation behavior for each pass individually. In + // addition to the normal 7 passes that ADAM7 includes, we also check an + // eighth pass to verify that nothing breaks if extra data is written. + for (uint8_t pass = 1; pass <= 8; ++pass) { + // Write our color pattern to the surface. We don't perform any + // interpolation when writing to the filter so that we can check that the + // filter itself *does*. + WriteState result = + WriteUninterpolatedPixels(aFilter, aSize, pass, aColors); + + EXPECT_EQ(WriteState::FINISHED, result); + AssertCorrectPipelineFinalState(aFilter, surfaceRect, surfaceRect); + + // Check that the generated image matches the expected pattern, with + // interpolation applied. + EXPECT_TRUE(CheckHorizontallyInterpolatedImage(aDecoder, aSize, + pass, aColors)); + + // Prepare for the next pass. + aFilter->ResetToFirstRow(); + } + }); +} + +BGRAColor +ADAM7RowColor(int32_t aRow, + uint8_t aPass, + const vector<BGRAColor>& aColors) +{ + EXPECT_LT(0, aPass); + EXPECT_GE(8, aPass); + EXPECT_LT(0u, aColors.size()); + + // If this is an important row, select the color from the provided vector of + // colors, which we cycle through infinitely. If not, just fill the row with + // transparent pixels. + return IsImportantRow(aRow, aPass) ? aColors[aRow % aColors.size()] + : BGRAColor::Transparent(); +} + +WriteState +WriteRowColorPixels(SurfaceFilter* aFilter, + const IntSize& aSize, + uint8_t aPass, + const vector<BGRAColor>& aColors) +{ + WriteState result = WriteState::NEED_MORE_DATA; + + for (int32_t row = 0; row < aSize.height; ++row) { + const uint32_t color = ADAM7RowColor(row, aPass, aColors).AsPixel(); + + // Fill the surface with |color| pixels. + result = aFilter->WritePixelsToRow<uint32_t>([&]{ return AsVariant(color); }); + + if (result != WriteState::NEED_MORE_DATA) { + break; + } + } + + return result; +} + +bool +CheckVerticallyInterpolatedImage(Decoder* aDecoder, + const IntSize& aSize, + uint8_t aPass, + const vector<BGRAColor>& aColors) +{ + vector<float>& weights = InterpolationWeights(ImportantRowStride(aPass)); + + for (int32_t row = 0; row < aSize.height; ++row) { + // Vertically interpolation takes place between two important rows. The + // separation between the important rows is determined by the stride of this + // pass. When there is no "next" important row because we'd run off the + // bottom of the image, we use the same row for both. This matches + // ADAM7InterpolatingFilter's behavior of duplicating the last important row + // since there isn't another important row to vertically interpolate it + // with. + const int32_t stride = ImportantRowStride(aPass); + const int32_t prevImportantRow = row - row % stride; + const int32_t maybeNextImportantRow = prevImportantRow + stride; + const int32_t nextImportantRow = maybeNextImportantRow < aSize.height + ? maybeNextImportantRow + : prevImportantRow; + + // Retrieve the colors for the important rows we're going to interpolate. + const BGRAColor prevImportantRowColor = + ADAM7RowColor(prevImportantRow, aPass, aColors); + const BGRAColor nextImportantRowColor = + ADAM7RowColor(nextImportantRow, aPass, aColors); + + // The weight we'll use for interpolation is also determined by the stride. + // A row halfway between two important rows should have pixels that have a + // 50% contribution from each of the important rows, for example. + const float weight = weights[row % stride]; + const BGRAColor interpolatedColor = + InterpolateColors(prevImportantRowColor, nextImportantRowColor, weight); + + // Generate a row of expected pixels. Every pixel in the row is always the + // same color since we're only testing vertical interpolation between + // solid-colored rows. + vector<BGRAColor> expectedPixels(aSize.width); + generate(expectedPixels.begin(), expectedPixels.end(), [&]{ + return interpolatedColor; + }); + + // Check that the pixels match. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + if (!RowHasPixels(surface, row, expectedPixels)) { + return false; + } + } + + return true; +} + +void +CheckVerticalInterpolation(const IntSize& aSize, + const vector<BGRAColor>& aColors) +{ + const IntRect surfaceRect(IntPoint(0, 0), aSize); + + WithADAM7InterpolatingFilter(aSize, + [&](Decoder* aDecoder, SurfaceFilter* aFilter) { + for (uint8_t pass = 1; pass <= 8; ++pass) { + // Write a pattern of rows to the surface. Important rows will receive a + // color selected from |aColors|; unimportant rows will be transparent. + WriteState result = WriteRowColorPixels(aFilter, aSize, pass, aColors); + + EXPECT_EQ(WriteState::FINISHED, result); + AssertCorrectPipelineFinalState(aFilter, surfaceRect, surfaceRect); + + // Check that the generated image matches the expected pattern, with + // interpolation applied. + EXPECT_TRUE(CheckVerticallyInterpolatedImage(aDecoder, aSize, + pass, aColors)); + + // Prepare for the next pass. + aFilter->ResetToFirstRow(); + } + }); +} + +void +CheckInterpolation(const IntSize& aSize, const vector<BGRAColor>& aColors) +{ + CheckHorizontalInterpolation(aSize, aColors); + CheckVerticalInterpolation(aSize, aColors); +} + +void +CheckADAM7InterpolatingWritePixels(const IntSize& aSize) +{ + // This test writes 8 passes of green pixels (the seven ADAM7 passes, plus one + // extra to make sure nothing goes wrong if we write too much input) and verifies + // that the output is a solid green surface each time. Because all the pixels + // are the same color, interpolation doesn't matter; we test the correctness + // of the interpolation algorithm itself separately. + WithADAM7InterpolatingFilter(aSize, + [&](Decoder* aDecoder, SurfaceFilter* aFilter) { + IntRect rect(IntPoint(0, 0), aSize); + + for (int32_t pass = 1; pass <= 8; ++pass) { + // We only actually write up to the last important row for each pass, + // because that row unambiguously determines the remaining rows. + const int32_t lastRow = aSize.height - 1; + const int32_t lastImportantRow = + lastRow - (lastRow % ImportantRowStride(pass)); + const IntRect inputWriteRect(0, 0, aSize.width, lastImportantRow + 1); + + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(rect), + /* aInputRect = */ Some(rect), + /* aInputWriteRect = */ Some(inputWriteRect)); + + aFilter->ResetToFirstRow(); + EXPECT_FALSE(aFilter->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + } + }); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels100_100) +{ + CheckADAM7InterpolatingWritePixels(IntSize(100, 100)); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels99_99) +{ + CheckADAM7InterpolatingWritePixels(IntSize(99, 99)); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels66_33) +{ + CheckADAM7InterpolatingWritePixels(IntSize(66, 33)); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels33_66) +{ + CheckADAM7InterpolatingWritePixels(IntSize(33, 66)); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels15_15) +{ + CheckADAM7InterpolatingWritePixels(IntSize(15, 15)); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels9_9) +{ + CheckADAM7InterpolatingWritePixels(IntSize(9, 9)); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels8_8) +{ + CheckADAM7InterpolatingWritePixels(IntSize(8, 8)); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels7_7) +{ + CheckADAM7InterpolatingWritePixels(IntSize(7, 7)); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels3_3) +{ + CheckADAM7InterpolatingWritePixels(IntSize(3, 3)); +} + +TEST(ImageADAM7InterpolatingFilter, WritePixels1_1) +{ + CheckADAM7InterpolatingWritePixels(IntSize(1, 1)); +} + +TEST(ImageADAM7InterpolatingFilter, TrivialInterpolation48_48) +{ + CheckInterpolation(IntSize(48, 48), { BGRAColor::Green() }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput33_17) +{ + // We check interpolation using irregular patterns to make sure that the + // interpolation will look different for different passes. + CheckInterpolation(IntSize(33, 17), { + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue(), BGRAColor::Blue(), + BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Blue(), + BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue(), + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Blue() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput32_16) +{ + CheckInterpolation(IntSize(32, 16), { + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue(), BGRAColor::Blue(), + BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Blue(), + BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue(), + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Blue() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput31_15) +{ + CheckInterpolation(IntSize(31, 15), { + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue(), BGRAColor::Blue(), + BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Blue(), + BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue(), + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Blue() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput17_33) +{ + CheckInterpolation(IntSize(17, 33), { + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), + BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput16_32) +{ + CheckInterpolation(IntSize(16, 32), { + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), + BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput15_31) +{ + CheckInterpolation(IntSize(15, 31), { + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), + BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(), + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput9_9) +{ + CheckInterpolation(IntSize(9, 9), { + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput8_8) +{ + CheckInterpolation(IntSize(8, 8), { + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput7_7) +{ + CheckInterpolation(IntSize(7, 7), { + BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(), + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput3_3) +{ + CheckInterpolation(IntSize(3, 3), { + BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Blue(), BGRAColor::Red() + }); +} + +TEST(ImageADAM7InterpolatingFilter, InterpolationOutput1_1) +{ + CheckInterpolation(IntSize(1, 1), { BGRAColor::Blue() }); +} + +TEST(ImageADAM7InterpolatingFilter, ADAM7InterpolationFailsFor0_0) +{ + // A 0x0 input size is invalid, so configuration should fail. + AssertConfiguringADAM7InterpolatingFilterFails(IntSize(0, 0)); +} + +TEST(ImageADAM7InterpolatingFilter, ADAM7InterpolationFailsForMinus1_Minus1) +{ + // A negative input size is invalid, so configuration should fail. + AssertConfiguringADAM7InterpolatingFilterFails(IntSize(-1, -1)); +} + +TEST(ImageADAM7InterpolatingFilter, ConfiguringPalettedADAM7InterpolatingFilterFails) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + // ADAM7InterpolatingFilter does not support paletted images, so configuration + // should fail. + AssertConfiguringPipelineFails(decoder, + ADAM7InterpolatingConfig { }, + PalettedSurfaceConfig { decoder, 0, IntSize(100, 100), + IntRect(0, 0, 50, 50), + SurfaceFormat::B8G8R8A8, 8, + false }); +} diff --git a/image/test/gtest/TestCopyOnWrite.cpp b/image/test/gtest/TestCopyOnWrite.cpp new file mode 100644 index 000000000..0d420b672 --- /dev/null +++ b/image/test/gtest/TestCopyOnWrite.cpp @@ -0,0 +1,235 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "CopyOnWrite.h" + +using namespace mozilla; +using namespace mozilla::image; + +struct ValueStats +{ + int32_t mCopies = 0; + int32_t mFrees = 0; + int32_t mCalls = 0; + int32_t mConstCalls = 0; + int32_t mSerial = 0; +}; + +struct Value +{ + NS_INLINE_DECL_REFCOUNTING(Value) + + explicit Value(ValueStats& aStats) + : mStats(aStats) + , mSerial(mStats.mSerial++) + { } + + Value(const Value& aOther) + : mStats(aOther.mStats) + , mSerial(mStats.mSerial++) + { + mStats.mCopies++; + } + + void Go() { mStats.mCalls++; } + void Go() const { mStats.mConstCalls++; } + + int32_t Serial() const { return mSerial; } + +protected: + ~Value() { mStats.mFrees++; } + +private: + ValueStats& mStats; + int32_t mSerial; +}; + +TEST(ImageCopyOnWrite, Read) +{ + ValueStats stats; + + { + CopyOnWrite<Value> cow(new Value(stats)); + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_TRUE(cow.CanRead()); + + cow.Read([&](const Value* aValue) { + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(0, aValue->Serial()); + EXPECT_TRUE(cow.CanRead()); + EXPECT_TRUE(cow.CanWrite()); + + aValue->Go(); + + EXPECT_EQ(0, stats.mCalls); + EXPECT_EQ(1, stats.mConstCalls); + }); + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(0, stats.mCalls); + EXPECT_EQ(1, stats.mConstCalls); + } + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(1, stats.mFrees); +} + +TEST(ImageCopyOnWrite, RecursiveRead) +{ + ValueStats stats; + + { + CopyOnWrite<Value> cow(new Value(stats)); + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_TRUE(cow.CanRead()); + + cow.Read([&](const Value* aValue) { + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(0, aValue->Serial()); + EXPECT_TRUE(cow.CanRead()); + EXPECT_TRUE(cow.CanWrite()); + + // Make sure that Read() inside a Read() succeeds. + cow.Read([&](const Value* aValue) { + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(0, aValue->Serial()); + EXPECT_TRUE(cow.CanRead()); + EXPECT_TRUE(cow.CanWrite()); + + aValue->Go(); + + EXPECT_EQ(0, stats.mCalls); + EXPECT_EQ(1, stats.mConstCalls); + }, []() { + // This gets called if we can't read. We shouldn't get here. + EXPECT_TRUE(false); + }); + }); + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(0, stats.mCalls); + EXPECT_EQ(1, stats.mConstCalls); + } + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(1, stats.mFrees); +} + +TEST(ImageCopyOnWrite, Write) +{ + ValueStats stats; + + { + CopyOnWrite<Value> cow(new Value(stats)); + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_TRUE(cow.CanRead()); + EXPECT_TRUE(cow.CanWrite()); + + cow.Write([&](Value* aValue) { + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(0, aValue->Serial()); + EXPECT_TRUE(!cow.CanRead()); + EXPECT_TRUE(!cow.CanWrite()); + + aValue->Go(); + + EXPECT_EQ(1, stats.mCalls); + EXPECT_EQ(0, stats.mConstCalls); + }); + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(1, stats.mCalls); + EXPECT_EQ(0, stats.mConstCalls); + } + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(1, stats.mFrees); +} + +TEST(ImageCopyOnWrite, WriteRecursive) +{ + ValueStats stats; + + { + CopyOnWrite<Value> cow(new Value(stats)); + + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_TRUE(cow.CanRead()); + EXPECT_TRUE(cow.CanWrite()); + + cow.Read([&](const Value* aValue) { + EXPECT_EQ(0, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(0, aValue->Serial()); + EXPECT_TRUE(cow.CanRead()); + EXPECT_TRUE(cow.CanWrite()); + + // Make sure Write() inside a Read() succeeds. + cow.Write([&](Value* aValue) { + EXPECT_EQ(1, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(1, aValue->Serial()); + EXPECT_TRUE(!cow.CanRead()); + EXPECT_TRUE(!cow.CanWrite()); + + aValue->Go(); + + EXPECT_EQ(1, stats.mCalls); + EXPECT_EQ(0, stats.mConstCalls); + + // Make sure Read() inside a Write() fails. + cow.Read([](const Value* aValue) { + // This gets called if we can read. We shouldn't get here. + EXPECT_TRUE(false); + }, []() { + // This gets called if we can't read. We *should* get here. + EXPECT_TRUE(true); + }); + + // Make sure Write() inside a Write() fails. + cow.Write([](Value* aValue) { + // This gets called if we can write. We shouldn't get here. + EXPECT_TRUE(false); + }, []() { + // This gets called if we can't write. We *should* get here. + EXPECT_TRUE(true); + }); + }, []() { + // This gets called if we can't write. We shouldn't get here. + EXPECT_TRUE(false); + }); + + aValue->Go(); + + EXPECT_EQ(1, stats.mCopies); + EXPECT_EQ(0, stats.mFrees); + EXPECT_EQ(1, stats.mCalls); + EXPECT_EQ(1, stats.mConstCalls); + }); + + EXPECT_EQ(1, stats.mCopies); + EXPECT_EQ(1, stats.mFrees); + EXPECT_EQ(1, stats.mCalls); + EXPECT_EQ(1, stats.mConstCalls); + } + + EXPECT_EQ(1, stats.mCopies); + EXPECT_EQ(2, stats.mFrees); +} diff --git a/image/test/gtest/TestDecodeToSurface.cpp b/image/test/gtest/TestDecodeToSurface.cpp new file mode 100644 index 000000000..bd52e7590 --- /dev/null +++ b/image/test/gtest/TestDecodeToSurface.cpp @@ -0,0 +1,123 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "Common.h" +#include "imgIContainer.h" +#include "imgITools.h" +#include "ImageOps.h" +#include "mozilla/gfx/2D.h" +#include "nsComponentManagerUtils.h" +#include "nsCOMPtr.h" +#include "nsIInputStream.h" +#include "nsIRunnable.h" +#include "nsIThread.h" +#include "mozilla/RefPtr.h" +#include "nsString.h" +#include "nsThreadUtils.h" + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +class DecodeToSurfaceRunnable : public Runnable +{ +public: + DecodeToSurfaceRunnable(RefPtr<SourceSurface>& aSurface, + nsIInputStream* aInputStream, + const ImageTestCase& aTestCase) + : mSurface(aSurface) + , mInputStream(aInputStream) + , mTestCase(aTestCase) + { } + + NS_IMETHOD Run() override + { + Go(); + return NS_OK; + } + + void Go() + { + mSurface = + ImageOps::DecodeToSurface(mInputStream, + nsDependentCString(mTestCase.mMimeType), + imgIContainer::DECODE_FLAGS_DEFAULT); + ASSERT_TRUE(mSurface != nullptr); + + EXPECT_EQ(SurfaceType::DATA, mSurface->GetType()); + EXPECT_TRUE(mSurface->GetFormat() == SurfaceFormat::B8G8R8X8 || + mSurface->GetFormat() == SurfaceFormat::B8G8R8A8); + EXPECT_EQ(mTestCase.mSize, mSurface->GetSize()); + + EXPECT_TRUE(IsSolidColor(mSurface, BGRAColor::Green(), + mTestCase.mFlags & TEST_CASE_IS_FUZZY ? 1 : 0)); + } + +private: + RefPtr<SourceSurface>& mSurface; + nsCOMPtr<nsIInputStream> mInputStream; + ImageTestCase mTestCase; +}; + +static void +RunDecodeToSurface(const ImageTestCase& aTestCase) +{ + nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath); + ASSERT_TRUE(inputStream != nullptr); + + nsCOMPtr<nsIThread> thread; + nsresult rv = NS_NewThread(getter_AddRefs(thread), nullptr); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // We run the DecodeToSurface tests off-main-thread to ensure that + // DecodeToSurface doesn't require any main-thread-only code. + RefPtr<SourceSurface> surface; + nsCOMPtr<nsIRunnable> runnable = + new DecodeToSurfaceRunnable(surface, inputStream, aTestCase); + thread->Dispatch(runnable, nsIThread::DISPATCH_SYNC); + + thread->Shutdown(); + + // Explicitly release the SourceSurface on the main thread. + surface = nullptr; +} + +class ImageDecodeToSurface : public ::testing::Test +{ +protected: + AutoInitializeImageLib mInit; +}; + +TEST_F(ImageDecodeToSurface, PNG) { RunDecodeToSurface(GreenPNGTestCase()); } +TEST_F(ImageDecodeToSurface, GIF) { RunDecodeToSurface(GreenGIFTestCase()); } +TEST_F(ImageDecodeToSurface, JPG) { RunDecodeToSurface(GreenJPGTestCase()); } +TEST_F(ImageDecodeToSurface, BMP) { RunDecodeToSurface(GreenBMPTestCase()); } +TEST_F(ImageDecodeToSurface, ICO) { RunDecodeToSurface(GreenICOTestCase()); } +TEST_F(ImageDecodeToSurface, Icon) { RunDecodeToSurface(GreenIconTestCase()); } + +TEST_F(ImageDecodeToSurface, AnimatedGIF) +{ + RunDecodeToSurface(GreenFirstFrameAnimatedGIFTestCase()); +} + +TEST_F(ImageDecodeToSurface, AnimatedPNG) +{ + RunDecodeToSurface(GreenFirstFrameAnimatedPNGTestCase()); +} + +TEST_F(ImageDecodeToSurface, Corrupt) +{ + ImageTestCase testCase = CorruptTestCase(); + + nsCOMPtr<nsIInputStream> inputStream = LoadFile(testCase.mPath); + ASSERT_TRUE(inputStream != nullptr); + + RefPtr<SourceSurface> surface = + ImageOps::DecodeToSurface(inputStream, + nsDependentCString(testCase.mMimeType), + imgIContainer::DECODE_FLAGS_DEFAULT); + EXPECT_TRUE(surface == nullptr); +} diff --git a/image/test/gtest/TestDecoders.cpp b/image/test/gtest/TestDecoders.cpp new file mode 100644 index 000000000..58caa77a2 --- /dev/null +++ b/image/test/gtest/TestDecoders.cpp @@ -0,0 +1,669 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "Common.h" +#include "Decoder.h" +#include "DecoderFactory.h" +#include "decoders/nsBMPDecoder.h" +#include "IDecodingTask.h" +#include "imgIContainer.h" +#include "imgITools.h" +#include "ImageFactory.h" +#include "mozilla/gfx/2D.h" +#include "nsComponentManagerUtils.h" +#include "nsCOMPtr.h" +#include "nsIInputStream.h" +#include "nsIRunnable.h" +#include "nsIThread.h" +#include "mozilla/RefPtr.h" +#include "nsStreamUtils.h" +#include "nsString.h" +#include "nsThreadUtils.h" +#include "ProgressTracker.h" +#include "SourceBuffer.h" + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +static already_AddRefed<SourceSurface> +CheckDecoderState(const ImageTestCase& aTestCase, Decoder* aDecoder) +{ + EXPECT_TRUE(aDecoder->GetDecodeDone()); + EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_HAS_ERROR), + aDecoder->HasError()); + + // Verify that the decoder made the expected progress. + Progress progress = aDecoder->TakeProgress(); + EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_HAS_ERROR), + bool(progress & FLAG_HAS_ERROR)); + + if (aTestCase.mFlags & TEST_CASE_HAS_ERROR) { + return nullptr; // That's all we can check for bad images. + } + + EXPECT_TRUE(bool(progress & FLAG_SIZE_AVAILABLE)); + EXPECT_TRUE(bool(progress & FLAG_DECODE_COMPLETE)); + EXPECT_TRUE(bool(progress & FLAG_FRAME_COMPLETE)); + EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_IS_TRANSPARENT), + bool(progress & FLAG_HAS_TRANSPARENCY)); + EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_IS_ANIMATED), + bool(progress & FLAG_IS_ANIMATED)); + + // The decoder should get the correct size. + IntSize size = aDecoder->Size(); + EXPECT_EQ(aTestCase.mSize.width, size.width); + EXPECT_EQ(aTestCase.mSize.height, size.height); + + // Get the current frame, which is always the first frame of the image + // because CreateAnonymousDecoder() forces a first-frame-only decode. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + // Verify that the resulting surfaces matches our expectations. + EXPECT_EQ(SurfaceType::DATA, surface->GetType()); + EXPECT_TRUE(surface->GetFormat() == SurfaceFormat::B8G8R8X8 || + surface->GetFormat() == SurfaceFormat::B8G8R8A8); + EXPECT_EQ(aTestCase.mOutputSize, surface->GetSize()); + + return surface.forget(); +} + +static void +CheckDecoderResults(const ImageTestCase& aTestCase, Decoder* aDecoder) +{ + RefPtr<SourceSurface> surface = CheckDecoderState(aTestCase, aDecoder); + if (!surface) { + return; + } + + if (aTestCase.mFlags & TEST_CASE_IGNORE_OUTPUT) { + return; + } + + // Check the output. + EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Green(), + aTestCase.mFlags & TEST_CASE_IS_FUZZY ? 1 : 0)); +} + +template <typename Func> +void WithSingleChunkDecode(const ImageTestCase& aTestCase, + const Maybe<IntSize>& aOutputSize, + Func aResultChecker) +{ + nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath); + ASSERT_TRUE(inputStream != nullptr); + + // Figure out how much data we have. + uint64_t length; + nsresult rv = inputStream->Available(&length); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Write the data into a SourceBuffer. + NotNull<RefPtr<SourceBuffer>> sourceBuffer = WrapNotNull(new SourceBuffer()); + sourceBuffer->ExpectLength(length); + rv = sourceBuffer->AppendFromInputStream(inputStream, length); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + sourceBuffer->Complete(NS_OK); + + // Create a decoder. + DecoderType decoderType = + DecoderFactory::GetDecoderType(aTestCase.mMimeType); + RefPtr<Decoder> decoder = + DecoderFactory::CreateAnonymousDecoder(decoderType, sourceBuffer, aOutputSize, + DefaultSurfaceFlags()); + ASSERT_TRUE(decoder != nullptr); + RefPtr<IDecodingTask> task = new AnonymousDecodingTask(WrapNotNull(decoder)); + + // Run the full decoder synchronously. + task->Run(); + + // Call the lambda to verify the expected results. + aResultChecker(decoder); +} + +static void +CheckDecoderSingleChunk(const ImageTestCase& aTestCase) +{ + WithSingleChunkDecode(aTestCase, Nothing(), [&](Decoder* aDecoder) { + CheckDecoderResults(aTestCase, aDecoder); + }); +} + +static void +CheckDecoderMultiChunk(const ImageTestCase& aTestCase) +{ + nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath); + ASSERT_TRUE(inputStream != nullptr); + + // Figure out how much data we have. + uint64_t length; + nsresult rv = inputStream->Available(&length); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Create a SourceBuffer and a decoder. + NotNull<RefPtr<SourceBuffer>> sourceBuffer = WrapNotNull(new SourceBuffer()); + sourceBuffer->ExpectLength(length); + DecoderType decoderType = + DecoderFactory::GetDecoderType(aTestCase.mMimeType); + RefPtr<Decoder> decoder = + DecoderFactory::CreateAnonymousDecoder(decoderType, sourceBuffer, Nothing(), + DefaultSurfaceFlags()); + ASSERT_TRUE(decoder != nullptr); + RefPtr<IDecodingTask> task = new AnonymousDecodingTask(WrapNotNull(decoder)); + + for (uint64_t read = 0; read < length ; ++read) { + uint64_t available = 0; + rv = inputStream->Available(&available); + ASSERT_TRUE(available > 0); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + rv = sourceBuffer->AppendFromInputStream(inputStream, 1); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + task->Run(); + } + + sourceBuffer->Complete(NS_OK); + task->Run(); + + CheckDecoderResults(aTestCase, decoder); +} + +static void +CheckDownscaleDuringDecode(const ImageTestCase& aTestCase) +{ + // This function expects that |aTestCase| consists of 25 lines of green, + // followed by 25 lines of red, followed by 25 lines of green, followed by 25 + // more lines of red. We'll downscale it from 100x100 to 20x20. + IntSize outputSize(20, 20); + + WithSingleChunkDecode(aTestCase, Some(outputSize), [&](Decoder* aDecoder) { + RefPtr<SourceSurface> surface = CheckDecoderState(aTestCase, aDecoder); + + // There are no downscale-during-decode tests that have TEST_CASE_HAS_ERROR + // set, so we expect to always get a surface here. + EXPECT_TRUE(surface != nullptr); + + if (aTestCase.mFlags & TEST_CASE_IGNORE_OUTPUT) { + return; + } + + // Check that the downscaled image is correct. Note that we skip rows near + // the transitions between colors, since the downscaler does not produce a + // sharp boundary at these points. Even some of the rows we test need a + // small amount of fuzz; this is just the nature of Lanczos downscaling. + EXPECT_TRUE(RowsAreSolidColor(surface, 0, 4, BGRAColor::Green(), /* aFuzz = */ 47)); + EXPECT_TRUE(RowsAreSolidColor(surface, 6, 3, BGRAColor::Red(), /* aFuzz = */ 27)); + EXPECT_TRUE(RowsAreSolidColor(surface, 11, 3, BGRAColor::Green(), /* aFuzz = */ 47)); + EXPECT_TRUE(RowsAreSolidColor(surface, 16, 4, BGRAColor::Red(), /* aFuzz = */ 27)); + }); +} + +class ImageDecoders : public ::testing::Test +{ +protected: + AutoInitializeImageLib mInit; +}; + +TEST_F(ImageDecoders, PNGSingleChunk) +{ + CheckDecoderSingleChunk(GreenPNGTestCase()); +} + +TEST_F(ImageDecoders, PNGMultiChunk) +{ + CheckDecoderMultiChunk(GreenPNGTestCase()); +} + +TEST_F(ImageDecoders, PNGDownscaleDuringDecode) +{ + CheckDownscaleDuringDecode(DownscaledPNGTestCase()); +} + +TEST_F(ImageDecoders, GIFSingleChunk) +{ + CheckDecoderSingleChunk(GreenGIFTestCase()); +} + +TEST_F(ImageDecoders, GIFMultiChunk) +{ + CheckDecoderMultiChunk(GreenGIFTestCase()); +} + +TEST_F(ImageDecoders, GIFDownscaleDuringDecode) +{ + CheckDownscaleDuringDecode(DownscaledGIFTestCase()); +} + +TEST_F(ImageDecoders, JPGSingleChunk) +{ + CheckDecoderSingleChunk(GreenJPGTestCase()); +} + +TEST_F(ImageDecoders, JPGMultiChunk) +{ + CheckDecoderMultiChunk(GreenJPGTestCase()); +} + +TEST_F(ImageDecoders, JPGDownscaleDuringDecode) +{ + CheckDownscaleDuringDecode(DownscaledJPGTestCase()); +} + +TEST_F(ImageDecoders, BMPSingleChunk) +{ + CheckDecoderSingleChunk(GreenBMPTestCase()); +} + +TEST_F(ImageDecoders, BMPMultiChunk) +{ + CheckDecoderMultiChunk(GreenBMPTestCase()); +} + +TEST_F(ImageDecoders, BMPDownscaleDuringDecode) +{ + CheckDownscaleDuringDecode(DownscaledBMPTestCase()); +} + +TEST_F(ImageDecoders, ICOSingleChunk) +{ + CheckDecoderSingleChunk(GreenICOTestCase()); +} + +TEST_F(ImageDecoders, ICOMultiChunk) +{ + CheckDecoderMultiChunk(GreenICOTestCase()); +} + +TEST_F(ImageDecoders, ICODownscaleDuringDecode) +{ + CheckDownscaleDuringDecode(DownscaledICOTestCase()); +} + +TEST_F(ImageDecoders, ICOWithANDMaskDownscaleDuringDecode) +{ + CheckDownscaleDuringDecode(DownscaledTransparentICOWithANDMaskTestCase()); +} + +TEST_F(ImageDecoders, IconSingleChunk) +{ + CheckDecoderSingleChunk(GreenIconTestCase()); +} + +TEST_F(ImageDecoders, IconMultiChunk) +{ + CheckDecoderMultiChunk(GreenIconTestCase()); +} + +TEST_F(ImageDecoders, IconDownscaleDuringDecode) +{ + CheckDownscaleDuringDecode(DownscaledIconTestCase()); +} + +TEST_F(ImageDecoders, AnimatedGIFSingleChunk) +{ + CheckDecoderSingleChunk(GreenFirstFrameAnimatedGIFTestCase()); +} + +TEST_F(ImageDecoders, AnimatedGIFMultiChunk) +{ + CheckDecoderMultiChunk(GreenFirstFrameAnimatedGIFTestCase()); +} + +TEST_F(ImageDecoders, AnimatedPNGSingleChunk) +{ + CheckDecoderSingleChunk(GreenFirstFrameAnimatedPNGTestCase()); +} + +TEST_F(ImageDecoders, AnimatedPNGMultiChunk) +{ + CheckDecoderMultiChunk(GreenFirstFrameAnimatedPNGTestCase()); +} + +TEST_F(ImageDecoders, CorruptSingleChunk) +{ + CheckDecoderSingleChunk(CorruptTestCase()); +} + +TEST_F(ImageDecoders, CorruptMultiChunk) +{ + CheckDecoderMultiChunk(CorruptTestCase()); +} + +TEST_F(ImageDecoders, CorruptBMPWithTruncatedHeaderSingleChunk) +{ + CheckDecoderSingleChunk(CorruptBMPWithTruncatedHeader()); +} + +TEST_F(ImageDecoders, CorruptBMPWithTruncatedHeaderMultiChunk) +{ + CheckDecoderMultiChunk(CorruptBMPWithTruncatedHeader()); +} + +TEST_F(ImageDecoders, CorruptICOWithBadBMPWidthSingleChunk) +{ + CheckDecoderSingleChunk(CorruptICOWithBadBMPWidthTestCase()); +} + +TEST_F(ImageDecoders, CorruptICOWithBadBMPWidthMultiChunk) +{ + CheckDecoderMultiChunk(CorruptICOWithBadBMPWidthTestCase()); +} + +TEST_F(ImageDecoders, CorruptICOWithBadBMPHeightSingleChunk) +{ + CheckDecoderSingleChunk(CorruptICOWithBadBMPHeightTestCase()); +} + +TEST_F(ImageDecoders, CorruptICOWithBadBMPHeightMultiChunk) +{ + CheckDecoderMultiChunk(CorruptICOWithBadBMPHeightTestCase()); +} + +TEST_F(ImageDecoders, AnimatedGIFWithFRAME_FIRST) +{ + ImageTestCase testCase = GreenFirstFrameAnimatedGIFTestCase(); + + // Verify that we can decode this test case and retrieve the first frame using + // imgIContainer::FRAME_FIRST. This ensures that we correctly trigger a + // single-frame decode rather than an animated decode when + // imgIContainer::FRAME_FIRST is requested. + + // Create an image. + RefPtr<Image> image = + ImageFactory::CreateAnonymousImage(nsDependentCString(testCase.mMimeType)); + ASSERT_TRUE(!image->HasError()); + + nsCOMPtr<nsIInputStream> inputStream = LoadFile(testCase.mPath); + ASSERT_TRUE(inputStream); + + // Figure out how much data we have. + uint64_t length; + nsresult rv = inputStream->Available(&length); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Write the data into the image. + rv = image->OnImageDataAvailable(nullptr, nullptr, inputStream, 0, + static_cast<uint32_t>(length)); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Let the image know we've sent all the data. + rv = image->OnImageDataComplete(nullptr, nullptr, NS_OK, true); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + RefPtr<ProgressTracker> tracker = image->GetProgressTracker(); + tracker->SyncNotifyProgress(FLAG_LOAD_COMPLETE); + + // Lock the image so its surfaces don't disappear during the test. + image->LockImage(); + + // Use GetFrame() to force a sync decode of the image, specifying FRAME_FIRST + // to ensure that we don't get an animated decode. + RefPtr<SourceSurface> surface = + image->GetFrame(imgIContainer::FRAME_FIRST, + imgIContainer::FLAG_SYNC_DECODE); + + // Ensure that the image's metadata meets our expectations. + IntSize imageSize(0, 0); + rv = image->GetWidth(&imageSize.width); + EXPECT_TRUE(NS_SUCCEEDED(rv)); + rv = image->GetHeight(&imageSize.height); + EXPECT_TRUE(NS_SUCCEEDED(rv)); + + EXPECT_EQ(testCase.mSize.width, imageSize.width); + EXPECT_EQ(testCase.mSize.height, imageSize.height); + + Progress imageProgress = tracker->GetProgress(); + + EXPECT_TRUE(bool(imageProgress & FLAG_HAS_TRANSPARENCY) == false); + EXPECT_TRUE(bool(imageProgress & FLAG_IS_ANIMATED) == true); + + // Ensure that we decoded the static version of the image. + { + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eStatic)); + ASSERT_EQ(MatchType::EXACT, result.Type()); + EXPECT_TRUE(bool(result.Surface())); + } + + // Ensure that we didn't decode the animated version of the image. + { + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eAnimated)); + ASSERT_EQ(MatchType::NOT_FOUND, result.Type()); + } + + // Use GetFrame() to force a sync decode of the image, this time specifying + // FRAME_CURRENT to ensure that we get an animated decode. + RefPtr<SourceSurface> animatedSurface = + image->GetFrame(imgIContainer::FRAME_CURRENT, + imgIContainer::FLAG_SYNC_DECODE); + + // Ensure that we decoded both frames of the animated version of the image. + { + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eAnimated)); + ASSERT_EQ(MatchType::EXACT, result.Type()); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(0))); + EXPECT_TRUE(bool(result.Surface())); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(1))); + EXPECT_TRUE(bool(result.Surface())); + } + + // Ensure that the static version is still around. + { + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eStatic)); + ASSERT_EQ(MatchType::EXACT, result.Type()); + EXPECT_TRUE(bool(result.Surface())); + } +} + +TEST_F(ImageDecoders, AnimatedGIFWithFRAME_CURRENT) +{ + ImageTestCase testCase = GreenFirstFrameAnimatedGIFTestCase(); + + // Verify that we can decode this test case and retrieve the entire sequence + // of frames using imgIContainer::FRAME_CURRENT. This ensures that we + // correctly trigger an animated decode rather than a single-frame decode when + // imgIContainer::FRAME_CURRENT is requested. + + // Create an image. + RefPtr<Image> image = + ImageFactory::CreateAnonymousImage(nsDependentCString(testCase.mMimeType)); + ASSERT_TRUE(!image->HasError()); + + nsCOMPtr<nsIInputStream> inputStream = LoadFile(testCase.mPath); + ASSERT_TRUE(inputStream); + + // Figure out how much data we have. + uint64_t length; + nsresult rv = inputStream->Available(&length); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Write the data into the image. + rv = image->OnImageDataAvailable(nullptr, nullptr, inputStream, 0, + static_cast<uint32_t>(length)); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Let the image know we've sent all the data. + rv = image->OnImageDataComplete(nullptr, nullptr, NS_OK, true); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + RefPtr<ProgressTracker> tracker = image->GetProgressTracker(); + tracker->SyncNotifyProgress(FLAG_LOAD_COMPLETE); + + // Lock the image so its surfaces don't disappear during the test. + image->LockImage(); + + // Use GetFrame() to force a sync decode of the image, specifying + // FRAME_CURRENT to ensure we get an animated decode. + RefPtr<SourceSurface> surface = + image->GetFrame(imgIContainer::FRAME_CURRENT, + imgIContainer::FLAG_SYNC_DECODE); + + // Ensure that the image's metadata meets our expectations. + IntSize imageSize(0, 0); + rv = image->GetWidth(&imageSize.width); + EXPECT_TRUE(NS_SUCCEEDED(rv)); + rv = image->GetHeight(&imageSize.height); + EXPECT_TRUE(NS_SUCCEEDED(rv)); + + EXPECT_EQ(testCase.mSize.width, imageSize.width); + EXPECT_EQ(testCase.mSize.height, imageSize.height); + + Progress imageProgress = tracker->GetProgress(); + + EXPECT_TRUE(bool(imageProgress & FLAG_HAS_TRANSPARENCY) == false); + EXPECT_TRUE(bool(imageProgress & FLAG_IS_ANIMATED) == true); + + // Ensure that we decoded both frames of the animated version of the image. + { + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eAnimated)); + ASSERT_EQ(MatchType::EXACT, result.Type()); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(0))); + EXPECT_TRUE(bool(result.Surface())); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(1))); + EXPECT_TRUE(bool(result.Surface())); + } + + // Ensure that we didn't decode the static version of the image. + { + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eStatic)); + ASSERT_EQ(MatchType::NOT_FOUND, result.Type()); + } + + // Use GetFrame() to force a sync decode of the image, this time specifying + // FRAME_FIRST to ensure that we get a single-frame decode. + RefPtr<SourceSurface> animatedSurface = + image->GetFrame(imgIContainer::FRAME_FIRST, + imgIContainer::FLAG_SYNC_DECODE); + + // Ensure that we decoded the static version of the image. + { + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eStatic)); + ASSERT_EQ(MatchType::EXACT, result.Type()); + EXPECT_TRUE(bool(result.Surface())); + } + + // Ensure that both frames of the animated version are still around. + { + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eAnimated)); + ASSERT_EQ(MatchType::EXACT, result.Type()); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(0))); + EXPECT_TRUE(bool(result.Surface())); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(1))); + EXPECT_TRUE(bool(result.Surface())); + } +} + +TEST_F(ImageDecoders, AnimatedGIFWithExtraImageSubBlocks) +{ + ImageTestCase testCase = ExtraImageSubBlocksAnimatedGIFTestCase(); + + // Verify that we can decode this test case and get two frames, even though + // there are extra image sub blocks between the first and second frame. The + // extra data shouldn't confuse the decoder or cause the decode to fail. + + // Create an image. + RefPtr<Image> image = + ImageFactory::CreateAnonymousImage(nsDependentCString(testCase.mMimeType)); + ASSERT_TRUE(!image->HasError()); + + nsCOMPtr<nsIInputStream> inputStream = LoadFile(testCase.mPath); + ASSERT_TRUE(inputStream); + + // Figure out how much data we have. + uint64_t length; + nsresult rv = inputStream->Available(&length); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Write the data into the image. + rv = image->OnImageDataAvailable(nullptr, nullptr, inputStream, 0, + static_cast<uint32_t>(length)); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Let the image know we've sent all the data. + rv = image->OnImageDataComplete(nullptr, nullptr, NS_OK, true); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + RefPtr<ProgressTracker> tracker = image->GetProgressTracker(); + tracker->SyncNotifyProgress(FLAG_LOAD_COMPLETE); + + // Use GetFrame() to force a sync decode of the image. + RefPtr<SourceSurface> surface = + image->GetFrame(imgIContainer::FRAME_CURRENT, + imgIContainer::FLAG_SYNC_DECODE); + + // Ensure that the image's metadata meets our expectations. + IntSize imageSize(0, 0); + rv = image->GetWidth(&imageSize.width); + EXPECT_TRUE(NS_SUCCEEDED(rv)); + rv = image->GetHeight(&imageSize.height); + EXPECT_TRUE(NS_SUCCEEDED(rv)); + + EXPECT_EQ(testCase.mSize.width, imageSize.width); + EXPECT_EQ(testCase.mSize.height, imageSize.height); + + Progress imageProgress = tracker->GetProgress(); + + EXPECT_TRUE(bool(imageProgress & FLAG_HAS_TRANSPARENCY) == false); + EXPECT_TRUE(bool(imageProgress & FLAG_IS_ANIMATED) == true); + + // Ensure that we decoded both frames of the image. + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eAnimated)); + ASSERT_EQ(MatchType::EXACT, result.Type()); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(0))); + EXPECT_TRUE(bool(result.Surface())); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(1))); + EXPECT_TRUE(bool(result.Surface())); +} + +TEST_F(ImageDecoders, TruncatedSmallGIFSingleChunk) +{ + CheckDecoderSingleChunk(TruncatedSmallGIFTestCase()); +} diff --git a/image/test/gtest/TestDeinterlacingFilter.cpp b/image/test/gtest/TestDeinterlacingFilter.cpp new file mode 100644 index 000000000..30cad7993 --- /dev/null +++ b/image/test/gtest/TestDeinterlacingFilter.cpp @@ -0,0 +1,672 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "mozilla/gfx/2D.h" +#include "Common.h" +#include "Decoder.h" +#include "DecoderFactory.h" +#include "SourceBuffer.h" +#include "SurfaceFilters.h" +#include "SurfacePipe.h" + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +template <typename Func> void +WithDeinterlacingFilter(const IntSize& aSize, + bool aProgressiveDisplay, + Func aFunc) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(bool(decoder)); + + WithFilterPipeline(decoder, Forward<Func>(aFunc), + DeinterlacingConfig<uint32_t> { aProgressiveDisplay }, + SurfaceConfig { decoder, 0, aSize, + SurfaceFormat::B8G8R8A8, false }); +} + +template <typename Func> void +WithPalettedDeinterlacingFilter(const IntSize& aSize, + Func aFunc) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + WithFilterPipeline(decoder, Forward<Func>(aFunc), + DeinterlacingConfig<uint8_t> { /* mProgressiveDisplay = */ true }, + PalettedSurfaceConfig { decoder, 0, aSize, + IntRect(0, 0, 100, 100), + SurfaceFormat::B8G8R8A8, 8, + false }); +} + +void +AssertConfiguringDeinterlacingFilterFails(const IntSize& aSize) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + AssertConfiguringPipelineFails(decoder, + DeinterlacingConfig<uint32_t> { /* mProgressiveDisplay = */ true}, + SurfaceConfig { decoder, 0, aSize, + SurfaceFormat::B8G8R8A8, false }); +} + +class ImageDeinterlacingFilter : public ::testing::Test +{ +protected: + AutoInitializeImageLib mInit; +}; + +TEST_F(ImageDeinterlacingFilter, WritePixels100_100) +{ + WithDeinterlacingFilter(IntSize(100, 100), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100))); + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixels99_99) +{ + WithDeinterlacingFilter(IntSize(99, 99), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 99, 99)), + /* aInputRect = */ Some(IntRect(0, 0, 99, 99))); + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixels8_8) +{ + WithDeinterlacingFilter(IntSize(8, 8), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 8, 8)), + /* aInputRect = */ Some(IntRect(0, 0, 8, 8))); + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixels7_7) +{ + WithDeinterlacingFilter(IntSize(7, 7), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 7, 7)), + /* aInputRect = */ Some(IntRect(0, 0, 7, 7))); + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixels3_3) +{ + WithDeinterlacingFilter(IntSize(3, 3), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 3, 3)), + /* aInputRect = */ Some(IntRect(0, 0, 3, 3))); + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixels1_1) +{ + WithDeinterlacingFilter(IntSize(1, 1), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 1, 1)), + /* aInputRect = */ Some(IntRect(0, 0, 1, 1))); + }); +} + +TEST_F(ImageDeinterlacingFilter, PalettedWritePixels) +{ + WithPalettedDeinterlacingFilter(IntSize(100, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckPalettedWritePixels(aDecoder, aFilter); + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixelsNonProgressiveOutput51_52) +{ + WithDeinterlacingFilter(IntSize(51, 52), /* aProgressiveDisplay = */ false, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Fill the image. The output should be green for even rows and red for odd + // rows but we need to write the rows in the order that the deinterlacer + // expects them. + uint32_t count = 0; + auto result = aFilter->WritePixels<uint32_t>([&]() { + uint32_t row = count / 51; // Integer division. + ++count; + + // Note that we use a switch statement here, even though it's quite + // verbose, because it's useful to have the mappings between input and + // output rows available when debugging these tests. + + switch (row) { + // First pass. Output rows are positioned at 8n + 0. + case 0: // Output row 0. + case 1: // Output row 8. + case 2: // Output row 16. + case 3: // Output row 24. + case 4: // Output row 32. + case 5: // Output row 40. + case 6: // Output row 48. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Second pass. Rows are positioned at 8n + 4. + case 7: // Output row 4. + case 8: // Output row 12. + case 9: // Output row 20. + case 10: // Output row 28. + case 11: // Output row 36. + case 12: // Output row 44. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Third pass. Rows are positioned at 4n + 2. + case 13: // Output row 2. + case 14: // Output row 6. + case 15: // Output row 10. + case 16: // Output row 14. + case 17: // Output row 18. + case 18: // Output row 22. + case 19: // Output row 26. + case 20: // Output row 30. + case 21: // Output row 34. + case 22: // Output row 38. + case 23: // Output row 42. + case 24: // Output row 46. + case 25: // Output row 50. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Fourth pass. Rows are positioned at 2n + 1. + case 26: // Output row 1. + case 27: // Output row 3. + case 28: // Output row 5. + case 29: // Output row 7. + case 30: // Output row 9. + case 31: // Output row 11. + case 32: // Output row 13. + case 33: // Output row 15. + case 34: // Output row 17. + case 35: // Output row 19. + case 36: // Output row 21. + case 37: // Output row 23. + case 38: // Output row 25. + case 39: // Output row 27. + case 40: // Output row 29. + case 41: // Output row 31. + case 42: // Output row 33. + case 43: // Output row 35. + case 44: // Output row 37. + case 45: // Output row 39. + case 46: // Output row 41. + case 47: // Output row 43. + case 48: // Output row 45. + case 49: // Output row 47. + case 50: // Output row 49. + case 51: // Output row 51. + return AsVariant(BGRAColor::Red().AsPixel()); + + default: + MOZ_ASSERT_UNREACHABLE("Unexpected row"); + return AsVariant(BGRAColor::Transparent().AsPixel()); + } + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(51u * 52u, count); + + AssertCorrectPipelineFinalState(aFilter, + IntRect(0, 0, 51, 52), + IntRect(0, 0, 51, 52)); + + // Check that the generated image is correct. As mentioned above, we expect + // even rows to be green and odd rows to be red. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + for (uint32_t row = 0; row < 52; ++row) { + EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, + row % 2 == 0 ? BGRAColor::Green() + : BGRAColor::Red())); + } + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixelsOutput20_20) +{ + WithDeinterlacingFilter(IntSize(20, 20), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Fill the image. The output should be green for even rows and red for odd + // rows but we need to write the rows in the order that the deinterlacer + // expects them. + uint32_t count = 0; + auto result = aFilter->WritePixels<uint32_t>([&]() { + uint32_t row = count / 20; // Integer division. + ++count; + + // Note that we use a switch statement here, even though it's quite + // verbose, because it's useful to have the mappings between input and + // output rows available when debugging these tests. + + switch (row) { + // First pass. Output rows are positioned at 8n + 0. + case 0: // Output row 0. + case 1: // Output row 8. + case 2: // Output row 16. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Second pass. Rows are positioned at 8n + 4. + case 3: // Output row 4. + case 4: // Output row 12. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Third pass. Rows are positioned at 4n + 2. + case 5: // Output row 2. + case 6: // Output row 6. + case 7: // Output row 10. + case 8: // Output row 14. + case 9: // Output row 18. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Fourth pass. Rows are positioned at 2n + 1. + case 10: // Output row 1. + case 11: // Output row 3. + case 12: // Output row 5. + case 13: // Output row 7. + case 14: // Output row 9. + case 15: // Output row 11. + case 16: // Output row 13. + case 17: // Output row 15. + case 18: // Output row 17. + case 19: // Output row 19. + return AsVariant(BGRAColor::Red().AsPixel()); + + default: + MOZ_ASSERT_UNREACHABLE("Unexpected row"); + return AsVariant(BGRAColor::Transparent().AsPixel()); + } + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(20u * 20u, count); + + AssertCorrectPipelineFinalState(aFilter, + IntRect(0, 0, 20, 20), + IntRect(0, 0, 20, 20)); + + // Check that the generated image is correct. As mentioned above, we expect + // even rows to be green and odd rows to be red. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + for (uint32_t row = 0; row < 20; ++row) { + EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, + row % 2 == 0 ? BGRAColor::Green() + : BGRAColor::Red())); + } + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixelsOutput7_7) +{ + WithDeinterlacingFilter(IntSize(7, 7), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Fill the image. The output should be a repeating pattern of two green + // rows followed by two red rows but we need to write the rows in the order + // that the deinterlacer expects them. + uint32_t count = 0; + auto result = aFilter->WritePixels<uint32_t>([&]() { + uint32_t row = count / 7; // Integer division. + ++count; + + switch (row) { + // First pass. Output rows are positioned at 8n + 0. + case 0: // Output row 0. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Second pass. Rows are positioned at 8n + 4. + case 1: // Output row 4. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Third pass. Rows are positioned at 4n + 2. + case 2: // Output row 2. + case 3: // Output row 6. + return AsVariant(BGRAColor::Red().AsPixel()); + + // Fourth pass. Rows are positioned at 2n + 1. + case 4: // Output row 1. + return AsVariant(BGRAColor::Green().AsPixel()); + + case 5: // Output row 3. + return AsVariant(BGRAColor::Red().AsPixel()); + + case 6: // Output row 5. + return AsVariant(BGRAColor::Green().AsPixel()); + + default: + MOZ_ASSERT_UNREACHABLE("Unexpected row"); + return AsVariant(BGRAColor::Transparent().AsPixel()); + } + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(7u * 7u, count); + + AssertCorrectPipelineFinalState(aFilter, + IntRect(0, 0, 7, 7), + IntRect(0, 0, 7, 7)); + + // Check that the generated image is correct. As mentioned above, we expect + // two green rows, followed by two red rows, then two green rows, etc. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + for (uint32_t row = 0; row < 7; ++row) { + BGRAColor color = row == 0 || row == 1 || row == 4 || row == 5 + ? BGRAColor::Green() + : BGRAColor::Red(); + EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, color)); + } + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixelsOutput3_3) +{ + WithDeinterlacingFilter(IntSize(3, 3), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Fill the image. The output should be green, red, green in that order, but + // we need to write the rows in the order that the deinterlacer expects + // them. + uint32_t count = 0; + auto result = aFilter->WritePixels<uint32_t>([&]() { + uint32_t row = count / 3; // Integer division. + ++count; + + switch (row) { + // First pass. Output rows are positioned at 8n + 0. + case 0: // Output row 0. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Second pass. Rows are positioned at 8n + 4. + // No rows for this pass. + + // Third pass. Rows are positioned at 4n + 2. + case 1: // Output row 2. + return AsVariant(BGRAColor::Green().AsPixel()); + + // Fourth pass. Rows are positioned at 2n + 1. + case 2: // Output row 1. + return AsVariant(BGRAColor::Red().AsPixel()); + + default: + MOZ_ASSERT_UNREACHABLE("Unexpected row"); + return AsVariant(BGRAColor::Transparent().AsPixel()); + } + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(3u * 3u, count); + + AssertCorrectPipelineFinalState(aFilter, + IntRect(0, 0, 3, 3), + IntRect(0, 0, 3, 3)); + + // Check that the generated image is correct. As mentioned above, we expect + // green, red, green in that order. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + for (uint32_t row = 0; row < 3; ++row) { + EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, + row == 0 || row == 2 ? BGRAColor::Green() + : BGRAColor::Red())); + } + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixelsOutput1_1) +{ + WithDeinterlacingFilter(IntSize(1, 1), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Fill the image. The output should be a single red row. + uint32_t count = 0; + auto result = aFilter->WritePixels<uint32_t>([&]() { + ++count; + return AsVariant(BGRAColor::Red().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(1u, count); + + AssertCorrectPipelineFinalState(aFilter, + IntRect(0, 0, 1, 1), + IntRect(0, 0, 1, 1)); + + // Check that the generated image is correct. As mentioned above, we expect + // a single red row. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + EXPECT_TRUE(RowsAreSolidColor(surface, 0, 1, BGRAColor::Red())); + }); +} + +void +WriteRowAndCheckInterlacerOutput(Decoder* aDecoder, + SurfaceFilter* aFilter, + BGRAColor aColor, + WriteState aNextState, + IntRect aInvalidRect, + uint32_t aFirstHaeberliRow, + uint32_t aLastHaeberliRow) +{ + uint32_t count = 0; + + auto result = aFilter->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count < 7) { + ++count; + return AsVariant(aColor.AsPixel()); + } + return AsVariant(WriteState::NEED_MORE_DATA); + }); + + EXPECT_EQ(aNextState, result); + EXPECT_EQ(7u, count); + + // Assert that we got the expected invalidation region. + Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(aInvalidRect, invalidRect->mInputSpaceRect); + EXPECT_EQ(aInvalidRect, invalidRect->mOutputSpaceRect); + + // Check that the portion of the image generated so far is correct. The rows + // from aFirstHaeberliRow to aLastHaeberliRow should be filled with aColor. + // Note that this is not the same as the set of rows in aInvalidRect, because + // after writing a row the deinterlacer seeks to the next row to write, which + // may involve copying previously-written rows in the buffer to the output + // even though they don't change in this pass. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + for (uint32_t row = aFirstHaeberliRow; row <= aLastHaeberliRow; ++row) { + EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, aColor)); + } +} + +TEST_F(ImageDeinterlacingFilter, WritePixelsIntermediateOutput7_7) +{ + WithDeinterlacingFilter(IntSize(7, 7), /* aProgressiveDisplay = */ true, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Fill the image. The output should be a repeating pattern of two green + // rows followed by two red rows but we need to write the rows in the order + // that the deinterlacer expects them. + + // First pass. Output rows are positioned at 8n + 0. + + // Output row 0. The invalid rect is the entire image because this is the + // end of the first pass. + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(), + WriteState::NEED_MORE_DATA, + IntRect(0, 0, 7, 7), 0, 4); + + // Second pass. Rows are positioned at 8n + 4. + + // Output row 4. The invalid rect is the entire image because this is the + // end of the second pass. + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(), + WriteState::NEED_MORE_DATA, + IntRect(0, 0, 7, 7), 1, 4); + + // Third pass. Rows are positioned at 4n + 2. + + // Output row 2. The invalid rect contains the Haeberli rows for this output + // row (rows 2 and 3) as well as the rows that we copy from previous passes + // when seeking to the next output row (rows 4 and 5). + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(), + WriteState::NEED_MORE_DATA, + IntRect(0, 2, 7, 4), 2, 3); + + // Output row 6. The invalid rect is the entire image because this is the + // end of the third pass. + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(), + WriteState::NEED_MORE_DATA, + IntRect(0, 0, 7, 7), 6, 6); + + // Fourth pass. Rows are positioned at 2n + 1. + + // Output row 1. The invalid rect contains the Haeberli rows for this output + // row (just row 1) as well as the rows that we copy from previous passes + // when seeking to the next output row (row 2). + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(), + WriteState::NEED_MORE_DATA, + IntRect(0, 1, 7, 2), 1, 1); + + // Output row 3. The invalid rect contains the Haeberli rows for this output + // row (just row 3) as well as the rows that we copy from previous passes + // when seeking to the next output row (row 4). + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(), + WriteState::NEED_MORE_DATA, + IntRect(0, 3, 7, 2), 3, 3); + + // Output row 5. The invalid rect contains the Haeberli rows for this output + // row (just row 5) as well as the rows that we copy from previous passes + // when seeking to the next output row (row 6). + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(), + WriteState::FINISHED, + IntRect(0, 5, 7, 2), 5, 5); + + // Assert that we're in the expected final state. + EXPECT_TRUE(aFilter->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Check that the generated image is correct. As mentioned above, we expect + // two green rows, followed by two red rows, then two green rows, etc. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + for (uint32_t row = 0; row < 7; ++row) { + BGRAColor color = row == 0 || row == 1 || row == 4 || row == 5 + ? BGRAColor::Green() + : BGRAColor::Red(); + EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, color)); + } + }); +} + +TEST_F(ImageDeinterlacingFilter, WritePixelsNonProgressiveIntermediateOutput7_7) +{ + WithDeinterlacingFilter(IntSize(7, 7), /* aProgressiveDisplay = */ false, + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Fill the image. The output should be a repeating pattern of two green + // rows followed by two red rows but we need to write the rows in the order + // that the deinterlacer expects them. + + // First pass. Output rows are positioned at 8n + 0. + + // Output row 0. The invalid rect is the entire image because this is the + // end of the first pass. + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(), + WriteState::NEED_MORE_DATA, + IntRect(0, 0, 7, 7), 0, 0); + + // Second pass. Rows are positioned at 8n + 4. + + // Output row 4. The invalid rect is the entire image because this is the + // end of the second pass. + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(), + WriteState::NEED_MORE_DATA, + IntRect(0, 0, 7, 7), 4, 4); + + // Third pass. Rows are positioned at 4n + 2. + + // Output row 2. The invalid rect contains the Haeberli rows for this output + // row (rows 2 and 3) as well as the rows that we copy from previous passes + // when seeking to the next output row (rows 4 and 5). + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(), + WriteState::NEED_MORE_DATA, + IntRect(0, 2, 7, 4), 2, 2); + + // Output row 6. The invalid rect is the entire image because this is the + // end of the third pass. + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(), + WriteState::NEED_MORE_DATA, + IntRect(0, 0, 7, 7), 6, 6); + + // Fourth pass. Rows are positioned at 2n + 1. + + // Output row 1. The invalid rect contains the Haeberli rows for this output + // row (just row 1) as well as the rows that we copy from previous passes + // when seeking to the next output row (row 2). + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(), + WriteState::NEED_MORE_DATA, + IntRect(0, 1, 7, 2), 1, 1); + + // Output row 3. The invalid rect contains the Haeberli rows for this output + // row (just row 3) as well as the rows that we copy from previous passes + // when seeking to the next output row (row 4). + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(), + WriteState::NEED_MORE_DATA, + IntRect(0, 3, 7, 2), 3, 3); + + // Output row 5. The invalid rect contains the Haeberli rows for this output + // row (just row 5) as well as the rows that we copy from previous passes + // when seeking to the next output row (row 6). + WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(), + WriteState::FINISHED, + IntRect(0, 5, 7, 2), 5, 5); + + // Assert that we're in the expected final state. + EXPECT_TRUE(aFilter->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Check that the generated image is correct. As mentioned above, we expect + // two green rows, followed by two red rows, then two green rows, etc. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + for (uint32_t row = 0; row < 7; ++row) { + BGRAColor color = row == 0 || row == 1 || row == 4 || row == 5 + ? BGRAColor::Green() + : BGRAColor::Red(); + EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, color)); + } + }); +} + + +TEST_F(ImageDeinterlacingFilter, DeinterlacingFailsFor0_0) +{ + // A 0x0 input size is invalid, so configuration should fail. + AssertConfiguringDeinterlacingFilterFails(IntSize(0, 0)); +} + +TEST_F(ImageDeinterlacingFilter, DeinterlacingFailsForMinus1_Minus1) +{ + // A negative input size is invalid, so configuration should fail. + AssertConfiguringDeinterlacingFilterFails(IntSize(-1, -1)); +} diff --git a/image/test/gtest/TestDownscalingFilter.cpp b/image/test/gtest/TestDownscalingFilter.cpp new file mode 100644 index 000000000..596becab0 --- /dev/null +++ b/image/test/gtest/TestDownscalingFilter.cpp @@ -0,0 +1,231 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "mozilla/gfx/2D.h" +#include "Common.h" +#include "Decoder.h" +#include "DecoderFactory.h" +#include "SourceBuffer.h" +#include "SurfaceFilters.h" +#include "SurfacePipe.h" + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +template <typename Func> void +WithDownscalingFilter(const IntSize& aInputSize, + const IntSize& aOutputSize, + Func aFunc) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + WithFilterPipeline(decoder, Forward<Func>(aFunc), + DownscalingConfig { aInputSize, + SurfaceFormat::B8G8R8A8 }, + SurfaceConfig { decoder, 0, aOutputSize, + SurfaceFormat::B8G8R8A8, false }); +} + +void +AssertConfiguringDownscalingFilterFails(const IntSize& aInputSize, + const IntSize& aOutputSize) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + AssertConfiguringPipelineFails(decoder, + DownscalingConfig { aInputSize, + SurfaceFormat::B8G8R8A8 }, + SurfaceConfig { decoder, 0, aOutputSize, + SurfaceFormat::B8G8R8A8, false }); +} + +TEST(ImageDownscalingFilter, WritePixels100_100to99_99) +{ + WithDownscalingFilter(IntSize(100, 100), IntSize(99, 99), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 99, 99))); + }); +} + +TEST(ImageDownscalingFilter, WritePixels100_100to33_33) +{ + WithDownscalingFilter(IntSize(100, 100), IntSize(33, 33), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 33, 33))); + }); +} + +TEST(ImageDownscalingFilter, WritePixels100_100to1_1) +{ + WithDownscalingFilter(IntSize(100, 100), IntSize(1, 1), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 1, 1))); + }); +} + +TEST(ImageDownscalingFilter, WritePixels100_100to33_99) +{ + WithDownscalingFilter(IntSize(100, 100), IntSize(33, 99), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 33, 99))); + }); +} + +TEST(ImageDownscalingFilter, WritePixels100_100to99_33) +{ + WithDownscalingFilter(IntSize(100, 100), IntSize(99, 33), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 99, 33))); + }); +} + +TEST(ImageDownscalingFilter, WritePixels100_100to99_1) +{ + WithDownscalingFilter(IntSize(100, 100), IntSize(99, 1), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 99, 1))); + }); +} + +TEST(ImageDownscalingFilter, WritePixels100_100to1_99) +{ + WithDownscalingFilter(IntSize(100, 100), IntSize(1, 99), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 1, 99))); + }); +} + +TEST(ImageDownscalingFilter, DownscalingFailsFor100_100to101_101) +{ + // Upscaling is disallowed. + AssertConfiguringDownscalingFilterFails(IntSize(100, 100), IntSize(101, 101)); +} + +TEST(ImageDownscalingFilter, DownscalingFailsFor100_100to100_100) +{ + // "Scaling" to the same size is disallowed. + AssertConfiguringDownscalingFilterFails(IntSize(100, 100), IntSize(100, 100)); +} + +TEST(ImageDownscalingFilter, DownscalingFailsFor0_0toMinus1_Minus1) +{ + // A 0x0 input size is disallowed. + AssertConfiguringDownscalingFilterFails(IntSize(0, 0), IntSize(-1, -1)); +} + +TEST(ImageDownscalingFilter, DownscalingFailsForMinus1_Minus1toMinus2_Minus2) +{ + // A negative input size is disallowed. + AssertConfiguringDownscalingFilterFails(IntSize(-1, -1), IntSize(-2, -2)); +} + +TEST(ImageDownscalingFilter, DownscalingFailsFor100_100to0_0) +{ + // A 0x0 output size is disallowed. + AssertConfiguringDownscalingFilterFails(IntSize(100, 100), IntSize(0, 0)); +} + +TEST(ImageDownscalingFilter, DownscalingFailsFor100_100toMinus1_Minus1) +{ + // A negative output size is disallowed. + AssertConfiguringDownscalingFilterFails(IntSize(100, 100), IntSize(-1, -1)); +} + +TEST(ImageDownscalingFilter, WritePixelsOutput100_100to20_20) +{ + WithDownscalingFilter(IntSize(100, 100), IntSize(20, 20), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Fill the image. It consists of 25 lines of green, followed by 25 lines of + // red, followed by 25 lines of green, followed by 25 more lines of red. + uint32_t count = 0; + auto result = aFilter->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + uint32_t color = (count <= 25 * 100) || (count > 50 * 100 && count <= 75 * 100) + ? BGRAColor::Green().AsPixel() + : BGRAColor::Red().AsPixel(); + ++count; + return AsVariant(color); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 100u, count); + + AssertCorrectPipelineFinalState(aFilter, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 20, 20)); + + // Check that the generated image is correct. Note that we skip rows near + // the transitions between colors, since the downscaler does not produce a + // sharp boundary at these points. Even some of the rows we test need a + // small amount of fuzz; this is just the nature of Lanczos downscaling. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(RowsAreSolidColor(surface, 0, 4, BGRAColor::Green(), /* aFuzz = */ 2)); + EXPECT_TRUE(RowsAreSolidColor(surface, 6, 3, BGRAColor::Red(), /* aFuzz = */ 3)); + EXPECT_TRUE(RowsAreSolidColor(surface, 11, 3, BGRAColor::Green(), /* aFuzz = */ 3)); + EXPECT_TRUE(RowsAreSolidColor(surface, 16, 4, BGRAColor::Red(), /* aFuzz = */ 3)); + }); +} + +TEST(ImageDownscalingFilter, WritePixelsOutput100_100to10_20) +{ + WithDownscalingFilter(IntSize(100, 100), IntSize(10, 20), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Fill the image. It consists of 25 lines of green, followed by 25 lines of + // red, followed by 25 lines of green, followed by 25 more lines of red. + uint32_t count = 0; + auto result = aFilter->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + uint32_t color = (count <= 25 * 100) || (count > 50 * 100 && count <= 75 * 100) + ? BGRAColor::Green().AsPixel() + : BGRAColor::Red().AsPixel(); + ++count; + return AsVariant(color); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 100u, count); + + AssertCorrectPipelineFinalState(aFilter, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 10, 20)); + + // Check that the generated image is correct. Note that we skip rows near + // the transitions between colors, since the downscaler does not produce a + // sharp boundary at these points. Even some of the rows we test need a + // small amount of fuzz; this is just the nature of Lanczos downscaling. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(RowsAreSolidColor(surface, 0, 4, BGRAColor::Green(), /* aFuzz = */ 2)); + EXPECT_TRUE(RowsAreSolidColor(surface, 6, 3, BGRAColor::Red(), /* aFuzz = */ 3)); + EXPECT_TRUE(RowsAreSolidColor(surface, 11, 3, BGRAColor::Green(), /* aFuzz = */ 3)); + EXPECT_TRUE(RowsAreSolidColor(surface, 16, 4, BGRAColor::Red(), /* aFuzz = */ 3)); + }); +} + +TEST(ImageDownscalingFilter, ConfiguringPalettedDownscaleFails) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + // DownscalingFilter does not support paletted images, so configuration should + // fail. + AssertConfiguringPipelineFails(decoder, + DownscalingConfig { IntSize(100, 100), + SurfaceFormat::B8G8R8A8 }, + PalettedSurfaceConfig { decoder, 0, IntSize(20, 20), + IntRect(0, 0, 20, 20), + SurfaceFormat::B8G8R8A8, 8, + false }); +} diff --git a/image/test/gtest/TestDownscalingFilterNoSkia.cpp b/image/test/gtest/TestDownscalingFilterNoSkia.cpp new file mode 100644 index 000000000..c62ca018d --- /dev/null +++ b/image/test/gtest/TestDownscalingFilterNoSkia.cpp @@ -0,0 +1,57 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "mozilla/gfx/2D.h" +#include "Decoder.h" +#include "DecoderFactory.h" +#include "SourceBuffer.h" +#include "SurfacePipe.h" + +// We want to ensure that we're testing the non-Skia fallback version of +// DownscalingFilter, but there are two issues: +// (1) We don't know whether Skia is currently enabled. +// (2) If we force disable it, the disabled version will get linked into the +// binary and will cause the tests in TestDownscalingFilter to fail. +// To avoid these problems, we ensure that MOZ_ENABLE_SKIA is defined when +// including DownscalingFilter.h, and we use the preprocessor to redefine the +// DownscalingFilter class to DownscalingFilterNoSkia. + +#define DownscalingFilter DownscalingFilterNoSkia + +#ifdef MOZ_ENABLE_SKIA + +#undef MOZ_ENABLE_SKIA +#include "Common.h" +#include "DownscalingFilter.h" +#define MOZ_ENABLE_SKIA + +#else + +#include "Common.h" +#include "DownscalingFilter.h" + +#endif + +#undef DownscalingFilter + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +TEST(ImageDownscalingFilter, NoSkia) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(bool(decoder)); + + // Configuring a DownscalingFilter should fail without Skia. + AssertConfiguringPipelineFails(decoder, + DownscalingConfig { IntSize(100, 100), + SurfaceFormat::B8G8R8A8 }, + SurfaceConfig { decoder, 0, IntSize(50, 50), + SurfaceFormat::B8G8R8A8, false }); +} diff --git a/image/test/gtest/TestMetadata.cpp b/image/test/gtest/TestMetadata.cpp new file mode 100644 index 000000000..9f3a64898 --- /dev/null +++ b/image/test/gtest/TestMetadata.cpp @@ -0,0 +1,255 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "Common.h" +#include "Decoder.h" +#include "DecoderFactory.h" +#include "decoders/nsBMPDecoder.h" +#include "IDecodingTask.h" +#include "imgIContainer.h" +#include "imgITools.h" +#include "ImageFactory.h" +#include "mozilla/gfx/2D.h" +#include "nsComponentManagerUtils.h" +#include "nsCOMPtr.h" +#include "nsIInputStream.h" +#include "nsIRunnable.h" +#include "nsIThread.h" +#include "mozilla/RefPtr.h" +#include "nsStreamUtils.h" +#include "nsString.h" +#include "nsThreadUtils.h" +#include "ProgressTracker.h" +#include "SourceBuffer.h" + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +enum class BMPWithinICO +{ + NO, + YES +}; + +static void +CheckMetadata(const ImageTestCase& aTestCase, + BMPWithinICO aBMPWithinICO = BMPWithinICO::NO) +{ + nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath); + ASSERT_TRUE(inputStream != nullptr); + + // Figure out how much data we have. + uint64_t length; + nsresult rv = inputStream->Available(&length); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Write the data into a SourceBuffer. + NotNull<RefPtr<SourceBuffer>> sourceBuffer = WrapNotNull(new SourceBuffer()); + sourceBuffer->ExpectLength(length); + rv = sourceBuffer->AppendFromInputStream(inputStream, length); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + sourceBuffer->Complete(NS_OK); + + // Create a metadata decoder. + DecoderType decoderType = + DecoderFactory::GetDecoderType(aTestCase.mMimeType); + RefPtr<Decoder> decoder = + DecoderFactory::CreateAnonymousMetadataDecoder(decoderType, sourceBuffer); + ASSERT_TRUE(decoder != nullptr); + RefPtr<IDecodingTask> task = new AnonymousDecodingTask(WrapNotNull(decoder)); + + if (aBMPWithinICO == BMPWithinICO::YES) { + static_cast<nsBMPDecoder*>(decoder.get())->SetIsWithinICO(); + } + + // Run the metadata decoder synchronously. + task->Run(); + + // Ensure that the metadata decoder didn't make progress it shouldn't have + // (which would indicate that it decoded past the header of the image). + Progress metadataProgress = decoder->TakeProgress(); + EXPECT_TRUE(0 == (metadataProgress & ~(FLAG_SIZE_AVAILABLE | + FLAG_HAS_TRANSPARENCY | + FLAG_IS_ANIMATED))); + + // If the test case is corrupt, assert what we can and return early. + if (aTestCase.mFlags & TEST_CASE_HAS_ERROR) { + EXPECT_TRUE(decoder->GetDecodeDone()); + EXPECT_TRUE(decoder->HasError()); + return; + } + + EXPECT_TRUE(decoder->GetDecodeDone() && !decoder->HasError()); + + // Check that we got the expected metadata. + EXPECT_TRUE(metadataProgress & FLAG_SIZE_AVAILABLE); + + IntSize metadataSize = decoder->Size(); + EXPECT_EQ(aTestCase.mSize.width, metadataSize.width); + EXPECT_EQ(aTestCase.mSize.height, metadataSize.height); + + bool expectTransparency = aBMPWithinICO == BMPWithinICO::YES + ? true + : bool(aTestCase.mFlags & TEST_CASE_IS_TRANSPARENT); + EXPECT_EQ(expectTransparency, bool(metadataProgress & FLAG_HAS_TRANSPARENCY)); + + EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_IS_ANIMATED), + bool(metadataProgress & FLAG_IS_ANIMATED)); + + // Create a full decoder, so we can compare the result. + decoder = + DecoderFactory::CreateAnonymousDecoder(decoderType, sourceBuffer, Nothing(), + DefaultSurfaceFlags()); + ASSERT_TRUE(decoder != nullptr); + task = new AnonymousDecodingTask(WrapNotNull(decoder)); + + if (aBMPWithinICO == BMPWithinICO::YES) { + static_cast<nsBMPDecoder*>(decoder.get())->SetIsWithinICO(); + } + + // Run the full decoder synchronously. + task->Run(); + + EXPECT_TRUE(decoder->GetDecodeDone() && !decoder->HasError()); + Progress fullProgress = decoder->TakeProgress(); + + // If the metadata decoder set a progress bit, the full decoder should also + // have set the same bit. + EXPECT_EQ(fullProgress, metadataProgress | fullProgress); + + // The full decoder and the metadata decoder should agree on the image's size. + IntSize fullSize = decoder->Size(); + EXPECT_EQ(metadataSize.width, fullSize.width); + EXPECT_EQ(metadataSize.height, fullSize.height); + + // We should not discover transparency during the full decode that we didn't + // discover during the metadata decode, unless the image is animated. + EXPECT_TRUE(!(fullProgress & FLAG_HAS_TRANSPARENCY) || + (metadataProgress & FLAG_HAS_TRANSPARENCY) || + (fullProgress & FLAG_IS_ANIMATED)); +} + +class ImageDecoderMetadata : public ::testing::Test +{ +protected: + AutoInitializeImageLib mInit; +}; + +TEST_F(ImageDecoderMetadata, PNG) { CheckMetadata(GreenPNGTestCase()); } +TEST_F(ImageDecoderMetadata, TransparentPNG) { CheckMetadata(TransparentPNGTestCase()); } +TEST_F(ImageDecoderMetadata, GIF) { CheckMetadata(GreenGIFTestCase()); } +TEST_F(ImageDecoderMetadata, TransparentGIF) { CheckMetadata(TransparentGIFTestCase()); } +TEST_F(ImageDecoderMetadata, JPG) { CheckMetadata(GreenJPGTestCase()); } +TEST_F(ImageDecoderMetadata, BMP) { CheckMetadata(GreenBMPTestCase()); } +TEST_F(ImageDecoderMetadata, ICO) { CheckMetadata(GreenICOTestCase()); } +TEST_F(ImageDecoderMetadata, Icon) { CheckMetadata(GreenIconTestCase()); } + +TEST_F(ImageDecoderMetadata, AnimatedGIF) +{ + CheckMetadata(GreenFirstFrameAnimatedGIFTestCase()); +} + +TEST_F(ImageDecoderMetadata, AnimatedPNG) +{ + CheckMetadata(GreenFirstFrameAnimatedPNGTestCase()); +} + +TEST_F(ImageDecoderMetadata, FirstFramePaddingGIF) +{ + CheckMetadata(FirstFramePaddingGIFTestCase()); +} + +TEST_F(ImageDecoderMetadata, TransparentIfWithinICOBMPNotWithinICO) +{ + CheckMetadata(TransparentIfWithinICOBMPTestCase(TEST_CASE_DEFAULT_FLAGS), + BMPWithinICO::NO); +} + +TEST_F(ImageDecoderMetadata, TransparentIfWithinICOBMPWithinICO) +{ + CheckMetadata(TransparentIfWithinICOBMPTestCase(TEST_CASE_IS_TRANSPARENT), + BMPWithinICO::YES); +} + +TEST_F(ImageDecoderMetadata, RLE4BMP) { CheckMetadata(RLE4BMPTestCase()); } +TEST_F(ImageDecoderMetadata, RLE8BMP) { CheckMetadata(RLE8BMPTestCase()); } + +TEST_F(ImageDecoderMetadata, Corrupt) { CheckMetadata(CorruptTestCase()); } + +TEST_F(ImageDecoderMetadata, NoFrameDelayGIF) +{ + CheckMetadata(NoFrameDelayGIFTestCase()); +} + +TEST_F(ImageDecoderMetadata, NoFrameDelayGIFFullDecode) +{ + ImageTestCase testCase = NoFrameDelayGIFTestCase(); + + // The previous test (NoFrameDelayGIF) verifies that we *don't* detect that + // this test case is animated, because it has a zero frame delay for the first + // frame. This test verifies that when we do a full decode, we detect the + // animation at that point and successfully decode all the frames. + + // Create an image. + RefPtr<Image> image = + ImageFactory::CreateAnonymousImage(nsDependentCString(testCase.mMimeType)); + ASSERT_TRUE(!image->HasError()); + + nsCOMPtr<nsIInputStream> inputStream = LoadFile(testCase.mPath); + ASSERT_TRUE(inputStream != nullptr); + + // Figure out how much data we have. + uint64_t length; + nsresult rv = inputStream->Available(&length); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Write the data into the image. + rv = image->OnImageDataAvailable(nullptr, nullptr, inputStream, 0, + static_cast<uint32_t>(length)); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + // Let the image know we've sent all the data. + rv = image->OnImageDataComplete(nullptr, nullptr, NS_OK, true); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + RefPtr<ProgressTracker> tracker = image->GetProgressTracker(); + tracker->SyncNotifyProgress(FLAG_LOAD_COMPLETE); + + // Use GetFrame() to force a sync decode of the image. + RefPtr<SourceSurface> surface = + image->GetFrame(imgIContainer::FRAME_CURRENT, + imgIContainer::FLAG_SYNC_DECODE); + + // Ensure that the image's metadata meets our expectations. + IntSize imageSize(0, 0); + rv = image->GetWidth(&imageSize.width); + EXPECT_TRUE(NS_SUCCEEDED(rv)); + rv = image->GetHeight(&imageSize.height); + EXPECT_TRUE(NS_SUCCEEDED(rv)); + + EXPECT_EQ(testCase.mSize.width, imageSize.width); + EXPECT_EQ(testCase.mSize.height, imageSize.height); + + Progress imageProgress = tracker->GetProgress(); + + EXPECT_TRUE(bool(imageProgress & FLAG_HAS_TRANSPARENCY) == false); + EXPECT_TRUE(bool(imageProgress & FLAG_IS_ANIMATED) == true); + + // Ensure that we decoded both frames of the image. + LookupResult result = + SurfaceCache::Lookup(ImageKey(image.get()), + RasterSurfaceKey(imageSize, + DefaultSurfaceFlags(), + PlaybackType::eAnimated)); + ASSERT_EQ(MatchType::EXACT, result.Type()); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(0))); + EXPECT_TRUE(bool(result.Surface())); + + EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(1))); + EXPECT_TRUE(bool(result.Surface())); +} diff --git a/image/test/gtest/TestRemoveFrameRectFilter.cpp b/image/test/gtest/TestRemoveFrameRectFilter.cpp new file mode 100644 index 000000000..e1def590e --- /dev/null +++ b/image/test/gtest/TestRemoveFrameRectFilter.cpp @@ -0,0 +1,327 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "mozilla/gfx/2D.h" +#include "Common.h" +#include "Decoder.h" +#include "DecoderFactory.h" +#include "SourceBuffer.h" +#include "SurfaceFilters.h" +#include "SurfacePipe.h" + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +template <typename Func> void +WithRemoveFrameRectFilter(const IntSize& aSize, + const IntRect& aFrameRect, + Func aFunc) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + WithFilterPipeline(decoder, Forward<Func>(aFunc), + RemoveFrameRectConfig { aFrameRect }, + SurfaceConfig { decoder, 0, aSize, + SurfaceFormat::B8G8R8A8, false }); +} + +void +AssertConfiguringRemoveFrameRectFilterFails(const IntSize& aSize, + const IntRect& aFrameRect) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + AssertConfiguringPipelineFails(decoder, + RemoveFrameRectConfig { aFrameRect }, + SurfaceConfig { decoder, 0, aSize, + SurfaceFormat::B8G8R8A8, false }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_0_0_100_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 100, 100))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_0_0_0_0) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(0, 0, 0, 0), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_Minus50_50_0_0) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(-50, 50, 0, 0), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_50_Minus50_0_0) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(50, -50, 0, 0), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_150_50_0_0) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(150, 50, 0, 0), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_50_150_0_0) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(50, 150, 0, 0), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_200_200_100_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(200, 200, 100, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Note that aInputRect is zero-size because RemoveFrameRectFilter ignores + // trailing rows that don't show up in the output. (Leading rows + // unfortunately can't be ignored.) + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_Minus200_25_100_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(-200, 25, 100, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Note that aInputRect is zero-size because RemoveFrameRectFilter ignores + // trailing rows that don't show up in the output. (Leading rows + // unfortunately can't be ignored.) + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_25_Minus200_100_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(25, -200, 100, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Note that aInputRect is zero-size because RemoveFrameRectFilter ignores + // trailing rows that don't show up in the output. (Leading rows + // unfortunately can't be ignored.) + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_200_25_100_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(200, 25, 100, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Note that aInputRect is zero-size because RemoveFrameRectFilter ignores + // trailing rows that don't show up in the output. (Leading rows + // unfortunately can't be ignored.) + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_25_200_100_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(25, 200, 100, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Note that aInputRect is zero-size because RemoveFrameRectFilter ignores + // trailing rows that don't show up in the output. (Leading rows + // unfortunately can't be ignored.) + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_Minus200_Minus200_100_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(-200, -200, 100, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 0, 0)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 0, 0))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_Minus50_Minus50_100_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(-50, -50, 100, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 100, 100)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 50, 50))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_Minus50_25_100_50) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(-50, 25, 100, 50), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 100, 50)), + /* aOutputWriteRect = */ Some(IntRect(0, 25, 50, 50))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_25_Minus50_50_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(25, -50, 50, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 50, 100)), + /* aOutputWriteRect = */ Some(IntRect(25, 0, 50, 50))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_50_25_100_50) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(50, 25, 100, 50), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 100, 50)), + /* aOutputWriteRect = */ Some(IntRect(50, 25, 50, 50))); + }); +} + +TEST(ImageRemoveFrameRectFilter, WritePixels100_100_to_25_50_50_100) +{ + WithRemoveFrameRectFilter(IntSize(100, 100), + IntRect(25, 50, 50, 100), + [](Decoder* aDecoder, SurfaceFilter* aFilter) { + // Note that aInputRect is 50x50 because RemoveFrameRectFilter ignores + // trailing rows that don't show up in the output. (Leading rows + // unfortunately can't be ignored.) + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 50, 50)), + /* aOutputWriteRect = */ Some(IntRect(25, 50, 50, 100))); + }); +} + +TEST(ImageRemoveFrameRectFilter, RemoveFrameRectFailsFor0_0_to_0_0_100_100) +{ + // A zero-size image is disallowed. + AssertConfiguringRemoveFrameRectFilterFails(IntSize(0, 0), + IntRect(0, 0, 100, 100)); +} + +TEST(ImageRemoveFrameRectFilter, RemoveFrameRectFailsForMinus1_Minus1_to_0_0_100_100) +{ + // A negative-size image is disallowed. + AssertConfiguringRemoveFrameRectFilterFails(IntSize(-1, -1), + IntRect(0, 0, 100, 100)); +} + +TEST(ImageRemoveFrameRectFilter, RemoveFrameRectFailsFor100_100_to_0_0_0_0) +{ + // A zero size frame rect is disallowed. + AssertConfiguringRemoveFrameRectFilterFails(IntSize(100, 100), + IntRect(0, 0, -1, -1)); +} + +TEST(ImageRemoveFrameRectFilter, RemoveFrameRectFailsFor100_100_to_0_0_Minus1_Minus1) +{ + // A negative size frame rect is disallowed. + AssertConfiguringRemoveFrameRectFilterFails(IntSize(100, 100), + IntRect(0, 0, -1, -1)); +} + +TEST(ImageRemoveFrameRectFilter, ConfiguringPalettedRemoveFrameRectFails) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + // RemoveFrameRectFilter does not support paletted images, so configuration + // should fail. + AssertConfiguringPipelineFails(decoder, + RemoveFrameRectConfig { IntRect(0, 0, 50, 50) }, + PalettedSurfaceConfig { decoder, 0, IntSize(100, 100), + IntRect(0, 0, 50, 50), + SurfaceFormat::B8G8R8A8, 8, + false }); +} diff --git a/image/test/gtest/TestSourceBuffer.cpp b/image/test/gtest/TestSourceBuffer.cpp new file mode 100644 index 000000000..05a88093f --- /dev/null +++ b/image/test/gtest/TestSourceBuffer.cpp @@ -0,0 +1,810 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include <algorithm> +#include <cstdint> + +#include "mozilla/Move.h" +#include "SourceBuffer.h" +#include "SurfaceCache.h" + +using namespace mozilla; +using namespace mozilla::image; + +using std::min; + +void +ExpectChunkAndByteCount(const SourceBufferIterator& aIterator, + uint32_t aChunks, + size_t aBytes) +{ + EXPECT_EQ(aChunks, aIterator.ChunkCount()); + EXPECT_EQ(aBytes, aIterator.ByteCount()); +} + +void +ExpectRemainingBytes(const SourceBufferIterator& aIterator, size_t aBytes) +{ + EXPECT_TRUE(aIterator.RemainingBytesIsNoMoreThan(aBytes)); + EXPECT_TRUE(aIterator.RemainingBytesIsNoMoreThan(aBytes + 1)); + + if (aBytes > 0) { + EXPECT_FALSE(aIterator.RemainingBytesIsNoMoreThan(0)); + EXPECT_FALSE(aIterator.RemainingBytesIsNoMoreThan(aBytes - 1)); + } +} + +char +GenerateByte(size_t aIndex) +{ + uint8_t byte = aIndex % 256; + return *reinterpret_cast<char*>(&byte); +} + +void +GenerateData(char* aOutput, size_t aOffset, size_t aLength) +{ + for (size_t i = 0; i < aLength; ++i) { + aOutput[i] = GenerateByte(aOffset + i); + } +} + +void +GenerateData(char* aOutput, size_t aLength) +{ + GenerateData(aOutput, 0, aLength); +} + +void +CheckData(const char* aData, size_t aOffset, size_t aLength) +{ + for (size_t i = 0; i < aLength; ++i) { + ASSERT_EQ(GenerateByte(aOffset + i), aData[i]); + } +} + +enum class AdvanceMode +{ + eAdvanceAsMuchAsPossible, + eAdvanceByLengthExactly +}; + +class ImageSourceBuffer : public ::testing::Test +{ +public: + ImageSourceBuffer() + : mSourceBuffer(new SourceBuffer) + , mExpectNoResume(new ExpectNoResume) + , mCountResumes(new CountResumes) + { + GenerateData(mData, sizeof(mData)); + EXPECT_FALSE(mSourceBuffer->IsComplete()); + } + +protected: + void CheckedAppendToBuffer(const char* aData, size_t aLength) + { + EXPECT_TRUE(NS_SUCCEEDED(mSourceBuffer->Append(aData, aLength))); + } + + void CheckedAppendToBufferLastByteForLength(size_t aLength) + { + const char lastByte = GenerateByte(aLength); + CheckedAppendToBuffer(&lastByte, 1); + } + + void CheckedAppendToBufferInChunks(size_t aChunkLength, size_t aTotalLength) + { + char* data = new char[aChunkLength]; + + size_t bytesWritten = 0; + while (bytesWritten < aTotalLength) { + GenerateData(data, bytesWritten, aChunkLength); + size_t toWrite = min(aChunkLength, aTotalLength - bytesWritten); + CheckedAppendToBuffer(data, toWrite); + bytesWritten += toWrite; + } + + delete[] data; + } + + void CheckedCompleteBuffer(nsresult aCompletionStatus = NS_OK) + { + mSourceBuffer->Complete(aCompletionStatus); + EXPECT_TRUE(mSourceBuffer->IsComplete()); + } + + void CheckedCompleteBuffer(SourceBufferIterator& aIterator, + size_t aLength, + nsresult aCompletionStatus = NS_OK) + { + CheckedCompleteBuffer(aCompletionStatus); + ExpectRemainingBytes(aIterator, aLength); + } + + void CheckedAdvanceIteratorStateOnly(SourceBufferIterator& aIterator, + size_t aLength, + uint32_t aChunks, + size_t aTotalLength, + AdvanceMode aAdvanceMode + = AdvanceMode::eAdvanceAsMuchAsPossible) + { + const size_t advanceBy = aAdvanceMode == AdvanceMode::eAdvanceAsMuchAsPossible + ? SIZE_MAX + : aLength; + + auto state = aIterator.AdvanceOrScheduleResume(advanceBy, mExpectNoResume); + ASSERT_EQ(SourceBufferIterator::READY, state); + EXPECT_TRUE(aIterator.Data()); + EXPECT_EQ(aLength, aIterator.Length()); + + ExpectChunkAndByteCount(aIterator, aChunks, aTotalLength); + } + + void CheckedAdvanceIteratorStateOnly(SourceBufferIterator& aIterator, + size_t aLength) + { + CheckedAdvanceIteratorStateOnly(aIterator, aLength, 1, aLength); + } + + void CheckedAdvanceIterator(SourceBufferIterator& aIterator, + size_t aLength, + uint32_t aChunks, + size_t aTotalLength, + AdvanceMode aAdvanceMode + = AdvanceMode::eAdvanceAsMuchAsPossible) + { + // Check that the iterator is in the expected state. + CheckedAdvanceIteratorStateOnly(aIterator, aLength, aChunks, + aTotalLength, aAdvanceMode); + + // Check that we read the expected data. To do this, we need to compute our + // offset in the SourceBuffer, but fortunately that's pretty easy: it's the + // total number of bytes the iterator has advanced through, minus the length + // of the current chunk. + const size_t offset = aIterator.ByteCount() - aIterator.Length(); + CheckData(aIterator.Data(), offset, aIterator.Length()); + } + + void CheckedAdvanceIterator(SourceBufferIterator& aIterator, size_t aLength) + { + CheckedAdvanceIterator(aIterator, aLength, 1, aLength); + } + + void CheckIteratorMustWait(SourceBufferIterator& aIterator, + IResumable* aOnResume) + { + auto state = aIterator.AdvanceOrScheduleResume(1, aOnResume); + EXPECT_EQ(SourceBufferIterator::WAITING, state); + } + + void CheckIteratorIsComplete(SourceBufferIterator& aIterator, + uint32_t aChunks, + size_t aTotalLength, + nsresult aCompletionStatus = NS_OK) + { + ASSERT_TRUE(mSourceBuffer->IsComplete()); + auto state = aIterator.AdvanceOrScheduleResume(1, mExpectNoResume); + ASSERT_EQ(SourceBufferIterator::COMPLETE, state); + EXPECT_EQ(aCompletionStatus, aIterator.CompletionStatus()); + ExpectRemainingBytes(aIterator, 0); + ExpectChunkAndByteCount(aIterator, aChunks, aTotalLength); + } + + void CheckIteratorIsComplete(SourceBufferIterator& aIterator, + size_t aTotalLength) + { + CheckIteratorIsComplete(aIterator, 1, aTotalLength); + } + + AutoInitializeImageLib mInit; + char mData[9]; + RefPtr<SourceBuffer> mSourceBuffer; + RefPtr<ExpectNoResume> mExpectNoResume; + RefPtr<CountResumes> mCountResumes; +}; + +TEST_F(ImageSourceBuffer, InitialState) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // RemainingBytesIsNoMoreThan() should always return false in the initial + // state, since we can't know the answer until Complete() has been called. + EXPECT_FALSE(iterator.RemainingBytesIsNoMoreThan(0)); + EXPECT_FALSE(iterator.RemainingBytesIsNoMoreThan(SIZE_MAX)); + + // We haven't advanced our iterator at all, so its counters should be zero. + ExpectChunkAndByteCount(iterator, 0, 0); + + // Attempt to advance; we should fail, and end up in the WAITING state. We + // expect no resumes because we don't actually append anything to the + // SourceBuffer in this test. + CheckIteratorMustWait(iterator, mExpectNoResume); +} + +TEST_F(ImageSourceBuffer, ZeroLengthBufferAlwaysFails) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Complete the buffer without writing to it, providing a successful + // completion status. + CheckedCompleteBuffer(iterator, 0); + + // Completing a buffer without writing to it results in an automatic failure; + // make sure that the actual completion status we get from the iterator + // reflects this. + CheckIteratorIsComplete(iterator, 0, 0, NS_ERROR_FAILURE); +} + +TEST_F(ImageSourceBuffer, CompleteSuccess) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Write a single byte to the buffer and complete the buffer. (We have to + // write at least one byte because completing a zero length buffer always + // fails; see the ZeroLengthBufferAlwaysFails test.) + CheckedAppendToBuffer(mData, 1); + CheckedCompleteBuffer(iterator, 1); + + // We should be able to advance once (to read the single byte) and then should + // reach the COMPLETE state with a successful status. + CheckedAdvanceIterator(iterator, 1); + CheckIteratorIsComplete(iterator, 1); +} + +TEST_F(ImageSourceBuffer, CompleteFailure) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Write a single byte to the buffer and complete the buffer. (We have to + // write at least one byte because completing a zero length buffer always + // fails; see the ZeroLengthBufferAlwaysFails test.) + CheckedAppendToBuffer(mData, 1); + CheckedCompleteBuffer(iterator, 1, NS_ERROR_FAILURE); + + // Advance the iterator. Because a failing status is propagated to the + // iterator as soon as it advances, we won't be able to read the single byte + // that we wrote above; we go directly into the COMPLETE state. + CheckIteratorIsComplete(iterator, 0, 0, NS_ERROR_FAILURE); +} + +TEST_F(ImageSourceBuffer, Append) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Write test data to the buffer. + EXPECT_TRUE(NS_SUCCEEDED(mSourceBuffer->ExpectLength(sizeof(mData)))); + CheckedAppendToBuffer(mData, sizeof(mData)); + CheckedCompleteBuffer(iterator, sizeof(mData)); + + // Verify that we can read it back via the iterator, and that the final state + // is what we expect. + CheckedAdvanceIterator(iterator, sizeof(mData)); + CheckIteratorIsComplete(iterator, sizeof(mData)); +} + +TEST_F(ImageSourceBuffer, HugeAppendFails) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // We should fail to append anything bigger than what the SurfaceCache can + // hold, so use the SurfaceCache's maximum capacity to calculate what a + // "massive amount of data" (see below) consists of on this platform. + ASSERT_LT(SurfaceCache::MaximumCapacity(), SIZE_MAX); + const size_t hugeSize = SurfaceCache::MaximumCapacity() + 1; + + // Attempt to write a massive amount of data and verify that it fails. (We'd + // get a buffer overrun during the test if it succeeds, but if it succeeds + // that's the least of our problems.) + EXPECT_TRUE(NS_FAILED(mSourceBuffer->Append(mData, hugeSize))); + EXPECT_TRUE(mSourceBuffer->IsComplete()); + CheckIteratorIsComplete(iterator, 0, 0, NS_ERROR_OUT_OF_MEMORY); +} + +TEST_F(ImageSourceBuffer, AppendFromInputStream) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Construct an input stream with some arbitrary data. (We use test data from + // one of the decoder tests.) + nsCOMPtr<nsIInputStream> inputStream = LoadFile(GreenPNGTestCase().mPath); + ASSERT_TRUE(inputStream != nullptr); + + // Figure out how much data we have. + uint64_t length; + ASSERT_TRUE(NS_SUCCEEDED(inputStream->Available(&length))); + + // Write test data to the buffer. + EXPECT_TRUE(NS_SUCCEEDED(mSourceBuffer->AppendFromInputStream(inputStream, + length))); + CheckedCompleteBuffer(iterator, length); + + // Verify that the iterator sees the appropriate amount of data. + CheckedAdvanceIteratorStateOnly(iterator, length); + CheckIteratorIsComplete(iterator, length); +} + +TEST_F(ImageSourceBuffer, AppendAfterComplete) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Write test data to the buffer. + EXPECT_TRUE(NS_SUCCEEDED(mSourceBuffer->ExpectLength(sizeof(mData)))); + CheckedAppendToBuffer(mData, sizeof(mData)); + CheckedCompleteBuffer(iterator, sizeof(mData)); + + // Verify that we can read it back via the iterator, and that the final state + // is what we expect. + CheckedAdvanceIterator(iterator, sizeof(mData)); + CheckIteratorIsComplete(iterator, sizeof(mData)); + + // Write more data to the completed buffer. + EXPECT_TRUE(NS_FAILED(mSourceBuffer->Append(mData, sizeof(mData)))); + + // Try to read with a new iterator and verify that the new data got ignored. + SourceBufferIterator iterator2 = mSourceBuffer->Iterator(); + CheckedAdvanceIterator(iterator2, sizeof(mData)); + CheckIteratorIsComplete(iterator2, sizeof(mData)); +} + +TEST_F(ImageSourceBuffer, MinChunkCapacity) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Write test data to the buffer using many small appends. Since + // ExpectLength() isn't being called, we should be able to write up to + // SourceBuffer::MIN_CHUNK_CAPACITY bytes without a second chunk being + // allocated. + CheckedAppendToBufferInChunks(10, SourceBuffer::MIN_CHUNK_CAPACITY); + + // Verify that the iterator sees the appropriate amount of data. + CheckedAdvanceIterator(iterator, SourceBuffer::MIN_CHUNK_CAPACITY); + + // Write one more byte; we expect to see that it triggers an allocation. + CheckedAppendToBufferLastByteForLength(SourceBuffer::MIN_CHUNK_CAPACITY); + CheckedCompleteBuffer(iterator, 1); + + // Verify that the iterator sees the new byte and a new chunk has been + // allocated. + CheckedAdvanceIterator(iterator, 1, 2, SourceBuffer::MIN_CHUNK_CAPACITY + 1); + CheckIteratorIsComplete(iterator, 2, SourceBuffer::MIN_CHUNK_CAPACITY + 1); +} + +TEST_F(ImageSourceBuffer, ExpectLengthDoesNotShrinkBelowMinCapacity) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Write SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the buffer, + // but call ExpectLength() first to make SourceBuffer expect only a single + // byte. We expect this to still result in only one chunk, because + // regardless of ExpectLength() we won't allocate a chunk smaller than + // MIN_CHUNK_CAPACITY bytes. + EXPECT_TRUE(NS_SUCCEEDED(mSourceBuffer->ExpectLength(1))); + CheckedAppendToBufferInChunks(10, SourceBuffer::MIN_CHUNK_CAPACITY); + CheckedCompleteBuffer(iterator, SourceBuffer::MIN_CHUNK_CAPACITY); + + // Verify that the iterator sees a single chunk. + CheckedAdvanceIterator(iterator, SourceBuffer::MIN_CHUNK_CAPACITY); + CheckIteratorIsComplete(iterator, 1, SourceBuffer::MIN_CHUNK_CAPACITY); +} + +TEST_F(ImageSourceBuffer, ExpectLengthGrowsAboveMinCapacity) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Write two times SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the + // buffer, calling ExpectLength() with the correct length first. We expect + // this to result in only one chunk, because ExpectLength() allows us to + // allocate a larger first chunk than MIN_CHUNK_CAPACITY bytes. + const size_t length = 2 * SourceBuffer::MIN_CHUNK_CAPACITY; + EXPECT_TRUE(NS_SUCCEEDED(mSourceBuffer->ExpectLength(length))); + CheckedAppendToBufferInChunks(10, length); + + // Verify that the iterator sees a single chunk. + CheckedAdvanceIterator(iterator, length); + + // Write one more byte; we expect to see that it triggers an allocation. + CheckedAppendToBufferLastByteForLength(length); + CheckedCompleteBuffer(iterator, 1); + + // Verify that the iterator sees the new byte and a new chunk has been + // allocated. + CheckedAdvanceIterator(iterator, 1, 2, length + 1); + CheckIteratorIsComplete(iterator, 2, length + 1); +} + +TEST_F(ImageSourceBuffer, HugeExpectLengthFails) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // ExpectLength() should fail if the length is bigger than what the + // SurfaceCache can hold, so use the SurfaceCache's maximum capacity to + // calculate what a "massive amount of data" (see below) consists of on this + // platform. + ASSERT_LT(SurfaceCache::MaximumCapacity(), SIZE_MAX); + const size_t hugeSize = SurfaceCache::MaximumCapacity() + 1; + + // Attempt to write a massive amount of data and verify that it fails. (We'd + // get a buffer overrun during the test if it succeeds, but if it succeeds + // that's the least of our problems.) + EXPECT_TRUE(NS_FAILED(mSourceBuffer->ExpectLength(hugeSize))); + EXPECT_TRUE(mSourceBuffer->IsComplete()); + CheckIteratorIsComplete(iterator, 0, 0, NS_ERROR_OUT_OF_MEMORY); +} + +TEST_F(ImageSourceBuffer, LargeAppendsAllocateOnlyOneChunk) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Write two times SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the + // buffer in a single Append() call. We expect this to result in only one + // chunk even though ExpectLength() wasn't called, because we should always + // allocate a new chunk large enough to store the data we have at hand. + constexpr size_t length = 2 * SourceBuffer::MIN_CHUNK_CAPACITY; + char data[length]; + GenerateData(data, sizeof(data)); + CheckedAppendToBuffer(data, length); + + // Verify that the iterator sees a single chunk. + CheckedAdvanceIterator(iterator, length); + + // Write one more byte; we expect to see that it triggers an allocation. + CheckedAppendToBufferLastByteForLength(length); + CheckedCompleteBuffer(iterator, 1); + + // Verify that the iterator sees the new byte and a new chunk has been + // allocated. + CheckedAdvanceIterator(iterator, 1, 2, length + 1); + CheckIteratorIsComplete(iterator, 2, length + 1); +} + +TEST_F(ImageSourceBuffer, LargeAppendsAllocateAtMostOneChunk) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Allocate some data we'll use below. + constexpr size_t firstWriteLength = SourceBuffer::MIN_CHUNK_CAPACITY / 2; + constexpr size_t secondWriteLength = 3 * SourceBuffer::MIN_CHUNK_CAPACITY; + constexpr size_t totalLength = firstWriteLength + secondWriteLength; + char data[totalLength]; + GenerateData(data, sizeof(data)); + + // Write half of SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the + // buffer in a single Append() call. This should fill half of the first chunk. + CheckedAppendToBuffer(data, firstWriteLength); + + // Write three times SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the + // buffer in a single Append() call. We expect this to result in the first of + // the first chunk being filled and a new chunk being allocated for the + // remainder. + CheckedAppendToBuffer(data + firstWriteLength, secondWriteLength); + + // Verify that the iterator sees a MIN_CHUNK_CAPACITY-length chunk. + CheckedAdvanceIterator(iterator, SourceBuffer::MIN_CHUNK_CAPACITY); + + // Verify that the iterator sees a second chunk of the length we expect. + const size_t expectedSecondChunkLength = + totalLength - SourceBuffer::MIN_CHUNK_CAPACITY; + CheckedAdvanceIterator(iterator, expectedSecondChunkLength, 2, totalLength); + + // Write one more byte; we expect to see that it triggers an allocation. + CheckedAppendToBufferLastByteForLength(totalLength); + CheckedCompleteBuffer(iterator, 1); + + // Verify that the iterator sees the new byte and a new chunk has been + // allocated. + CheckedAdvanceIterator(iterator, 1, 3, totalLength + 1); + CheckIteratorIsComplete(iterator, 3, totalLength + 1); +} + +TEST_F(ImageSourceBuffer, CompactionHappensWhenBufferIsComplete) +{ + constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY; + constexpr size_t totalLength = 2 * chunkLength; + + // Write enough data to create two chunks. + CheckedAppendToBufferInChunks(chunkLength, totalLength); + + { + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Verify that the iterator sees two chunks. + CheckedAdvanceIterator(iterator, chunkLength); + CheckedAdvanceIterator(iterator, chunkLength, 2, totalLength); + } + + // Complete the buffer, which should trigger compaction implicitly. + CheckedCompleteBuffer(); + + { + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Verify that compaction happened and there's now only one chunk. + CheckedAdvanceIterator(iterator, totalLength); + CheckIteratorIsComplete(iterator, 1, totalLength); + } +} + +TEST_F(ImageSourceBuffer, CompactionIsDelayedWhileIteratorsExist) +{ + constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY; + constexpr size_t totalLength = 2 * chunkLength; + + { + SourceBufferIterator outerIterator = mSourceBuffer->Iterator(); + + { + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Write enough data to create two chunks. + CheckedAppendToBufferInChunks(chunkLength, totalLength); + CheckedCompleteBuffer(iterator, totalLength); + + // Verify that the iterator sees two chunks. Since there are live + // iterators, compaction shouldn't have happened when we completed the + // buffer. + CheckedAdvanceIterator(iterator, chunkLength); + CheckedAdvanceIterator(iterator, chunkLength, 2, totalLength); + CheckIteratorIsComplete(iterator, 2, totalLength); + } + + // Now |iterator| has been destroyed, but |outerIterator| still exists, so + // we expect no compaction to have occurred at this point. + CheckedAdvanceIterator(outerIterator, chunkLength); + CheckedAdvanceIterator(outerIterator, chunkLength, 2, totalLength); + CheckIteratorIsComplete(outerIterator, 2, totalLength); + } + + // Now all iterators have been destroyed. Since the buffer was already + // complete, we expect compaction to happen implicitly here. + + { + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Verify that compaction happened and there's now only one chunk. + CheckedAdvanceIterator(iterator, totalLength); + CheckIteratorIsComplete(iterator, 1, totalLength); + } +} + +TEST_F(ImageSourceBuffer, SourceBufferIteratorsCanBeMoved) +{ + constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY; + constexpr size_t totalLength = 2 * chunkLength; + + // Write enough data to create two chunks. We create an iterator here to make + // sure that compaction doesn't happen during the test. + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + CheckedAppendToBufferInChunks(chunkLength, totalLength); + CheckedCompleteBuffer(iterator, totalLength); + + auto GetIterator = [&]{ + SourceBufferIterator lambdaIterator = mSourceBuffer->Iterator(); + CheckedAdvanceIterator(lambdaIterator, chunkLength); + return lambdaIterator; + }; + + // Move-construct |movedIterator| from the iterator returned from + // GetIterator() and check that its state is as we expect. + SourceBufferIterator movedIterator = Move(GetIterator()); + EXPECT_TRUE(movedIterator.Data()); + EXPECT_EQ(chunkLength, movedIterator.Length()); + ExpectChunkAndByteCount(movedIterator, 1, chunkLength); + + // Make sure that we can advance the iterator. + CheckedAdvanceIterator(movedIterator, chunkLength, 2, totalLength); + + // Make sure that the iterator handles completion properly. + CheckIteratorIsComplete(movedIterator, 2, totalLength); + + // Move-assign |movedIterator| from the iterator returned from + // GetIterator() and check that its state is as we expect. + movedIterator = Move(GetIterator()); + EXPECT_TRUE(movedIterator.Data()); + EXPECT_EQ(chunkLength, movedIterator.Length()); + ExpectChunkAndByteCount(movedIterator, 1, chunkLength); + + // Make sure that we can advance the iterator. + CheckedAdvanceIterator(movedIterator, chunkLength, 2, totalLength); + + // Make sure that the iterator handles completion properly. + CheckIteratorIsComplete(movedIterator, 2, totalLength); +} + +TEST_F(ImageSourceBuffer, SubchunkAdvance) +{ + constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY; + constexpr size_t totalLength = 2 * chunkLength; + + // Write enough data to create two chunks. We create our iterator here to make + // sure that compaction doesn't happen during the test. + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + CheckedAppendToBufferInChunks(chunkLength, totalLength); + CheckedCompleteBuffer(iterator, totalLength); + + // Advance through the first chunk. The chunk count should not increase. + // We check that by always passing 1 for the |aChunks| parameter of + // CheckedAdvanceIteratorStateOnly(). We have to call CheckData() manually + // because the offset calculation in CheckedAdvanceIterator() assumes that + // we're advancing a chunk at a time. + size_t offset = 0; + while (offset < chunkLength) { + CheckedAdvanceIteratorStateOnly(iterator, 1, 1, chunkLength, + AdvanceMode::eAdvanceByLengthExactly); + CheckData(iterator.Data(), offset++, iterator.Length()); + } + + // Read the first byte of the second chunk. This is the point at which we + // can't advance within the same chunk, so the chunk count should increase. We + // check that by passing 2 for the |aChunks| parameter of + // CheckedAdvanceIteratorStateOnly(). + CheckedAdvanceIteratorStateOnly(iterator, 1, 2, totalLength, + AdvanceMode::eAdvanceByLengthExactly); + CheckData(iterator.Data(), offset++, iterator.Length()); + + // Read the rest of the second chunk. The chunk count should not increase. + while (offset < totalLength) { + CheckedAdvanceIteratorStateOnly(iterator, 1, 2, totalLength, + AdvanceMode::eAdvanceByLengthExactly); + CheckData(iterator.Data(), offset++, iterator.Length()); + } + + // Make sure we reached the end. + CheckIteratorIsComplete(iterator, 2, totalLength); +} + +TEST_F(ImageSourceBuffer, SubchunkZeroByteAdvance) +{ + constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY; + constexpr size_t totalLength = 2 * chunkLength; + + // Write enough data to create two chunks. We create our iterator here to make + // sure that compaction doesn't happen during the test. + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + CheckedAppendToBufferInChunks(chunkLength, totalLength); + CheckedCompleteBuffer(iterator, totalLength); + + // Make an initial zero-length advance. Although a zero-length advance + // normally won't cause us to read a chunk from the SourceBuffer, we'll do so + // if the iterator is in the initial state to keep the invariant that + // SourceBufferIterator in the READY state always returns a non-null pointer + // from Data(). + CheckedAdvanceIteratorStateOnly(iterator, 0, 1, chunkLength, + AdvanceMode::eAdvanceByLengthExactly); + + // Advance through the first chunk. As in the |SubchunkAdvance| test, the + // chunk count should not increase. We do a zero-length advance after each + // normal advance to ensure that zero-length advances do not change the + // iterator's position or cause a new chunk to be read. + size_t offset = 0; + while (offset < chunkLength) { + CheckedAdvanceIteratorStateOnly(iterator, 1, 1, chunkLength, + AdvanceMode::eAdvanceByLengthExactly); + CheckData(iterator.Data(), offset++, iterator.Length()); + CheckedAdvanceIteratorStateOnly(iterator, 0, 1, chunkLength, + AdvanceMode::eAdvanceByLengthExactly); + } + + // Read the first byte of the second chunk. This is the point at which we + // can't advance within the same chunk, so the chunk count should increase. As + // before, we do a zero-length advance afterward. + CheckedAdvanceIteratorStateOnly(iterator, 1, 2, totalLength, + AdvanceMode::eAdvanceByLengthExactly); + CheckData(iterator.Data(), offset++, iterator.Length()); + CheckedAdvanceIteratorStateOnly(iterator, 0, 2, totalLength, + AdvanceMode::eAdvanceByLengthExactly); + + // Read the rest of the second chunk. The chunk count should not increase. As + // before, we do a zero-length advance after each normal advance. + while (offset < totalLength) { + CheckedAdvanceIteratorStateOnly(iterator, 1, 2, totalLength, + AdvanceMode::eAdvanceByLengthExactly); + CheckData(iterator.Data(), offset++, iterator.Length()); + CheckedAdvanceIteratorStateOnly(iterator, 0, 2, totalLength, + AdvanceMode::eAdvanceByLengthExactly); + } + + // Make sure we reached the end. + CheckIteratorIsComplete(iterator, 2, totalLength); +} + +TEST_F(ImageSourceBuffer, SubchunkZeroByteAdvanceWithNoData) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Check that advancing by zero bytes still makes us enter the WAITING state. + // This is because if we entered the READY state before reading any data at + // all, we'd break the invariant that SourceBufferIterator::Data() always + // returns a non-null pointer in the READY state. + auto state = iterator.AdvanceOrScheduleResume(0, mCountResumes); + EXPECT_EQ(SourceBufferIterator::WAITING, state); + + // Call Complete(). This should trigger a resume. + CheckedCompleteBuffer(); + EXPECT_EQ(1u, mCountResumes->Count()); +} + +TEST_F(ImageSourceBuffer, NullIResumable) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Check that we can't advance. + CheckIteratorMustWait(iterator, nullptr); + + // Append to the buffer, which would cause a resume if we had passed a + // non-null IResumable. + CheckedAppendToBuffer(mData, sizeof(mData)); + CheckedCompleteBuffer(iterator, sizeof(mData)); +} + +TEST_F(ImageSourceBuffer, AppendTriggersResume) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Check that we can't advance. + CheckIteratorMustWait(iterator, mCountResumes); + + // Call Append(). This should trigger a resume. + mSourceBuffer->Append(mData, sizeof(mData)); + EXPECT_EQ(1u, mCountResumes->Count()); +} + +TEST_F(ImageSourceBuffer, OnlyOneResumeTriggeredPerAppend) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Check that we can't advance. + CheckIteratorMustWait(iterator, mCountResumes); + + // Allocate some data we'll use below. + constexpr size_t firstWriteLength = SourceBuffer::MIN_CHUNK_CAPACITY / 2; + constexpr size_t secondWriteLength = 3 * SourceBuffer::MIN_CHUNK_CAPACITY; + constexpr size_t totalLength = firstWriteLength + secondWriteLength; + char data[totalLength]; + GenerateData(data, sizeof(data)); + + // Write half of SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the + // buffer in a single Append() call. This should fill half of the first chunk. + // This should trigger a resume. + CheckedAppendToBuffer(data, firstWriteLength); + EXPECT_EQ(1u, mCountResumes->Count()); + + // Advance past the new data and wait again. + CheckedAdvanceIterator(iterator, firstWriteLength); + CheckIteratorMustWait(iterator, mCountResumes); + + // Write three times SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the + // buffer in a single Append() call. We expect this to result in the first of + // the first chunk being filled and a new chunk being allocated for the + // remainder. Even though two chunks are getting written to here, only *one* + // resume should get triggered, for a total of two in this test. + CheckedAppendToBuffer(data + firstWriteLength, secondWriteLength); + EXPECT_EQ(2u, mCountResumes->Count()); +} + +TEST_F(ImageSourceBuffer, CompleteTriggersResume) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Check that we can't advance. + CheckIteratorMustWait(iterator, mCountResumes); + + // Call Complete(). This should trigger a resume. + CheckedCompleteBuffer(); + EXPECT_EQ(1u, mCountResumes->Count()); +} + +TEST_F(ImageSourceBuffer, ExpectLengthDoesNotTriggerResume) +{ + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + + // Check that we can't advance. + CheckIteratorMustWait(iterator, mExpectNoResume); + + // Call ExpectLength(). If this triggers a resume, |mExpectNoResume| will + // ensure that the test fails. + mSourceBuffer->ExpectLength(1000); +} diff --git a/image/test/gtest/TestStreamingLexer.cpp b/image/test/gtest/TestStreamingLexer.cpp new file mode 100644 index 000000000..590b10e81 --- /dev/null +++ b/image/test/gtest/TestStreamingLexer.cpp @@ -0,0 +1,973 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "mozilla/Vector.h" +#include "StreamingLexer.h" + +using namespace mozilla; +using namespace mozilla::image; + +enum class TestState +{ + ONE, + TWO, + THREE, + UNBUFFERED, + TRUNCATED_SUCCESS, + TRUNCATED_FAILURE +}; + +void +CheckLexedData(const char* aData, + size_t aLength, + size_t aOffset, + size_t aExpectedLength) +{ + EXPECT_TRUE(aLength == aExpectedLength); + + for (size_t i = 0; i < aLength; ++i) { + EXPECT_EQ(aData[i], char(aOffset + i + 1)); + } +} + +LexerTransition<TestState> +DoLex(TestState aState, const char* aData, size_t aLength) +{ + switch (aState) { + case TestState::ONE: + CheckLexedData(aData, aLength, 0, 3); + return Transition::To(TestState::TWO, 3); + case TestState::TWO: + CheckLexedData(aData, aLength, 3, 3); + return Transition::To(TestState::THREE, 3); + case TestState::THREE: + CheckLexedData(aData, aLength, 6, 3); + return Transition::TerminateSuccess(); + case TestState::TRUNCATED_SUCCESS: + return Transition::TerminateSuccess(); + case TestState::TRUNCATED_FAILURE: + return Transition::TerminateFailure(); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +LexerTransition<TestState> +DoLexWithUnbuffered(TestState aState, const char* aData, size_t aLength, + Vector<char>& aUnbufferedVector) +{ + switch (aState) { + case TestState::ONE: + CheckLexedData(aData, aLength, 0, 3); + return Transition::ToUnbuffered(TestState::TWO, TestState::UNBUFFERED, 3); + case TestState::TWO: + CheckLexedData(aUnbufferedVector.begin(), aUnbufferedVector.length(), 3, 3); + return Transition::To(TestState::THREE, 3); + case TestState::THREE: + CheckLexedData(aData, aLength, 6, 3); + return Transition::TerminateSuccess(); + case TestState::UNBUFFERED: + EXPECT_TRUE(aLength <= 3); + EXPECT_TRUE(aUnbufferedVector.append(aData, aLength)); + return Transition::ContinueUnbuffered(TestState::UNBUFFERED); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +LexerTransition<TestState> +DoLexWithUnbufferedTerminate(TestState aState, const char* aData, size_t aLength) +{ + switch (aState) { + case TestState::ONE: + CheckLexedData(aData, aLength, 0, 3); + return Transition::ToUnbuffered(TestState::TWO, TestState::UNBUFFERED, 3); + case TestState::UNBUFFERED: + return Transition::TerminateSuccess(); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +LexerTransition<TestState> +DoLexWithYield(TestState aState, const char* aData, size_t aLength) +{ + switch (aState) { + case TestState::ONE: + CheckLexedData(aData, aLength, 0, 3); + return Transition::ToAfterYield(TestState::TWO); + case TestState::TWO: + CheckLexedData(aData, aLength, 0, 3); + return Transition::To(TestState::THREE, 6); + case TestState::THREE: + CheckLexedData(aData, aLength, 3, 6); + return Transition::TerminateSuccess(); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +LexerTransition<TestState> +DoLexWithTerminateAfterYield(TestState aState, const char* aData, size_t aLength) +{ + switch (aState) { + case TestState::ONE: + CheckLexedData(aData, aLength, 0, 3); + return Transition::ToAfterYield(TestState::TWO); + case TestState::TWO: + return Transition::TerminateSuccess(); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +LexerTransition<TestState> +DoLexWithZeroLengthStates(TestState aState, const char* aData, size_t aLength) +{ + switch (aState) { + case TestState::ONE: + EXPECT_TRUE(aLength == 0); + return Transition::To(TestState::TWO, 0); + case TestState::TWO: + EXPECT_TRUE(aLength == 0); + return Transition::To(TestState::THREE, 9); + case TestState::THREE: + CheckLexedData(aData, aLength, 0, 9); + return Transition::TerminateSuccess(); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +LexerTransition<TestState> +DoLexWithZeroLengthStatesAtEnd(TestState aState, const char* aData, size_t aLength) +{ + switch (aState) { + case TestState::ONE: + CheckLexedData(aData, aLength, 0, 9); + return Transition::To(TestState::TWO, 0); + case TestState::TWO: + EXPECT_TRUE(aLength == 0); + return Transition::To(TestState::THREE, 0); + case TestState::THREE: + EXPECT_TRUE(aLength == 0); + return Transition::TerminateSuccess(); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +LexerTransition<TestState> +DoLexWithZeroLengthYield(TestState aState, const char* aData, size_t aLength) +{ + switch (aState) { + case TestState::ONE: + EXPECT_EQ(0u, aLength); + return Transition::ToAfterYield(TestState::TWO); + case TestState::TWO: + EXPECT_EQ(0u, aLength); + return Transition::To(TestState::THREE, 9); + case TestState::THREE: + CheckLexedData(aData, aLength, 0, 9); + return Transition::TerminateSuccess(); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +LexerTransition<TestState> +DoLexWithZeroLengthStatesUnbuffered(TestState aState, + const char* aData, + size_t aLength) +{ + switch (aState) { + case TestState::ONE: + EXPECT_TRUE(aLength == 0); + return Transition::ToUnbuffered(TestState::TWO, TestState::UNBUFFERED, 0); + case TestState::TWO: + EXPECT_TRUE(aLength == 0); + return Transition::To(TestState::THREE, 9); + case TestState::THREE: + CheckLexedData(aData, aLength, 0, 9); + return Transition::TerminateSuccess(); + case TestState::UNBUFFERED: + ADD_FAILURE() << "Should not enter zero-length unbuffered state"; + return Transition::TerminateFailure(); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +LexerTransition<TestState> +DoLexWithZeroLengthStatesAfterUnbuffered(TestState aState, + const char* aData, + size_t aLength) +{ + switch (aState) { + case TestState::ONE: + EXPECT_TRUE(aLength == 0); + return Transition::ToUnbuffered(TestState::TWO, TestState::UNBUFFERED, 9); + case TestState::TWO: + EXPECT_TRUE(aLength == 0); + return Transition::To(TestState::THREE, 0); + case TestState::THREE: + EXPECT_TRUE(aLength == 0); + return Transition::TerminateSuccess(); + case TestState::UNBUFFERED: + CheckLexedData(aData, aLength, 0, 9); + return Transition::ContinueUnbuffered(TestState::UNBUFFERED); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } +} + +class ImageStreamingLexer : public ::testing::Test +{ +public: + // Note that mLexer is configured to enter TerminalState::FAILURE immediately + // if the input data is truncated. We don't expect that to happen in most + // tests, so we want to detect that issue. If a test needs a different + // behavior, we create a special StreamingLexer just for that test. + ImageStreamingLexer() + : mLexer(Transition::To(TestState::ONE, 3), Transition::TerminateFailure()) + , mSourceBuffer(new SourceBuffer) + , mIterator(mSourceBuffer->Iterator()) + , mExpectNoResume(new ExpectNoResume) + , mCountResumes(new CountResumes) + { } + +protected: + void CheckTruncatedState(StreamingLexer<TestState>& aLexer, + TerminalState aExpectedTerminalState, + nsresult aCompletionStatus = NS_OK) + { + for (unsigned i = 0; i < 9; ++i) { + if (i < 2) { + mSourceBuffer->Append(mData + i, 1); + } else if (i == 2) { + mSourceBuffer->Complete(aCompletionStatus); + } + + LexerResult result = aLexer.Lex(mIterator, mCountResumes, DoLex); + + if (i >= 2) { + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(aExpectedTerminalState, result.as<TerminalState>()); + } else { + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + } + } + + EXPECT_EQ(2u, mCountResumes->Count()); + } + + AutoInitializeImageLib mInit; + const char mData[9] { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; + StreamingLexer<TestState> mLexer; + RefPtr<SourceBuffer> mSourceBuffer; + SourceBufferIterator mIterator; + RefPtr<ExpectNoResume> mExpectNoResume; + RefPtr<CountResumes> mCountResumes; +}; + +TEST_F(ImageStreamingLexer, ZeroLengthData) +{ + // Test a zero-length input. + mSourceBuffer->Complete(NS_OK); + + LexerResult result = mLexer.Lex(mIterator, mExpectNoResume, DoLex); + + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::FAILURE, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, ZeroLengthDataUnbuffered) +{ + // Test a zero-length input. + mSourceBuffer->Complete(NS_OK); + + // Create a special StreamingLexer for this test because we want the first + // state to be unbuffered. + StreamingLexer<TestState> lexer(Transition::ToUnbuffered(TestState::ONE, + TestState::UNBUFFERED, + sizeof(mData)), + Transition::TerminateFailure()); + + LexerResult result = lexer.Lex(mIterator, mExpectNoResume, DoLex); + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::FAILURE, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, StartWithTerminal) +{ + // Create a special StreamingLexer for this test because we want the first + // state to be a terminal state. This doesn't really make sense, but we should + // handle it. + StreamingLexer<TestState> lexer(Transition::TerminateSuccess(), + Transition::TerminateFailure()); + LexerResult result = lexer.Lex(mIterator, mExpectNoResume, DoLex); + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + + mSourceBuffer->Complete(NS_OK); +} + +TEST_F(ImageStreamingLexer, SingleChunk) +{ + // Test delivering all the data at once. + mSourceBuffer->Append(mData, sizeof(mData)); + mSourceBuffer->Complete(NS_OK); + + LexerResult result = mLexer.Lex(mIterator, mExpectNoResume, DoLex); + + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, SingleChunkWithUnbuffered) +{ + Vector<char> unbufferedVector; + + // Test delivering all the data at once. + mSourceBuffer->Append(mData, sizeof(mData)); + mSourceBuffer->Complete(NS_OK); + + LexerResult result = + mLexer.Lex(mIterator, mExpectNoResume, + [&](TestState aState, const char* aData, size_t aLength) { + return DoLexWithUnbuffered(aState, aData, aLength, unbufferedVector); + }); + + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, SingleChunkWithYield) +{ + // Test delivering all the data at once. + mSourceBuffer->Append(mData, sizeof(mData)); + mSourceBuffer->Complete(NS_OK); + + LexerResult result = mLexer.Lex(mIterator, mExpectNoResume, DoLexWithYield); + ASSERT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + + result = mLexer.Lex(mIterator, mExpectNoResume, DoLexWithYield); + ASSERT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, ChunkPerState) +{ + // Test delivering in perfectly-sized chunks, one per state. + for (unsigned i = 0; i < 3; ++i) { + mSourceBuffer->Append(mData + 3 * i, 3); + LexerResult result = mLexer.Lex(mIterator, mCountResumes, DoLex); + + if (i == 2) { + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + } else { + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + } + } + + EXPECT_EQ(2u, mCountResumes->Count()); + mSourceBuffer->Complete(NS_OK); +} + +TEST_F(ImageStreamingLexer, ChunkPerStateWithUnbuffered) +{ + Vector<char> unbufferedVector; + + // Test delivering in perfectly-sized chunks, one per state. + for (unsigned i = 0; i < 3; ++i) { + mSourceBuffer->Append(mData + 3 * i, 3); + LexerResult result = + mLexer.Lex(mIterator, mCountResumes, + [&](TestState aState, const char* aData, size_t aLength) { + return DoLexWithUnbuffered(aState, aData, aLength, unbufferedVector); + }); + + if (i == 2) { + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + } else { + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + } + } + + EXPECT_EQ(2u, mCountResumes->Count()); + mSourceBuffer->Complete(NS_OK); +} + +TEST_F(ImageStreamingLexer, ChunkPerStateWithYield) +{ + // Test delivering in perfectly-sized chunks, one per state. + mSourceBuffer->Append(mData, 3); + LexerResult result = mLexer.Lex(mIterator, mCountResumes, DoLexWithYield); + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + + result = mLexer.Lex(mIterator, mCountResumes, DoLexWithYield); + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + + mSourceBuffer->Append(mData + 3, 6); + result = mLexer.Lex(mIterator, mCountResumes, DoLexWithYield); + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + + EXPECT_EQ(1u, mCountResumes->Count()); + mSourceBuffer->Complete(NS_OK); +} + +TEST_F(ImageStreamingLexer, ChunkPerStateWithUnbufferedYield) +{ + size_t unbufferedCallCount = 0; + Vector<char> unbufferedVector; + auto lexerFunc = [&](TestState aState, const char* aData, size_t aLength) + -> LexerTransition<TestState> { + switch (aState) { + case TestState::ONE: + CheckLexedData(aData, aLength, 0, 3); + return Transition::ToUnbuffered(TestState::TWO, TestState::UNBUFFERED, 3); + case TestState::TWO: + CheckLexedData(unbufferedVector.begin(), unbufferedVector.length(), 3, 3); + return Transition::To(TestState::THREE, 3); + case TestState::THREE: + CheckLexedData(aData, aLength, 6, 3); + return Transition::TerminateSuccess(); + case TestState::UNBUFFERED: + switch (unbufferedCallCount) { + case 0: + CheckLexedData(aData, aLength, 3, 3); + EXPECT_TRUE(unbufferedVector.append(aData, 2)); + unbufferedCallCount++; + + // Continue after yield, telling StreamingLexer we consumed 2 bytes. + return Transition::ContinueUnbufferedAfterYield(TestState::UNBUFFERED, 2); + + case 1: + CheckLexedData(aData, aLength, 5, 1); + EXPECT_TRUE(unbufferedVector.append(aData, 1)); + unbufferedCallCount++; + + // Continue after yield, telling StreamingLexer we consumed 1 byte. + // We should end up in the TWO state. + return Transition::ContinueUnbuffered(TestState::UNBUFFERED); + } + ADD_FAILURE() << "Too many invocations of TestState::UNBUFFERED"; + return Transition::TerminateFailure(); + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } + }; + + // Test delivering in perfectly-sized chunks, one per state. + for (unsigned i = 0; i < 3; ++i) { + mSourceBuffer->Append(mData + 3 * i, 3); + LexerResult result = mLexer.Lex(mIterator, mCountResumes, lexerFunc); + + switch (i) { + case 0: + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + EXPECT_EQ(0u, unbufferedCallCount); + break; + + case 1: + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + EXPECT_EQ(1u, unbufferedCallCount); + + result = mLexer.Lex(mIterator, mCountResumes, lexerFunc); + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + EXPECT_EQ(2u, unbufferedCallCount); + break; + + case 2: + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + break; + } + } + + EXPECT_EQ(2u, mCountResumes->Count()); + mSourceBuffer->Complete(NS_OK); + + LexerResult result = mLexer.Lex(mIterator, mCountResumes, lexerFunc); + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, OneByteChunks) +{ + // Test delivering in one byte chunks. + for (unsigned i = 0; i < 9; ++i) { + mSourceBuffer->Append(mData + i, 1); + LexerResult result = mLexer.Lex(mIterator, mCountResumes, DoLex); + + if (i == 8) { + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + } else { + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + } + } + + EXPECT_EQ(8u, mCountResumes->Count()); + mSourceBuffer->Complete(NS_OK); +} + +TEST_F(ImageStreamingLexer, OneByteChunksWithUnbuffered) +{ + Vector<char> unbufferedVector; + + // Test delivering in one byte chunks. + for (unsigned i = 0; i < 9; ++i) { + mSourceBuffer->Append(mData + i, 1); + LexerResult result = + mLexer.Lex(mIterator, mCountResumes, + [&](TestState aState, const char* aData, size_t aLength) { + return DoLexWithUnbuffered(aState, aData, aLength, unbufferedVector); + }); + + if (i == 8) { + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + } else { + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + } + } + + EXPECT_EQ(8u, mCountResumes->Count()); + mSourceBuffer->Complete(NS_OK); +} + +TEST_F(ImageStreamingLexer, OneByteChunksWithYield) +{ + // Test delivering in one byte chunks. + for (unsigned i = 0; i < 9; ++i) { + mSourceBuffer->Append(mData + i, 1); + LexerResult result = mLexer.Lex(mIterator, mCountResumes, DoLexWithYield); + + switch (i) { + case 2: + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + + result = mLexer.Lex(mIterator, mCountResumes, DoLexWithYield); + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + break; + + case 8: + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + break; + + default: + EXPECT_TRUE(i < 9); + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + } + } + + EXPECT_EQ(8u, mCountResumes->Count()); + mSourceBuffer->Complete(NS_OK); +} + +TEST_F(ImageStreamingLexer, ZeroLengthState) +{ + mSourceBuffer->Append(mData, sizeof(mData)); + mSourceBuffer->Complete(NS_OK); + + // Create a special StreamingLexer for this test because we want the first + // state to be zero length. + StreamingLexer<TestState> lexer(Transition::To(TestState::ONE, 0), + Transition::TerminateFailure()); + + LexerResult result = + lexer.Lex(mIterator, mExpectNoResume, DoLexWithZeroLengthStates); + + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, ZeroLengthStatesAtEnd) +{ + mSourceBuffer->Append(mData, sizeof(mData)); + mSourceBuffer->Complete(NS_OK); + + // Create a special StreamingLexer for this test because we want the first + // state to consume the full input. + StreamingLexer<TestState> lexer(Transition::To(TestState::ONE, 9), + Transition::TerminateFailure()); + + LexerResult result = + lexer.Lex(mIterator, mExpectNoResume, DoLexWithZeroLengthStatesAtEnd); + + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, ZeroLengthStateWithYield) +{ + // Create a special StreamingLexer for this test because we want the first + // state to be zero length. + StreamingLexer<TestState> lexer(Transition::To(TestState::ONE, 0), + Transition::TerminateFailure()); + + mSourceBuffer->Append(mData, 3); + LexerResult result = + lexer.Lex(mIterator, mExpectNoResume, DoLexWithZeroLengthYield); + ASSERT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + + result = lexer.Lex(mIterator, mCountResumes, DoLexWithZeroLengthYield); + ASSERT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + + mSourceBuffer->Append(mData + 3, sizeof(mData) - 3); + mSourceBuffer->Complete(NS_OK); + result = lexer.Lex(mIterator, mExpectNoResume, DoLexWithZeroLengthYield); + ASSERT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + EXPECT_EQ(1u, mCountResumes->Count()); +} + +TEST_F(ImageStreamingLexer, ZeroLengthStateWithUnbuffered) +{ + mSourceBuffer->Append(mData, sizeof(mData)); + mSourceBuffer->Complete(NS_OK); + + // Create a special StreamingLexer for this test because we want the first + // state to be both zero length and unbuffered. + StreamingLexer<TestState> lexer(Transition::ToUnbuffered(TestState::ONE, + TestState::UNBUFFERED, + 0), + Transition::TerminateFailure()); + + LexerResult result = + lexer.Lex(mIterator, mExpectNoResume, DoLexWithZeroLengthStatesUnbuffered); + + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, ZeroLengthStateAfterUnbuffered) +{ + mSourceBuffer->Append(mData, sizeof(mData)); + mSourceBuffer->Complete(NS_OK); + + // Create a special StreamingLexer for this test because we want the first + // state to be zero length. + StreamingLexer<TestState> lexer(Transition::To(TestState::ONE, 0), + Transition::TerminateFailure()); + + LexerResult result = + lexer.Lex(mIterator, mExpectNoResume, DoLexWithZeroLengthStatesAfterUnbuffered); + + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, ZeroLengthStateWithUnbufferedYield) +{ + size_t unbufferedCallCount = 0; + auto lexerFunc = [&](TestState aState, const char* aData, size_t aLength) + -> LexerTransition<TestState> { + switch (aState) { + case TestState::ONE: + EXPECT_EQ(0u, aLength); + return Transition::TerminateSuccess(); + + case TestState::UNBUFFERED: + switch (unbufferedCallCount) { + case 0: + CheckLexedData(aData, aLength, 0, 3); + unbufferedCallCount++; + + // Continue after yield, telling StreamingLexer we consumed 0 bytes. + return Transition::ContinueUnbufferedAfterYield(TestState::UNBUFFERED, 0); + + case 1: + CheckLexedData(aData, aLength, 0, 3); + unbufferedCallCount++; + + // Continue after yield, telling StreamingLexer we consumed 2 bytes. + return Transition::ContinueUnbufferedAfterYield(TestState::UNBUFFERED, 2); + + case 2: + EXPECT_EQ(1u, aLength); + CheckLexedData(aData, aLength, 2, 1); + unbufferedCallCount++; + + // Continue after yield, telling StreamingLexer we consumed 1 bytes. + return Transition::ContinueUnbufferedAfterYield(TestState::UNBUFFERED, 1); + + case 3: + CheckLexedData(aData, aLength, 3, 6); + unbufferedCallCount++; + + // Continue after yield, telling StreamingLexer we consumed 6 bytes. + // We should transition to TestState::ONE when we return from the + // yield. + return Transition::ContinueUnbufferedAfterYield(TestState::UNBUFFERED, 6); + } + + ADD_FAILURE() << "Too many invocations of TestState::UNBUFFERED"; + return Transition::TerminateFailure(); + + default: + MOZ_CRASH("Unexpected or unhandled TestState"); + } + }; + + // Create a special StreamingLexer for this test because we want the first + // state to be unbuffered. + StreamingLexer<TestState> lexer(Transition::ToUnbuffered(TestState::ONE, + TestState::UNBUFFERED, + sizeof(mData)), + Transition::TerminateFailure()); + + mSourceBuffer->Append(mData, 3); + LexerResult result = lexer.Lex(mIterator, mExpectNoResume, lexerFunc); + ASSERT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + EXPECT_EQ(1u, unbufferedCallCount); + + result = lexer.Lex(mIterator, mExpectNoResume, lexerFunc); + ASSERT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + EXPECT_EQ(2u, unbufferedCallCount); + + result = lexer.Lex(mIterator, mExpectNoResume, lexerFunc); + ASSERT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + EXPECT_EQ(3u, unbufferedCallCount); + + result = lexer.Lex(mIterator, mCountResumes, lexerFunc); + ASSERT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + EXPECT_EQ(3u, unbufferedCallCount); + + mSourceBuffer->Append(mData + 3, 6); + mSourceBuffer->Complete(NS_OK); + EXPECT_EQ(1u, mCountResumes->Count()); + result = lexer.Lex(mIterator, mExpectNoResume, lexerFunc); + ASSERT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + EXPECT_EQ(4u, unbufferedCallCount); + + result = lexer.Lex(mIterator, mExpectNoResume, lexerFunc); + ASSERT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, TerminateSuccess) +{ + mSourceBuffer->Append(mData, sizeof(mData)); + mSourceBuffer->Complete(NS_OK); + + // Test that Terminate is "sticky". + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + LexerResult result = + mLexer.Lex(iterator, mExpectNoResume, + [&](TestState aState, const char* aData, size_t aLength) { + EXPECT_TRUE(aState == TestState::ONE); + return Transition::TerminateSuccess(); + }); + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + + SourceBufferIterator iterator2 = mSourceBuffer->Iterator(); + result = + mLexer.Lex(iterator2, mExpectNoResume, + [&](TestState aState, const char* aData, size_t aLength) { + EXPECT_TRUE(false); // Shouldn't get here. + return Transition::TerminateFailure(); + }); + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, TerminateFailure) +{ + mSourceBuffer->Append(mData, sizeof(mData)); + mSourceBuffer->Complete(NS_OK); + + // Test that Terminate is "sticky". + SourceBufferIterator iterator = mSourceBuffer->Iterator(); + LexerResult result = + mLexer.Lex(iterator, mExpectNoResume, + [&](TestState aState, const char* aData, size_t aLength) { + EXPECT_TRUE(aState == TestState::ONE); + return Transition::TerminateFailure(); + }); + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::FAILURE, result.as<TerminalState>()); + + SourceBufferIterator iterator2 = mSourceBuffer->Iterator(); + result = + mLexer.Lex(iterator2, mExpectNoResume, + [&](TestState aState, const char* aData, size_t aLength) { + EXPECT_TRUE(false); // Shouldn't get here. + return Transition::TerminateFailure(); + }); + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::FAILURE, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, TerminateUnbuffered) +{ + // Test that Terminate works during an unbuffered read. + for (unsigned i = 0; i < 9; ++i) { + mSourceBuffer->Append(mData + i, 1); + LexerResult result = + mLexer.Lex(mIterator, mCountResumes, DoLexWithUnbufferedTerminate); + + if (i > 2) { + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + } else { + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + } + } + + // We expect 3 resumes because TestState::ONE consumes 3 bytes and then + // transitions to TestState::UNBUFFERED, which calls TerminateSuccess() as + // soon as it receives a single byte. That's four bytes total, which are + // delivered one at a time, requiring 3 resumes. + EXPECT_EQ(3u, mCountResumes->Count()); + + mSourceBuffer->Complete(NS_OK); +} + +TEST_F(ImageStreamingLexer, TerminateAfterYield) +{ + // Test that Terminate works after yielding. + for (unsigned i = 0; i < 9; ++i) { + mSourceBuffer->Append(mData + i, 1); + LexerResult result = + mLexer.Lex(mIterator, mCountResumes, DoLexWithTerminateAfterYield); + + if (i > 2) { + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + } else if (i == 2) { + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::OUTPUT_AVAILABLE, result.as<Yield>()); + } else { + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + } + } + + // We expect 2 resumes because TestState::ONE consumes 3 bytes and then + // yields. When the lexer resumes at TestState::TWO, which receives the same 3 + // bytes, TerminateSuccess() gets called immediately. That's three bytes + // total, which are delivered one at a time, requiring 2 resumes. + EXPECT_EQ(2u, mCountResumes->Count()); + + mSourceBuffer->Complete(NS_OK); +} + +TEST_F(ImageStreamingLexer, SourceBufferImmediateComplete) +{ + // Test calling SourceBuffer::Complete() without appending any data. This + // causes the SourceBuffer to automatically have a failing completion status, + // no matter what you pass, so we expect TerminalState::FAILURE below. + mSourceBuffer->Complete(NS_OK); + + LexerResult result = mLexer.Lex(mIterator, mExpectNoResume, DoLex); + + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::FAILURE, result.as<TerminalState>()); +} + +TEST_F(ImageStreamingLexer, SourceBufferTruncatedTerminalStateSuccess) +{ + // Test that using a terminal state (in this case TerminalState::SUCCESS) as a + // truncated state works. + StreamingLexer<TestState> lexer(Transition::To(TestState::ONE, 3), + Transition::TerminateSuccess()); + + CheckTruncatedState(lexer, TerminalState::SUCCESS); +} + +TEST_F(ImageStreamingLexer, SourceBufferTruncatedTerminalStateFailure) +{ + // Test that using a terminal state (in this case TerminalState::FAILURE) as a + // truncated state works. + StreamingLexer<TestState> lexer(Transition::To(TestState::ONE, 3), + Transition::TerminateFailure()); + + CheckTruncatedState(lexer, TerminalState::FAILURE); +} + +TEST_F(ImageStreamingLexer, SourceBufferTruncatedStateReturningSuccess) +{ + // Test that a truncated state that returns TerminalState::SUCCESS works. When + // |lexer| discovers that the data is truncated, it invokes the + // TRUNCATED_SUCCESS state, which returns TerminalState::SUCCESS. + // CheckTruncatedState() verifies that this happens. + StreamingLexer<TestState> lexer(Transition::To(TestState::ONE, 3), + Transition::To(TestState::TRUNCATED_SUCCESS, 0)); + + CheckTruncatedState(lexer, TerminalState::SUCCESS); +} + +TEST_F(ImageStreamingLexer, SourceBufferTruncatedStateReturningFailure) +{ + // Test that a truncated state that returns TerminalState::FAILURE works. When + // |lexer| discovers that the data is truncated, it invokes the + // TRUNCATED_FAILURE state, which returns TerminalState::FAILURE. + // CheckTruncatedState() verifies that this happens. + StreamingLexer<TestState> lexer(Transition::To(TestState::ONE, 3), + Transition::To(TestState::TRUNCATED_FAILURE, 0)); + + CheckTruncatedState(lexer, TerminalState::FAILURE); +} + +TEST_F(ImageStreamingLexer, SourceBufferTruncatedFailingCompleteStatus) +{ + // Test that calling SourceBuffer::Complete() with a failing status results in + // an immediate TerminalState::FAILURE result. (Note that |lexer|'s truncated + // state is TerminalState::SUCCESS, so if we ignore the failing status, the + // test will fail.) + StreamingLexer<TestState> lexer(Transition::To(TestState::ONE, 3), + Transition::TerminateSuccess()); + + CheckTruncatedState(lexer, TerminalState::FAILURE, NS_ERROR_FAILURE); +} + +TEST_F(ImageStreamingLexer, NoSourceBufferResumable) +{ + // Test delivering in one byte chunks with no IResumable. + for (unsigned i = 0; i < 9; ++i) { + mSourceBuffer->Append(mData + i, 1); + LexerResult result = mLexer.Lex(mIterator, nullptr, DoLex); + + if (i == 8) { + EXPECT_TRUE(result.is<TerminalState>()); + EXPECT_EQ(TerminalState::SUCCESS, result.as<TerminalState>()); + } else { + EXPECT_TRUE(result.is<Yield>()); + EXPECT_EQ(Yield::NEED_MORE_DATA, result.as<Yield>()); + } + } + + mSourceBuffer->Complete(NS_OK); +} diff --git a/image/test/gtest/TestSurfacePipeIntegration.cpp b/image/test/gtest/TestSurfacePipeIntegration.cpp new file mode 100644 index 000000000..5e8c19fc2 --- /dev/null +++ b/image/test/gtest/TestSurfacePipeIntegration.cpp @@ -0,0 +1,508 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "mozilla/gfx/2D.h" +#include "Common.h" +#include "Decoder.h" +#include "DecoderFactory.h" +#include "SourceBuffer.h" +#include "SurfacePipe.h" + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +namespace mozilla { +namespace image { + +class TestSurfacePipeFactory +{ +public: + static SurfacePipe SimpleSurfacePipe() + { + SurfacePipe pipe; + return Move(pipe); + } + + template <typename T> + static SurfacePipe SurfacePipeFromPipeline(T&& aPipeline) + { + return SurfacePipe { Move(aPipeline) }; + } + +private: + TestSurfacePipeFactory() { } +}; + +} // namespace image +} // namespace mozilla + +void +CheckSurfacePipeMethodResults(SurfacePipe* aPipe, + Decoder* aDecoder, + const IntRect& aRect = IntRect(0, 0, 100, 100)) +{ + // Check that the pipeline ended up in the state we expect. Note that we're + // explicitly testing the SurfacePipe versions of these methods, so we don't + // want to use AssertCorrectPipelineFinalState() here. + EXPECT_TRUE(aPipe->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aPipe->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mOutputSpaceRect); + + // Check the generated image. + CheckGeneratedImage(aDecoder, aRect); + + // Reset and clear the image before the next test. + aPipe->ResetToFirstRow(); + EXPECT_FALSE(aPipe->IsSurfaceFinished()); + invalidRect = aPipe->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + uint32_t count = 0; + auto result = aPipe->WritePixels<uint32_t>([&]() { + ++count; + return AsVariant(BGRAColor::Transparent().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 100u, count); + + EXPECT_TRUE(aPipe->IsSurfaceFinished()); + invalidRect = aPipe->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mOutputSpaceRect); + + aPipe->ResetToFirstRow(); + EXPECT_FALSE(aPipe->IsSurfaceFinished()); + invalidRect = aPipe->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); +} + +void +CheckPalettedSurfacePipeMethodResults(SurfacePipe* aPipe, + Decoder* aDecoder, + const IntRect& aRect + = IntRect(0, 0, 100, 100)) +{ + // Check that the pipeline ended up in the state we expect. Note that we're + // explicitly testing the SurfacePipe versions of these methods, so we don't + // want to use AssertCorrectPipelineFinalState() here. + EXPECT_TRUE(aPipe->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aPipe->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mOutputSpaceRect); + + // Check the generated image. + CheckGeneratedPalettedImage(aDecoder, aRect); + + // Reset and clear the image before the next test. + aPipe->ResetToFirstRow(); + EXPECT_FALSE(aPipe->IsSurfaceFinished()); + invalidRect = aPipe->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + uint32_t count = 0; + auto result = aPipe->WritePixels<uint8_t>([&]() { + ++count; + return AsVariant(uint8_t(0)); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 100u, count); + + EXPECT_TRUE(aPipe->IsSurfaceFinished()); + invalidRect = aPipe->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mOutputSpaceRect); + + aPipe->ResetToFirstRow(); + EXPECT_FALSE(aPipe->IsSurfaceFinished()); + invalidRect = aPipe->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); +} + +class ImageSurfacePipeIntegration : public ::testing::Test +{ +protected: + AutoInitializeImageLib mInit; +}; + +TEST_F(ImageSurfacePipeIntegration, SurfacePipe) +{ + // Test that SurfacePipe objects can be initialized and move constructed. + SurfacePipe pipe = TestSurfacePipeFactory::SimpleSurfacePipe(); + + // Test that SurfacePipe objects can be move assigned. + pipe = TestSurfacePipeFactory::SimpleSurfacePipe(); + + // Test that SurfacePipe objects can be initialized with a pipeline. + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + auto sink = MakeUnique<SurfaceSink>(); + nsresult rv = + sink->Configure(SurfaceConfig { decoder, 0, IntSize(100, 100), + SurfaceFormat::B8G8R8A8, false }); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + pipe = TestSurfacePipeFactory::SurfacePipeFromPipeline(sink); + + // Test that WritePixels() gets passed through to the underlying pipeline. + { + uint32_t count = 0; + auto result = pipe.WritePixels<uint32_t>([&]() { + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 100u, count); + CheckSurfacePipeMethodResults(&pipe, decoder); + } + + // Create a buffer the same size as one row of the surface, containing all + // green pixels. We'll use this for the WriteBuffer() tests. + uint32_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = BGRAColor::Green().AsPixel(); + } + + // Test that WriteBuffer() gets passed through to the underlying pipeline. + { + uint32_t count = 0; + WriteState result = WriteState::NEED_MORE_DATA; + while (result == WriteState::NEED_MORE_DATA) { + result = pipe.WriteBuffer(buffer); + ++count; + } + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u, count); + CheckSurfacePipeMethodResults(&pipe, decoder); + } + + // Test that the 3 argument version of WriteBuffer() gets passed through to + // the underlying pipeline. + { + uint32_t count = 0; + WriteState result = WriteState::NEED_MORE_DATA; + while (result == WriteState::NEED_MORE_DATA) { + result = pipe.WriteBuffer(buffer, 0, 100); + ++count; + } + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u, count); + CheckSurfacePipeMethodResults(&pipe, decoder); + } + + // Test that WriteEmptyRow() gets passed through to the underlying pipeline. + { + uint32_t count = 0; + WriteState result = WriteState::NEED_MORE_DATA; + while (result == WriteState::NEED_MORE_DATA) { + result = pipe.WriteEmptyRow(); + ++count; + } + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u, count); + CheckSurfacePipeMethodResults(&pipe, decoder, IntRect(0, 0, 0, 0)); + } + + // Mark the frame as finished so we don't get an assertion. + RawAccessFrameRef currentFrame = decoder->GetCurrentFrameRef(); + currentFrame->Finish(); +} + +TEST_F(ImageSurfacePipeIntegration, PalettedSurfacePipe) +{ + // Create a SurfacePipe containing a PalettedSurfaceSink. + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + auto sink = MakeUnique<PalettedSurfaceSink>(); + nsresult rv = + sink->Configure(PalettedSurfaceConfig { decoder, 0, IntSize(100, 100), + IntRect(0, 0, 100, 100), + SurfaceFormat::B8G8R8A8, + 8, false }); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + + SurfacePipe pipe = TestSurfacePipeFactory::SurfacePipeFromPipeline(sink); + + // Test that WritePixels() gets passed through to the underlying pipeline. + { + uint32_t count = 0; + auto result = pipe.WritePixels<uint8_t>([&]() { + ++count; + return AsVariant(uint8_t(255)); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 100u, count); + CheckPalettedSurfacePipeMethodResults(&pipe, decoder); + } + + // Create a buffer the same size as one row of the surface, containing all + // 255 pixels. We'll use this for the WriteBuffer() tests. + uint8_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = 255; + } + + // Test that WriteBuffer() gets passed through to the underlying pipeline. + { + uint32_t count = 0; + WriteState result = WriteState::NEED_MORE_DATA; + while (result == WriteState::NEED_MORE_DATA) { + result = pipe.WriteBuffer(buffer); + ++count; + } + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u, count); + CheckPalettedSurfacePipeMethodResults(&pipe, decoder); + } + + // Test that the 3 argument version of WriteBuffer() gets passed through to + // the underlying pipeline. + { + uint32_t count = 0; + WriteState result = WriteState::NEED_MORE_DATA; + while (result == WriteState::NEED_MORE_DATA) { + result = pipe.WriteBuffer(buffer, 0, 100); + ++count; + } + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u, count); + CheckPalettedSurfacePipeMethodResults(&pipe, decoder); + } + + // Test that WriteEmptyRow() gets passed through to the underlying pipeline. + { + uint32_t count = 0; + WriteState result = WriteState::NEED_MORE_DATA; + while (result == WriteState::NEED_MORE_DATA) { + result = pipe.WriteEmptyRow(); + ++count; + } + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u, count); + CheckPalettedSurfacePipeMethodResults(&pipe, decoder, IntRect(0, 0, 0, 0)); + } + + // Mark the frame as finished so we don't get an assertion. + RawAccessFrameRef currentFrame = decoder->GetCurrentFrameRef(); + currentFrame->Finish(); +} + +TEST_F(ImageSurfacePipeIntegration, DeinterlaceDownscaleWritePixels) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 25, 25))); + }; + + WithFilterPipeline(decoder, test, + DeinterlacingConfig<uint32_t> { /* mProgressiveDisplay = */ true }, + DownscalingConfig { IntSize(100, 100), + SurfaceFormat::B8G8R8A8 }, + SurfaceConfig { decoder, 0, IntSize(25, 25), + SurfaceFormat::B8G8R8A8, false }); +} + +TEST_F(ImageSurfacePipeIntegration, RemoveFrameRectBottomRightDownscaleWritePixels) +{ + // This test case uses a frame rect that extends beyond the borders of the + // image to the bottom and to the right. It looks roughly like this (with the + // box made of '#'s representing the frame rect): + // + // +------------+ + // + + + // + +------------+ + // + +############+ + // +------+############+ + // +############+ + // +------------+ + + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + // Note that aInputWriteRect is 100x50 because RemoveFrameRectFilter ignores + // trailing rows that don't show up in the output. (Leading rows unfortunately + // can't be ignored.) So the action of the pipeline is as follows: + // + // (1) RemoveFrameRectFilter reads a 100x50 region of the input. + // (aInputWriteRect captures this fact.) The remaining 50 rows are ignored + // because they extend off the bottom of the image due to the frame rect's + // (50, 50) offset. The 50 columns on the right also don't end up in the + // output, so ultimately only a 50x50 region in the output contains data + // from the input. The filter's output is not 50x50, though, but 100x100, + // because what RemoveFrameRectFilter does is introduce blank rows or + // columns as necessary to transform an image that needs a frame rect into + // an image that doesn't. + // + // (2) DownscalingFilter reads the output of RemoveFrameRectFilter (100x100) + // and downscales it to 20x20. + // + // (3) The surface owned by SurfaceSink logically has only a 10x10 region + // region in it that's non-blank; this is the downscaled version of the + // 50x50 region discussed in (1). (aOutputWriteRect captures this fact.) + // Some fuzz, as usual, is necessary when dealing with Lanczos downscaling. + + auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 20, 20)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(50, 50, 100, 50)), + /* aOutputWriteRect = */ Some(IntRect(10, 10, 10, 10)), + /* aFuzz = */ 0x33); + }; + + WithFilterPipeline(decoder, test, + RemoveFrameRectConfig { IntRect(50, 50, 100, 100) }, + DownscalingConfig { IntSize(100, 100), + SurfaceFormat::B8G8R8A8 }, + SurfaceConfig { decoder, 0, IntSize(20, 20), + SurfaceFormat::B8G8R8A8, false }); +} + +TEST_F(ImageSurfacePipeIntegration, RemoveFrameRectTopLeftDownscaleWritePixels) +{ + // This test case uses a frame rect that extends beyond the borders of the + // image to the top and to the left. It looks roughly like this (with the + // box made of '#'s representing the frame rect): + // + // +------------+ + // +############+ + // +############+------+ + // +############+ + + // +------------+ + + // + + + // +------------+ + + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 20, 20)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(0, 0, 100, 100)), + /* aOutputWriteRect = */ Some(IntRect(0, 0, 10, 10)), + /* aFuzz = */ 0x21); + }; + + WithFilterPipeline(decoder, test, + RemoveFrameRectConfig { IntRect(-50, -50, 100, 100) }, + DownscalingConfig { IntSize(100, 100), + SurfaceFormat::B8G8R8A8 }, + SurfaceConfig { decoder, 0, IntSize(20, 20), + SurfaceFormat::B8G8R8A8, false }); +} + +TEST_F(ImageSurfacePipeIntegration, DeinterlaceRemoveFrameRectWritePixels) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + // Note that aInputRect is the full 100x100 size even though + // RemoveFrameRectFilter is part of this pipeline, because deinterlacing + // requires reading every row. + + auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(50, 50, 100, 100)), + /* aOutputWriteRect = */ Some(IntRect(50, 50, 50, 50))); + }; + + WithFilterPipeline(decoder, test, + DeinterlacingConfig<uint32_t> { /* mProgressiveDisplay = */ true }, + RemoveFrameRectConfig { IntRect(50, 50, 100, 100) }, + SurfaceConfig { decoder, 0, IntSize(100, 100), + SurfaceFormat::B8G8R8A8, false }); +} + +TEST_F(ImageSurfacePipeIntegration, DeinterlaceRemoveFrameRectDownscaleWritePixels) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) { + CheckWritePixels(aDecoder, aFilter, + /* aOutputRect = */ Some(IntRect(0, 0, 20, 20)), + /* aInputRect = */ Some(IntRect(0, 0, 100, 100)), + /* aInputWriteRect = */ Some(IntRect(50, 50, 100, 100)), + /* aOutputWriteRect = */ Some(IntRect(10, 10, 10, 10)), + /* aFuzz = */ 33); + }; + + WithFilterPipeline(decoder, test, + DeinterlacingConfig<uint32_t> { /* mProgressiveDisplay = */ true }, + RemoveFrameRectConfig { IntRect(50, 50, 100, 100) }, + DownscalingConfig { IntSize(100, 100), + SurfaceFormat::B8G8R8A8 }, + SurfaceConfig { decoder, 0, IntSize(20, 20), + SurfaceFormat::B8G8R8A8, false }); +} + +TEST_F(ImageSurfacePipeIntegration, ConfiguringPalettedRemoveFrameRectDownscaleFails) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + // This is an invalid pipeline for paletted images, so configuration should + // fail. + AssertConfiguringPipelineFails(decoder, + RemoveFrameRectConfig { IntRect(0, 0, 50, 50) }, + DownscalingConfig { IntSize(100, 100), + SurfaceFormat::B8G8R8A8 }, + PalettedSurfaceConfig { decoder, 0, IntSize(100, 100), + IntRect(0, 0, 50, 50), + SurfaceFormat::B8G8R8A8, 8, + false }); +} + +TEST_F(ImageSurfacePipeIntegration, ConfiguringPalettedDeinterlaceDownscaleFails) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + // This is an invalid pipeline for paletted images, so configuration should + // fail. + AssertConfiguringPipelineFails(decoder, + DeinterlacingConfig<uint8_t> { /* mProgressiveDisplay = */ true}, + DownscalingConfig { IntSize(100, 100), + SurfaceFormat::B8G8R8A8 }, + PalettedSurfaceConfig { decoder, 0, IntSize(100, 100), + IntRect(0, 0, 20, 20), + SurfaceFormat::B8G8R8A8, 8, + false }); +} + +TEST_F(ImageSurfacePipeIntegration, ConfiguringHugeDeinterlacingBufferFails) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + // When DownscalingFilter is used, we may succeed in allocating an output + // surface for huge images, because we only need to store the scaled-down + // version of the image. However, regardless of downscaling, + // DeinterlacingFilter needs to allocate a buffer as large as the size of the + // input. This can cause OOMs on operating systems that allow overcommit. This + // test makes sure that we reject such allocations. + AssertConfiguringPipelineFails(decoder, + DeinterlacingConfig<uint32_t> { /* mProgressiveDisplay = */ true}, + DownscalingConfig { IntSize(60000, 60000), + SurfaceFormat::B8G8R8A8 }, + SurfaceConfig { decoder, 0, IntSize(600, 600), + SurfaceFormat::B8G8R8A8, false }); +} diff --git a/image/test/gtest/TestSurfaceSink.cpp b/image/test/gtest/TestSurfaceSink.cpp new file mode 100644 index 000000000..ccf9be3ec --- /dev/null +++ b/image/test/gtest/TestSurfaceSink.cpp @@ -0,0 +1,1491 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "mozilla/gfx/2D.h" +#include "Common.h" +#include "Decoder.h" +#include "DecoderFactory.h" +#include "SourceBuffer.h" +#include "SurfacePipe.h" + +using namespace mozilla; +using namespace mozilla::gfx; +using namespace mozilla::image; + +enum class Orient +{ + NORMAL, + FLIP_VERTICALLY +}; + +template <Orient Orientation, typename Func> void +WithSurfaceSink(Func aFunc) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + const bool flipVertically = Orientation == Orient::FLIP_VERTICALLY; + + WithFilterPipeline(decoder, Forward<Func>(aFunc), + SurfaceConfig { decoder, 0, IntSize(100, 100), + SurfaceFormat::B8G8R8A8, flipVertically }); +} + +template <typename Func> void +WithPalettedSurfaceSink(const IntRect& aFrameRect, Func aFunc) +{ + RefPtr<Decoder> decoder = CreateTrivialDecoder(); + ASSERT_TRUE(decoder != nullptr); + + WithFilterPipeline(decoder, Forward<Func>(aFunc), + PalettedSurfaceConfig { decoder, 0, IntSize(100, 100), + aFrameRect, SurfaceFormat::B8G8R8A8, + 8, false }); +} + +void +ResetForNextPass(SurfaceFilter* aSink) +{ + aSink->ResetToFirstRow(); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); +} + +template <typename WriteFunc, typename CheckFunc> void +DoCheckIterativeWrite(SurfaceFilter* aSink, + WriteFunc aWriteFunc, + CheckFunc aCheckFunc) +{ + // Write the buffer to successive rows until every row of the surface + // has been written. + uint32_t row = 0; + WriteState result = WriteState::NEED_MORE_DATA; + while (result == WriteState::NEED_MORE_DATA) { + result = aWriteFunc(row); + ++row; + } + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u, row); + + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Check that the generated image is correct. + aCheckFunc(); +} + +template <typename WriteFunc> void +CheckIterativeWrite(Decoder* aDecoder, + SurfaceSink* aSink, + const IntRect& aOutputRect, + WriteFunc aWriteFunc) +{ + // Ignore the row passed to WriteFunc, since no callers use it. + auto writeFunc = [&](uint32_t) { + return aWriteFunc(); + }; + + DoCheckIterativeWrite(aSink, writeFunc, [&]{ + CheckGeneratedImage(aDecoder, aOutputRect); + }); +} + +template <typename WriteFunc> void +CheckPalettedIterativeWrite(Decoder* aDecoder, + PalettedSurfaceSink* aSink, + const IntRect& aOutputRect, + WriteFunc aWriteFunc) +{ + // Ignore the row passed to WriteFunc, since no callers use it. + auto writeFunc = [&](uint32_t) { + return aWriteFunc(); + }; + + DoCheckIterativeWrite(aSink, writeFunc, [&]{ + CheckGeneratedPalettedImage(aDecoder, aOutputRect); + }); +} + +TEST(ImageSurfaceSink, NullSurfaceSink) +{ + // Create the NullSurfaceSink. + NullSurfaceSink sink; + nsresult rv = sink.Configure(NullSurfaceConfig { }); + ASSERT_TRUE(NS_SUCCEEDED(rv)); + EXPECT_TRUE(!sink.IsValidPalettedPipe()); + + // Ensure that we can't write anything. + bool gotCalled = false; + auto result = sink.WritePixels<uint32_t>([&]() { + gotCalled = true; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_FALSE(gotCalled); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_TRUE(sink.IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = sink.TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + uint32_t source = BGRAColor::Red().AsPixel(); + result = sink.WriteBuffer(&source); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_TRUE(sink.IsSurfaceFinished()); + invalidRect = sink.TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + result = sink.WriteBuffer(&source, 0, 1); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_TRUE(sink.IsSurfaceFinished()); + invalidRect = sink.TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + result = sink.WriteEmptyRow(); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_TRUE(sink.IsSurfaceFinished()); + invalidRect = sink.TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + result = sink.WriteUnsafeComputedRow<uint32_t>([&](uint32_t* aRow, + uint32_t aLength) { + gotCalled = true; + for (uint32_t col = 0; col < aLength; ++col, ++aRow) { + *aRow = BGRAColor::Red().AsPixel(); + } + }); + EXPECT_FALSE(gotCalled); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_TRUE(sink.IsSurfaceFinished()); + invalidRect = sink.TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Attempt to advance to the next row and make sure nothing changes. + sink.AdvanceRow(); + EXPECT_TRUE(sink.IsSurfaceFinished()); + invalidRect = sink.TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Attempt to advance to the next pass and make sure nothing changes. + sink.ResetToFirstRow(); + EXPECT_TRUE(sink.IsSurfaceFinished()); + invalidRect = sink.TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); +} + +TEST(ImageSurfaceSink, SurfaceSinkInitialization) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + // Check initial state. + EXPECT_FALSE(aSink->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Check that the surface is zero-initialized. We verify this by calling + // CheckGeneratedImage() and telling it that we didn't write to the surface + // anyway (i.e., we wrote to the empty rect); it will then expect the entire + // surface to be transparent, which is what it should be if it was + // zero-initialied. + CheckGeneratedImage(aDecoder, IntRect(0, 0, 0, 0)); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWritePixels) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + CheckWritePixels(aDecoder, aSink); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWritePixelsFinish) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + // Write nothing into the surface; just finish immediately. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() { + count++; + return AsVariant(WriteState::FINISHED); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(1u, count); + + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Attempt to write more and make sure that nothing gets written. + count = 0; + result = aSink->WritePixels<uint32_t>([&]() { + count++; + return AsVariant(BGRAColor::Red().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(0u, count); + EXPECT_TRUE(aSink->IsSurfaceFinished()); + + // Check that the generated image is correct. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Transparent())); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWritePixelsEarlyExit) +{ + auto checkEarlyExit = + [](Decoder* aDecoder, SurfaceSink* aSink, WriteState aState) { + // Write half a row of green pixels and then exit early with |aState|. If + // the lambda keeps getting called, we'll write red pixels, which will cause + // the test to fail. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count == 50) { + return AsVariant(aState); + } + return count++ < 50 ? AsVariant(BGRAColor::Green().AsPixel()) + : AsVariant(BGRAColor::Red().AsPixel()); + }); + + EXPECT_EQ(aState, result); + EXPECT_EQ(50u, count); + CheckGeneratedImage(aDecoder, IntRect(0, 0, 50, 1)); + + if (aState != WriteState::FINISHED) { + // We should still be able to write more at this point. + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Verify that we can resume writing. We'll finish up the same row. + count = 0; + result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count == 50) { + return AsVariant(WriteState::NEED_MORE_DATA); + } + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(50u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, 1)); + + return; + } + + // We should've finished the surface at this point. + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Attempt to write more and make sure that nothing gets written. + count = 0; + result = aSink->WritePixels<uint32_t>([&]{ + count++; + return AsVariant(BGRAColor::Red().AsPixel()); + }); + + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(0u, count); + EXPECT_TRUE(aSink->IsSurfaceFinished()); + + // Check that the generated image is still correct. + CheckGeneratedImage(aDecoder, IntRect(0, 0, 50, 1)); + }; + + WithSurfaceSink<Orient::NORMAL>([&](Decoder* aDecoder, SurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::NEED_MORE_DATA); + }); + + WithSurfaceSink<Orient::NORMAL>([&](Decoder* aDecoder, SurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::FAILURE); + }); + + WithSurfaceSink<Orient::NORMAL>([&](Decoder* aDecoder, SurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::FINISHED); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWritePixelsToRow) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + // Write the first 99 rows of our 100x100 surface and verify that even + // though our lambda will yield pixels forever, only one row is written per + // call to WritePixelsToRow(). + for (int row = 0; row < 99; ++row) { + uint32_t count = 0; + WriteState result = aSink->WritePixelsToRow<uint32_t>([&]{ + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(100u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, row, 100, 1), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, row, 100, 1), invalidRect->mOutputSpaceRect); + + CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, row + 1)); + } + + // Write the final line, which should finish the surface. + uint32_t count = 0; + WriteState result = aSink->WritePixelsToRow<uint32_t>([&]{ + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u, count); + + // Note that the final invalid rect we expect here is only the last row; + // that's because we called TakeInvalidRect() repeatedly in the loop above. + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 99, 100, 1), + IntRect(0, 99, 100, 1)); + + // Check that the generated image is correct. + CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, 100)); + + // Attempt to write more and make sure that nothing gets written. + count = 0; + result = aSink->WritePixelsToRow<uint32_t>([&]{ + count++; + return AsVariant(BGRAColor::Red().AsPixel()); + }); + + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(0u, count); + EXPECT_TRUE(aSink->IsSurfaceFinished()); + + // Check that the generated image is still correct. + CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, 100)); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWritePixelsToRowEarlyExit) +{ + auto checkEarlyExit = + [](Decoder* aDecoder, SurfaceSink* aSink, WriteState aState) { + // Write half a row of green pixels and then exit early with |aState|. If + // the lambda keeps getting called, we'll write red pixels, which will cause + // the test to fail. + uint32_t count = 0; + auto result = aSink->WritePixelsToRow<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count == 50) { + return AsVariant(aState); + } + return count++ < 50 ? AsVariant(BGRAColor::Green().AsPixel()) + : AsVariant(BGRAColor::Red().AsPixel()); + }); + + EXPECT_EQ(aState, result); + EXPECT_EQ(50u, count); + CheckGeneratedImage(aDecoder, IntRect(0, 0, 50, 1)); + + if (aState != WriteState::FINISHED) { + // We should still be able to write more at this point. + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Verify that we can resume the same row and still stop at the end. + count = 0; + WriteState result = aSink->WritePixelsToRow<uint32_t>([&]{ + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(50u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, 1)); + + return; + } + + // We should've finished the surface at this point. + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Attempt to write more and make sure that nothing gets written. + count = 0; + result = aSink->WritePixelsToRow<uint32_t>([&]{ + count++; + return AsVariant(BGRAColor::Red().AsPixel()); + }); + + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(0u, count); + EXPECT_TRUE(aSink->IsSurfaceFinished()); + + // Check that the generated image is still correct. + CheckGeneratedImage(aDecoder, IntRect(0, 0, 50, 1)); + }; + + WithSurfaceSink<Orient::NORMAL>([&](Decoder* aDecoder, SurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::NEED_MORE_DATA); + }); + + WithSurfaceSink<Orient::NORMAL>([&](Decoder* aDecoder, SurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::FAILURE); + }); + + WithSurfaceSink<Orient::NORMAL>([&](Decoder* aDecoder, SurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::FINISHED); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWriteBuffer) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + // Create a green buffer the same size as one row of the surface (which is 100x100), + // containing 60 pixels of green in the middle and 20 transparent pixels on + // either side. + uint32_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = 20 <= i && i < 80 ? BGRAColor::Green().AsPixel() + : BGRAColor::Transparent().AsPixel(); + } + + // Write the buffer to every row of the surface and check that the generated + // image is correct. + CheckIterativeWrite(aDecoder, aSink, IntRect(20, 0, 60, 100), [&]{ + return aSink->WriteBuffer(buffer); + }); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWriteBufferPartialRow) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + // Create a buffer the same size as one row of the surface, containing all + // green pixels. + uint32_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = BGRAColor::Green().AsPixel(); + } + + // Write the buffer to the middle 60 pixels of every row of the surface and + // check that the generated image is correct. + CheckIterativeWrite(aDecoder, aSink, IntRect(20, 0, 60, 100), [&]{ + return aSink->WriteBuffer(buffer, 20, 60); + }); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWriteBufferPartialRowStartColOverflow) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + // Create a buffer the same size as one row of the surface, containing all + // green pixels. + uint32_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = BGRAColor::Green().AsPixel(); + } + + { + // Write the buffer to successive rows until every row of the surface + // has been written. We place the start column beyond the end of the row, + // which will prevent us from writing anything, so we check that the + // generated image is entirely transparent. + CheckIterativeWrite(aDecoder, aSink, IntRect(0, 0, 0, 0), [&]{ + return aSink->WriteBuffer(buffer, 100, 100); + }); + } + + ResetForNextPass(aSink); + + { + // Write the buffer to successive rows until every row of the surface + // has been written. We use column 50 as the start column, but we still + // write the buffer, which means we overflow the right edge of the surface + // by 50 pixels. We check that the left half of the generated image is + // transparent and the right half is green. + CheckIterativeWrite(aDecoder, aSink, IntRect(50, 0, 50, 100), [&]{ + return aSink->WriteBuffer(buffer, 50, 100); + }); + } + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWriteBufferPartialRowBufferOverflow) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + // Create a buffer twice as large as a row of the surface. The first half + // (which is as large as a row of the image) will contain green pixels, + // while the second half will contain red pixels. + uint32_t buffer[200]; + for (int i = 0; i < 200; ++i) { + buffer[i] = i < 100 ? BGRAColor::Green().AsPixel() + : BGRAColor::Red().AsPixel(); + } + + { + // Write the buffer to successive rows until every row of the surface has + // been written. The buffer extends 100 pixels to the right of a row of + // the surface, but bounds checking will prevent us from overflowing the + // buffer. We check that the generated image is entirely green since the + // pixels on the right side of the buffer shouldn't have been written to + // the surface. + CheckIterativeWrite(aDecoder, aSink, IntRect(0, 0, 100, 100), [&]{ + return aSink->WriteBuffer(buffer, 0, 200); + }); + } + + ResetForNextPass(aSink); + + { + // Write from the buffer to the middle of each row of the surface. That + // means that the left side of each row should be transparent, since we + // didn't write anything there. A buffer overflow would cause us to write + // buffer contents into the left side of each row. We check that the + // generated image is transparent on the left side and green on the right. + CheckIterativeWrite(aDecoder, aSink, IntRect(50, 0, 50, 100), [&]{ + return aSink->WriteBuffer(buffer, 50, 200); + }); + } + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWriteBufferFromNullSource) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + // Calling WriteBuffer() with a null pointer should fail without making any + // changes to the surface. + uint32_t* nullBuffer = nullptr; + WriteState result = aSink->WriteBuffer(nullBuffer); + + EXPECT_EQ(WriteState::FAILURE, result); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Check that nothing got written to the surface. + CheckGeneratedImage(aDecoder, IntRect(0, 0, 0, 0)); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWriteEmptyRow) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + { + // Write an empty row to each row of the surface. We check that the + // generated image is entirely transparent. + CheckIterativeWrite(aDecoder, aSink, IntRect(0, 0, 0, 0), [&]{ + return aSink->WriteEmptyRow(); + }); + } + + ResetForNextPass(aSink); + + { + // Write a partial row before we begin calling WriteEmptyRow(). We check + // that the generated image is entirely transparent, which is to be + // expected since WriteEmptyRow() overwrites the current row even if some + // data has already been written to it. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count == 50) { + return AsVariant(WriteState::NEED_MORE_DATA); + } + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(50u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + CheckIterativeWrite(aDecoder, aSink, IntRect(0, 0, 0, 0), [&]{ + return aSink->WriteEmptyRow(); + }); + } + + ResetForNextPass(aSink); + + { + // Create a buffer the same size as one row of the surface, containing all + // green pixels. + uint32_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = BGRAColor::Green().AsPixel(); + } + + // Write an empty row to the middle 60 rows of the surface. The first 20 + // and last 20 rows will be green. (We need to use DoCheckIterativeWrite() + // here because we need a custom function to check the output, since it + // can't be described by a simple rect.) + auto writeFunc = [&](uint32_t aRow) { + if (aRow < 20 || aRow >= 80) { + return aSink->WriteBuffer(buffer); + } else { + return aSink->WriteEmptyRow(); + } + }; + + auto checkFunc = [&]{ + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + + EXPECT_TRUE(RowsAreSolidColor(surface, 0, 20, BGRAColor::Green())); + EXPECT_TRUE(RowsAreSolidColor(surface, 20, 60, BGRAColor::Transparent())); + EXPECT_TRUE(RowsAreSolidColor(surface, 80, 20, BGRAColor::Green())); + }; + + DoCheckIterativeWrite(aSink, writeFunc, checkFunc); + } + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkWriteUnsafeComputedRow) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + // Create a green buffer the same size as one row of the surface. + uint32_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = BGRAColor::Green().AsPixel(); + } + + // Write the buffer to successive rows until every row of the surface + // has been written. We only write to the right half of each row, so we + // check that the left side of the generated image is transparent and the + // right side is green. + CheckIterativeWrite(aDecoder, aSink, IntRect(50, 0, 50, 100), [&]{ + return aSink->WriteUnsafeComputedRow<uint32_t>([&](uint32_t* aRow, + uint32_t aLength) { + EXPECT_EQ(100u, aLength ); + memcpy(aRow + 50, buffer, 50 * sizeof(uint32_t)); + }); + }); + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkProgressivePasses) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + { + // Fill the image with a first pass of red. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() { + ++count; + return AsVariant(BGRAColor::Red().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 100u, count); + + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Check that the generated image is correct. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Red())); + } + + { + ResetForNextPass(aSink); + + // Check that the generated image is still the first pass image. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Red())); + } + + { + // Fill the image with a second pass of green. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() { + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 100u, count); + + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Check that the generated image is correct. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Green())); + } + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkInvalidRect) +{ + WithSurfaceSink<Orient::NORMAL>([](Decoder* aDecoder, SurfaceSink* aSink) { + { + // Write one row. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count == 100) { + return AsVariant(WriteState::NEED_MORE_DATA); + } + count++; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(100u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Assert that we have the right invalid rect. + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, 0, 100, 1), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, 0, 100, 1), invalidRect->mOutputSpaceRect); + } + + { + // Write eight rows. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count == 100 * 8) { + return AsVariant(WriteState::NEED_MORE_DATA); + } + count++; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(100u * 8u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Assert that we have the right invalid rect. + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, 1, 100, 8), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, 1, 100, 8), invalidRect->mOutputSpaceRect); + } + + { + // Write the left half of one row. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count == 50) { + return AsVariant(WriteState::NEED_MORE_DATA); + } + count++; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(50u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Assert that we don't have an invalid rect, since the invalid rect only + // gets updated when a row gets completed. + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + } + + { + // Write the right half of the same row. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count == 50) { + return AsVariant(WriteState::NEED_MORE_DATA); + } + count++; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(50u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Assert that we have the right invalid rect, which will include both the + // left and right halves of this row now that we've completed it. + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, 9, 100, 1), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, 9, 100, 1), invalidRect->mOutputSpaceRect); + } + + { + // Write no rows. + auto result = aSink->WritePixels<uint32_t>([&]() { + return AsVariant(WriteState::NEED_MORE_DATA); + }); + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Assert that we don't have an invalid rect. + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + } + + { + // Fill the rest of the image. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() { + count++; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 90u, count); + EXPECT_TRUE(aSink->IsSurfaceFinished()); + + // Assert that we have the right invalid rect. + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, 10, 100, 90), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, 10, 100, 90), invalidRect->mOutputSpaceRect); + + // Check that the generated image is correct. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Green())); + } + }); +} + +TEST(ImageSurfaceSink, SurfaceSinkFlipVertically) +{ + WithSurfaceSink<Orient::FLIP_VERTICALLY>([](Decoder* aDecoder, + SurfaceSink* aSink) { + { + // Fill the image with a first pass of red. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() { + ++count; + return AsVariant(BGRAColor::Red().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u * 100u, count); + + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Check that the generated image is correct. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Red())); + } + + { + ResetForNextPass(aSink); + + // Check that the generated image is still the first pass image. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Red())); + } + + { + // Fill 25 rows of the image with green and make sure everything is OK. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> { + if (count == 25 * 100) { + return AsVariant(WriteState::NEED_MORE_DATA); + } + count++; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(25u * 100u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Assert that we have the right invalid rect, which should include the + // *bottom* (since we're flipping vertically) 25 rows of the image. + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, 75, 100, 25), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, 75, 100, 25), invalidRect->mOutputSpaceRect); + + // Check that the generated image is correct. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(RowsAreSolidColor(surface, 0, 75, BGRAColor::Red())); + EXPECT_TRUE(RowsAreSolidColor(surface, 75, 25, BGRAColor::Green())); + } + + { + // Fill the rest of the image with a second pass of green. + uint32_t count = 0; + auto result = aSink->WritePixels<uint32_t>([&]() { + ++count; + return AsVariant(BGRAColor::Green().AsPixel()); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(75u * 100u, count); + + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 75), + IntRect(0, 0, 100, 75)); + + // Check that the generated image is correct. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface(); + EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Green())); + } + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkInitialization) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + // Check initial state. + EXPECT_FALSE(aSink->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Check that the paletted image data is zero-initialized. + RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef(); + uint8_t* imageData = nullptr; + uint32_t imageLength = 0; + currentFrame->GetImageData(&imageData, &imageLength); + ASSERT_TRUE(imageData != nullptr); + ASSERT_EQ(100u * 100u, imageLength); + for (uint32_t i = 0; i < imageLength; ++i) { + ASSERT_EQ(uint8_t(0), imageData[i]); + } + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsFor0_0_100_100) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + CheckPalettedWritePixels(aDecoder, aSink); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsFor25_25_50_50) +{ + WithPalettedSurfaceSink(IntRect(25, 25, 50, 50), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + CheckPalettedWritePixels(aDecoder, aSink, + /* aOutputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputWriteRect = */ Some(IntRect(25, 25, 50, 50)), + /* aOutputWriteRect = */ Some(IntRect(25, 25, 50, 50))); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsForMinus25_Minus25_50_50) +{ + WithPalettedSurfaceSink(IntRect(-25, -25, 50, 50), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + CheckPalettedWritePixels(aDecoder, aSink, + /* aOutputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputWriteRect = */ Some(IntRect(-25, -25, 50, 50)), + /* aOutputWriteRect = */ Some(IntRect(-25, -25, 50, 50))); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsFor75_Minus25_50_50) +{ + WithPalettedSurfaceSink(IntRect(75, -25, 50, 50), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + CheckPalettedWritePixels(aDecoder, aSink, + /* aOutputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputWriteRect = */ Some(IntRect(75, -25, 50, 50)), + /* aOutputWriteRect = */ Some(IntRect(75, -25, 50, 50))); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsForMinus25_75_50_50) +{ + WithPalettedSurfaceSink(IntRect(-25, 75, 50, 50), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + CheckPalettedWritePixels(aDecoder, aSink, + /* aOutputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputWriteRect = */ Some(IntRect(-25, 75, 50, 50)), + /* aOutputWriteRect = */ Some(IntRect(-25, 75, 50, 50))); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsFor75_75_50_50) +{ + WithPalettedSurfaceSink(IntRect(75, 75, 50, 50), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + CheckPalettedWritePixels(aDecoder, aSink, + /* aOutputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputRect = */ Some(IntRect(0, 0, 50, 50)), + /* aInputWriteRect = */ Some(IntRect(75, 75, 50, 50)), + /* aOutputWriteRect = */ Some(IntRect(75, 75, 50, 50))); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsFinish) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + // Write nothing into the surface; just finish immediately. + uint32_t count = 0; + auto result = aSink->WritePixels<uint8_t>([&]{ + count++; + return AsVariant(WriteState::FINISHED); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(1u, count); + + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Attempt to write more and make sure that nothing gets written. + count = 0; + result = aSink->WritePixels<uint8_t>([&]() { + count++; + return AsVariant(uint8_t(128)); + }); + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(0u, count); + EXPECT_TRUE(aSink->IsSurfaceFinished()); + + // Check that the generated image is correct. + EXPECT_TRUE(IsSolidPalettedColor(aDecoder, 0)); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsEarlyExit) +{ + auto checkEarlyExit = + [](Decoder* aDecoder, PalettedSurfaceSink* aSink, WriteState aState) { + // Write half a row of green pixels and then exit early with |aState|. If + // the lambda keeps getting called, we'll write red pixels, which will cause + // the test to fail. + uint32_t count = 0; + auto result = aSink->WritePixels<uint8_t>([&]() -> NextPixel<uint8_t> { + if (count == 50) { + return AsVariant(aState); + } + return count++ < 50 ? AsVariant(uint8_t(255)) : AsVariant(uint8_t(128)); + }); + + EXPECT_EQ(aState, result); + EXPECT_EQ(50u, count); + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 50, 1)); + + if (aState != WriteState::FINISHED) { + // We should still be able to write more at this point. + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Verify that we can resume writing. We'll finish up the same row. + count = 0; + result = aSink->WritePixels<uint8_t>([&]() -> NextPixel<uint8_t> { + if (count == 50) { + return AsVariant(WriteState::NEED_MORE_DATA); + } + ++count; + return AsVariant(uint8_t(255)); + }); + + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(50u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 100, 1)); + + return; + } + + // We should've finished the surface at this point. + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Attempt to write more and make sure that nothing gets written. + count = 0; + result = aSink->WritePixels<uint8_t>([&]{ + count++; + return AsVariant(uint8_t(128)); + }); + + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(0u, count); + EXPECT_TRUE(aSink->IsSurfaceFinished()); + + // Check that the generated image is still correct. + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 50, 1)); + }; + + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [&](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::NEED_MORE_DATA); + }); + + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [&](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::FAILURE); + }); + + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [&](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::FINISHED); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsToRow) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + // Write the first 99 rows of our 100x100 surface and verify that even + // though our lambda will yield pixels forever, only one row is written per + // call to WritePixelsToRow(). + for (int row = 0; row < 99; ++row) { + uint32_t count = 0; + WriteState result = aSink->WritePixelsToRow<uint8_t>([&]{ + ++count; + return AsVariant(uint8_t(255)); + }); + + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(100u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isSome()); + EXPECT_EQ(IntRect(0, row, 100, 1), invalidRect->mInputSpaceRect); + EXPECT_EQ(IntRect(0, row, 100, 1), invalidRect->mOutputSpaceRect); + + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 100, row + 1)); + } + + // Write the final line, which should finish the surface. + uint32_t count = 0; + WriteState result = aSink->WritePixelsToRow<uint8_t>([&]{ + ++count; + return AsVariant(uint8_t(255)); + }); + + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(100u, count); + + // Note that the final invalid rect we expect here is only the last row; + // that's because we called TakeInvalidRect() repeatedly in the loop above. + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 99, 100, 1), + IntRect(0, 99, 100, 1)); + + // Check that the generated image is correct. + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 100, 100)); + + // Attempt to write more and make sure that nothing gets written. + count = 0; + result = aSink->WritePixelsToRow<uint8_t>([&]{ + count++; + return AsVariant(uint8_t(128)); + }); + + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(0u, count); + EXPECT_TRUE(aSink->IsSurfaceFinished()); + + // Check that the generated image is still correct. + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 100, 100)); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWritePixelsToRowEarlyExit) +{ + auto checkEarlyExit = + [](Decoder* aDecoder, PalettedSurfaceSink* aSink, WriteState aState) { + // Write half a row of 255s and then exit early with |aState|. If the lambda + // keeps getting called, we'll write 128s, which will cause the test to + // fail. + uint32_t count = 0; + auto result = aSink->WritePixelsToRow<uint8_t>([&]() -> NextPixel<uint8_t> { + if (count == 50) { + return AsVariant(aState); + } + return count++ < 50 ? AsVariant(uint8_t(255)) + : AsVariant(uint8_t(128)); + }); + + EXPECT_EQ(aState, result); + EXPECT_EQ(50u, count); + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 50, 1)); + + if (aState != WriteState::FINISHED) { + // We should still be able to write more at this point. + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + // Verify that we can resume the same row and still stop at the end. + count = 0; + WriteState result = aSink->WritePixelsToRow<uint8_t>([&]{ + ++count; + return AsVariant(uint8_t(255)); + }); + + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(50u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 100, 1)); + + return; + } + + // We should've finished the surface at this point. + AssertCorrectPipelineFinalState(aSink, + IntRect(0, 0, 100, 100), + IntRect(0, 0, 100, 100)); + + // Attempt to write more and make sure that nothing gets written. + count = 0; + result = aSink->WritePixelsToRow<uint8_t>([&]{ + count++; + return AsVariant(uint8_t(128)); + }); + + EXPECT_EQ(WriteState::FINISHED, result); + EXPECT_EQ(0u, count); + EXPECT_TRUE(aSink->IsSurfaceFinished()); + + // Check that the generated image is still correct. + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 50, 1)); + }; + + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [&](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::NEED_MORE_DATA); + }); + + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [&](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::FAILURE); + }); + + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [&](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + checkEarlyExit(aDecoder, aSink, WriteState::FINISHED); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWriteBuffer) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + // Create a buffer the same size as one row of the surface (which is 100x100), + // containing 60 pixels of 255 in the middle and 20 transparent pixels of 0 on + // either side. + uint8_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = 20 <= i && i < 80 ? 255 : 0; + } + + // Write the buffer to every row of the surface and check that the generated + // image is correct. + CheckPalettedIterativeWrite(aDecoder, aSink, IntRect(20, 0, 60, 100), [&]{ + return aSink->WriteBuffer(buffer); + }); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWriteBufferPartialRow) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + // Create a buffer the same size as one row of the surface, containing all + // 255 pixels. + uint8_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = 255; + } + + // Write the buffer to the middle 60 pixels of every row of the surface and + // check that the generated image is correct. + CheckPalettedIterativeWrite(aDecoder, aSink, IntRect(20, 0, 60, 100), [&]{ + return aSink->WriteBuffer(buffer, 20, 60); + }); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWriteBufferPartialRowStartColOverflow) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + // Create a buffer the same size as one row of the surface, containing all + // 255 pixels. + uint8_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = 255; + } + + { + // Write the buffer to successive rows until every row of the surface + // has been written. We place the start column beyond the end of the row, + // which will prevent us from writing anything, so we check that the + // generated image is entirely 0. + CheckPalettedIterativeWrite(aDecoder, aSink, IntRect(0, 0, 0, 0), [&]{ + return aSink->WriteBuffer(buffer, 100, 100); + }); + } + + ResetForNextPass(aSink); + + { + // Write the buffer to successive rows until every row of the surface + // has been written. We use column 50 as the start column, but we still + // write the buffer, which means we overflow the right edge of the surface + // by 50 pixels. We check that the left half of the generated image is + // 0 and the right half is 255. + CheckPalettedIterativeWrite(aDecoder, aSink, IntRect(50, 0, 50, 100), [&]{ + return aSink->WriteBuffer(buffer, 50, 100); + }); + } + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWriteBufferPartialRowBufferOverflow) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + // Create a buffer twice as large as a row of the surface. The first half + // (which is as large as a row of the image) will contain 255 pixels, + // while the second half will contain 128 pixels. + uint8_t buffer[200]; + for (int i = 0; i < 200; ++i) { + buffer[i] = i < 100 ? 255 : 128; + } + + { + // Write the buffer to successive rows until every row of the surface has + // been written. The buffer extends 100 pixels to the right of a row of + // the surface, but bounds checking will prevent us from overflowing the + // buffer. We check that the generated image is entirely 255 since the + // pixels on the right side of the buffer shouldn't have been written to + // the surface. + CheckPalettedIterativeWrite(aDecoder, aSink, IntRect(0, 0, 100, 100), [&]{ + return aSink->WriteBuffer(buffer, 0, 200); + }); + } + + ResetForNextPass(aSink); + + { + // Write from the buffer to the middle of each row of the surface. That + // means that the left side of each row should be 0, since we didn't write + // anything there. A buffer overflow would cause us to write buffer + // contents into the left side of each row. We check that the generated + // image is 0 on the left side and 255 on the right. + CheckPalettedIterativeWrite(aDecoder, aSink, IntRect(50, 0, 50, 100), [&]{ + return aSink->WriteBuffer(buffer, 50, 200); + }); + } + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWriteBufferFromNullSource) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + // Calling WriteBuffer() with a null pointer should fail without making any + // changes to the surface. + uint8_t* nullBuffer = nullptr; + WriteState result = aSink->WriteBuffer(nullBuffer); + + EXPECT_EQ(WriteState::FAILURE, result); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect(); + EXPECT_TRUE(invalidRect.isNothing()); + + // Check that nothing got written to the surface. + CheckGeneratedPalettedImage(aDecoder, IntRect(0, 0, 0, 0)); + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWriteEmptyRow) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + { + // Write an empty row to each row of the surface. We check that the + // generated image is entirely 0. + CheckPalettedIterativeWrite(aDecoder, aSink, IntRect(0, 0, 0, 0), [&]{ + return aSink->WriteEmptyRow(); + }); + } + + ResetForNextPass(aSink); + + { + // Write a partial row before we begin calling WriteEmptyRow(). We check + // that the generated image is entirely 0, which is to be expected since + // WriteEmptyRow() overwrites the current row even if some data has + // already been written to it. + uint32_t count = 0; + auto result = aSink->WritePixels<uint8_t>([&]() -> NextPixel<uint8_t> { + if (count == 50) { + return AsVariant(WriteState::NEED_MORE_DATA); + } + ++count; + return AsVariant(uint8_t(255)); + }); + + EXPECT_EQ(WriteState::NEED_MORE_DATA, result); + EXPECT_EQ(50u, count); + EXPECT_FALSE(aSink->IsSurfaceFinished()); + + CheckPalettedIterativeWrite(aDecoder, aSink, IntRect(0, 0, 0, 0), [&]{ + return aSink->WriteEmptyRow(); + }); + } + + ResetForNextPass(aSink); + + { + // Create a buffer the same size as one row of the surface, containing all + // 255 pixels. + uint8_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = 255; + } + + // Write an empty row to the middle 60 rows of the surface. The first 20 + // and last 20 rows will be 255. (We need to use DoCheckIterativeWrite() + // here because we need a custom function to check the output, since it + // can't be described by a simple rect.) + auto writeFunc = [&](uint32_t aRow) { + if (aRow < 20 || aRow >= 80) { + return aSink->WriteBuffer(buffer); + } else { + return aSink->WriteEmptyRow(); + } + }; + + auto checkFunc = [&]{ + EXPECT_TRUE(PalettedRowsAreSolidColor(aDecoder, 0, 20, 255)); + EXPECT_TRUE(PalettedRowsAreSolidColor(aDecoder, 20, 60, 0)); + EXPECT_TRUE(PalettedRowsAreSolidColor(aDecoder, 80, 20, 255)); + }; + + DoCheckIterativeWrite(aSink, writeFunc, checkFunc); + } + }); +} + +TEST(ImageSurfaceSink, PalettedSurfaceSinkWriteUnsafeComputedRow) +{ + WithPalettedSurfaceSink(IntRect(0, 0, 100, 100), + [](Decoder* aDecoder, PalettedSurfaceSink* aSink) { + // Create an all-255 buffer the same size as one row of the surface. + uint8_t buffer[100]; + for (int i = 0; i < 100; ++i) { + buffer[i] = 255; + } + + // Write the buffer to successive rows until every row of the surface has + // been written. We only write to the right half of each row, so we check + // that the left side of the generated image is 0 and the right side is 255. + CheckPalettedIterativeWrite(aDecoder, aSink, IntRect(50, 0, 50, 100), [&]{ + return aSink->WriteUnsafeComputedRow<uint8_t>([&](uint8_t* aRow, + uint32_t aLength) { + EXPECT_EQ(100u, aLength ); + memcpy(aRow + 50, buffer, 50 * sizeof(uint8_t)); + }); + }); + }); +} diff --git a/image/test/gtest/animated-with-extra-image-sub-blocks.gif b/image/test/gtest/animated-with-extra-image-sub-blocks.gif Binary files differnew file mode 100644 index 000000000..a145c814a --- /dev/null +++ b/image/test/gtest/animated-with-extra-image-sub-blocks.gif diff --git a/image/test/gtest/corrupt-with-bad-bmp-height.ico b/image/test/gtest/corrupt-with-bad-bmp-height.ico Binary files differnew file mode 100644 index 000000000..ee4a90fcd --- /dev/null +++ b/image/test/gtest/corrupt-with-bad-bmp-height.ico diff --git a/image/test/gtest/corrupt-with-bad-bmp-width.ico b/image/test/gtest/corrupt-with-bad-bmp-width.ico Binary files differnew file mode 100644 index 000000000..aa4051cd0 --- /dev/null +++ b/image/test/gtest/corrupt-with-bad-bmp-width.ico diff --git a/image/test/gtest/corrupt.jpg b/image/test/gtest/corrupt.jpg Binary files differnew file mode 100644 index 000000000..555a416d7 --- /dev/null +++ b/image/test/gtest/corrupt.jpg diff --git a/image/test/gtest/downscaled.bmp b/image/test/gtest/downscaled.bmp Binary files differnew file mode 100644 index 000000000..9e6a29e62 --- /dev/null +++ b/image/test/gtest/downscaled.bmp diff --git a/image/test/gtest/downscaled.gif b/image/test/gtest/downscaled.gif Binary files differnew file mode 100644 index 000000000..ff9a20bcd --- /dev/null +++ b/image/test/gtest/downscaled.gif diff --git a/image/test/gtest/downscaled.ico b/image/test/gtest/downscaled.ico Binary files differnew file mode 100644 index 000000000..ee112af0a --- /dev/null +++ b/image/test/gtest/downscaled.ico diff --git a/image/test/gtest/downscaled.icon b/image/test/gtest/downscaled.icon Binary files differnew file mode 100644 index 000000000..19785f5dc --- /dev/null +++ b/image/test/gtest/downscaled.icon diff --git a/image/test/gtest/downscaled.jpg b/image/test/gtest/downscaled.jpg Binary files differnew file mode 100644 index 000000000..5a4b3cd03 --- /dev/null +++ b/image/test/gtest/downscaled.jpg diff --git a/image/test/gtest/downscaled.png b/image/test/gtest/downscaled.png Binary files differnew file mode 100644 index 000000000..b71b4652d --- /dev/null +++ b/image/test/gtest/downscaled.png diff --git a/image/test/gtest/first-frame-green.gif b/image/test/gtest/first-frame-green.gif Binary files differnew file mode 100644 index 000000000..cd3c7d3db --- /dev/null +++ b/image/test/gtest/first-frame-green.gif diff --git a/image/test/gtest/first-frame-green.png b/image/test/gtest/first-frame-green.png Binary files differnew file mode 100644 index 000000000..115f035d8 --- /dev/null +++ b/image/test/gtest/first-frame-green.png diff --git a/image/test/gtest/first-frame-padding.gif b/image/test/gtest/first-frame-padding.gif Binary files differnew file mode 100644 index 000000000..e6d7c4932 --- /dev/null +++ b/image/test/gtest/first-frame-padding.gif diff --git a/image/test/gtest/green-1x1-truncated.gif b/image/test/gtest/green-1x1-truncated.gif Binary files differnew file mode 100644 index 000000000..0829f9694 --- /dev/null +++ b/image/test/gtest/green-1x1-truncated.gif diff --git a/image/test/gtest/green.bmp b/image/test/gtest/green.bmp Binary files differnew file mode 100644 index 000000000..f79dd672a --- /dev/null +++ b/image/test/gtest/green.bmp diff --git a/image/test/gtest/green.gif b/image/test/gtest/green.gif Binary files differnew file mode 100644 index 000000000..ef215dfc9 --- /dev/null +++ b/image/test/gtest/green.gif diff --git a/image/test/gtest/green.ico b/image/test/gtest/green.ico Binary files differnew file mode 100644 index 000000000..c5dfa8b53 --- /dev/null +++ b/image/test/gtest/green.ico diff --git a/image/test/gtest/green.icon b/image/test/gtest/green.icon Binary files differnew file mode 100644 index 000000000..c74e62fee --- /dev/null +++ b/image/test/gtest/green.icon diff --git a/image/test/gtest/green.jpg b/image/test/gtest/green.jpg Binary files differnew file mode 100644 index 000000000..48c454d27 --- /dev/null +++ b/image/test/gtest/green.jpg diff --git a/image/test/gtest/green.png b/image/test/gtest/green.png Binary files differnew file mode 100644 index 000000000..7df25f33b --- /dev/null +++ b/image/test/gtest/green.png diff --git a/image/test/gtest/invalid-truncated-metadata.bmp b/image/test/gtest/invalid-truncated-metadata.bmp Binary files differnew file mode 100644 index 000000000..228c5c999 --- /dev/null +++ b/image/test/gtest/invalid-truncated-metadata.bmp diff --git a/image/test/gtest/moz.build b/image/test/gtest/moz.build new file mode 100644 index 000000000..5cf6d5116 --- /dev/null +++ b/image/test/gtest/moz.build @@ -0,0 +1,78 @@ +# -*- Mode: python; indent-tabs-mode: nil; tab-width: 40 -*- +# vim: set filetype=python: +# This Source Code Form is subject to the terms of the Mozilla Public +# License, v. 2.0. If a copy of the MPL was not distributed with this +# file, You can obtain one at http://mozilla.org/MPL/2.0/. + +Library('imagetest') + +UNIFIED_SOURCES = [ + 'Common.cpp', + 'TestADAM7InterpolatingFilter.cpp', + 'TestCopyOnWrite.cpp', + 'TestDecoders.cpp', + 'TestDecodeToSurface.cpp', + 'TestDeinterlacingFilter.cpp', + 'TestMetadata.cpp', + 'TestRemoveFrameRectFilter.cpp', + 'TestSourceBuffer.cpp', + 'TestStreamingLexer.cpp', + 'TestSurfaceSink.cpp', +] + +if CONFIG['MOZ_ENABLE_SKIA']: + UNIFIED_SOURCES += [ + 'TestDownscalingFilter.cpp', + 'TestSurfacePipeIntegration.cpp', + ] + +SOURCES += [ + # Can't be unified because it manipulates the preprocessor environment. + 'TestDownscalingFilterNoSkia.cpp', +] + +TEST_HARNESS_FILES.gtest += [ + 'animated-with-extra-image-sub-blocks.gif', + 'corrupt-with-bad-bmp-height.ico', + 'corrupt-with-bad-bmp-width.ico', + 'corrupt.jpg', + 'downscaled.bmp', + 'downscaled.gif', + 'downscaled.ico', + 'downscaled.icon', + 'downscaled.jpg', + 'downscaled.png', + 'first-frame-green.gif', + 'first-frame-green.png', + 'first-frame-padding.gif', + 'green-1x1-truncated.gif', + 'green.bmp', + 'green.gif', + 'green.ico', + 'green.icon', + 'green.jpg', + 'green.png', + 'invalid-truncated-metadata.bmp', + 'no-frame-delay.gif', + 'rle4.bmp', + 'rle8.bmp', + 'transparent-ico-with-and-mask.ico', + 'transparent-if-within-ico.bmp', + 'transparent.gif', + 'transparent.png', +] + +include('/ipc/chromium/chromium-config.mozbuild') + +LOCAL_INCLUDES += [ + '/dom/base', + '/gfx/2d', + '/image', +] + +LOCAL_INCLUDES += CONFIG['SKIA_INCLUDES'] + +FINAL_LIBRARY = 'xul-gtest' + +if CONFIG['GNU_CXX']: + CXXFLAGS += ['-Wno-error=shadow'] diff --git a/image/test/gtest/no-frame-delay.gif b/image/test/gtest/no-frame-delay.gif Binary files differnew file mode 100644 index 000000000..1c50b6743 --- /dev/null +++ b/image/test/gtest/no-frame-delay.gif diff --git a/image/test/gtest/rle4.bmp b/image/test/gtest/rle4.bmp Binary files differnew file mode 100644 index 000000000..78a092787 --- /dev/null +++ b/image/test/gtest/rle4.bmp diff --git a/image/test/gtest/rle8.bmp b/image/test/gtest/rle8.bmp Binary files differnew file mode 100644 index 000000000..bd793b6b6 --- /dev/null +++ b/image/test/gtest/rle8.bmp diff --git a/image/test/gtest/transparent-ico-with-and-mask.ico b/image/test/gtest/transparent-ico-with-and-mask.ico Binary files differnew file mode 100644 index 000000000..ab0dc4bce --- /dev/null +++ b/image/test/gtest/transparent-ico-with-and-mask.ico diff --git a/image/test/gtest/transparent-if-within-ico.bmp b/image/test/gtest/transparent-if-within-ico.bmp Binary files differnew file mode 100644 index 000000000..4dc04c181 --- /dev/null +++ b/image/test/gtest/transparent-if-within-ico.bmp diff --git a/image/test/gtest/transparent.gif b/image/test/gtest/transparent.gif Binary files differnew file mode 100644 index 000000000..48f5c7caf --- /dev/null +++ b/image/test/gtest/transparent.gif diff --git a/image/test/gtest/transparent.png b/image/test/gtest/transparent.png Binary files differnew file mode 100644 index 000000000..fc8002053 --- /dev/null +++ b/image/test/gtest/transparent.png |