From 32b3ed0a1362a4b0798ad71fac3450fb77cb7e41 Mon Sep 17 00:00:00 2001 From: Thomas Groman Date: Thu, 19 Sep 2019 00:41:48 -0700 Subject: merged from 0.6.7 codebase --- libraries/pack200/src/coding.cpp | 1762 +++++++++++++++++++------------------- 1 file changed, 881 insertions(+), 881 deletions(-) (limited to 'libraries/pack200/src/coding.cpp') diff --git a/libraries/pack200/src/coding.cpp b/libraries/pack200/src/coding.cpp index 6bd17a3c..8e872013 100644 --- a/libraries/pack200/src/coding.cpp +++ b/libraries/pack200/src/coding.cpp @@ -48,12 +48,12 @@ extern coding basic_codings[]; #pragma GCC diagnostic ignored "-Wunused-variable" #define CODING_PRIVATE(spec) \ - int spec_ = spec; \ - int B = CODING_B(spec_); \ - int H = CODING_H(spec_); \ - int L = 256 - H; \ - int S = CODING_S(spec_); \ - int D = CODING_D(spec_) + int spec_ = spec; \ + int B = CODING_B(spec_); \ + int H = CODING_H(spec_); \ + int L = 256 - H; \ + int S = CODING_S(spec_); \ + int D = CODING_D(spec_) #define IS_NEG_CODE(S, codeVal) ((((int)(codeVal) + 1) & ((1 << S) - 1)) == 0) @@ -61,568 +61,568 @@ extern coding basic_codings[]; static int decode_sign(int S, uint32_t ux) { // == Coding.decodeSign32 - assert(S > 0); - uint32_t sigbits = (ux >> S); - if (IS_NEG_CODE(S, ux)) - return (int)(~sigbits); - else - return (int)(ux - sigbits); - // Note that (int)(ux-sigbits) can be negative, if ux is large enough. + assert(S > 0); + uint32_t sigbits = (ux >> S); + if (IS_NEG_CODE(S, ux)) + return (int)(~sigbits); + else + return (int)(ux - sigbits); + // Note that (int)(ux-sigbits) can be negative, if ux is large enough. } coding *coding::init() { - if (umax > 0) - return this; // already done - assert(spec != 0); // sanity - - // fill in derived fields - CODING_PRIVATE(spec); - - // Return nullptr if 'arb(BHSD)' parameter constraints are not met: - if (B < 1 || B > B_MAX) - return nullptr; - if (H < 1 || H > 256) - return nullptr; - if (S < 0 || S > 2) - return nullptr; - if (D < 0 || D > 1) - return nullptr; - if (B == 1 && H != 256) - return nullptr; // 1-byte coding must be fixed-size - if (B >= 5 && H == 256) - return nullptr; // no 5-byte fixed-size coding - - // first compute the range of the coding, in 64 bits - int64_t range = 0; - { - int64_t H_i = 1; - for (int i = 0; i < B; i++) - { - range += H_i; - H_i *= H; - } - range *= L; - range += H_i; - } - assert(range > 0); // no useless codings, please - - int this_umax; - - // now, compute min and max - if (range >= ((int64_t)1 << 32)) - { - this_umax = INT_MAX_VALUE; - this->umin = INT_MIN_VALUE; - this->max = INT_MAX_VALUE; - this->min = INT_MIN_VALUE; - } - else - { - this_umax = (range > INT_MAX_VALUE) ? INT_MAX_VALUE : (int)range - 1; - this->max = this_umax; - this->min = this->umin = 0; - if (S != 0 && range != 0) - { - int64_t maxPosCode = range - 1; - int64_t maxNegCode = range - 1; - while (IS_NEG_CODE(S, maxPosCode)) - --maxPosCode; - while (!IS_NEG_CODE(S, maxNegCode)) - --maxNegCode; - int maxPos = decode_sign(S, (uint32_t)maxPosCode); - if (maxPos < 0) - this->max = INT_MAX_VALUE; // 32-bit wraparound - else - this->max = maxPos; - if (maxNegCode < 0) - this->min = 0; // No negative codings at all. - else - this->min = decode_sign(S, (uint32_t)maxNegCode); - } - } - - assert(!(isFullRange | isSigned | isSubrange)); // init - if (min < 0) - this->isSigned = true; - if (max < INT_MAX_VALUE && range <= INT_MAX_VALUE) - this->isSubrange = true; - if (max == INT_MAX_VALUE && min == INT_MIN_VALUE) - this->isFullRange = true; - - // do this last, to reduce MT exposure (should have a membar too) - this->umax = this_umax; - - return this; + if (umax > 0) + return this; // already done + assert(spec != 0); // sanity + + // fill in derived fields + CODING_PRIVATE(spec); + + // Return nullptr if 'arb(BHSD)' parameter constraints are not met: + if (B < 1 || B > B_MAX) + return nullptr; + if (H < 1 || H > 256) + return nullptr; + if (S < 0 || S > 2) + return nullptr; + if (D < 0 || D > 1) + return nullptr; + if (B == 1 && H != 256) + return nullptr; // 1-byte coding must be fixed-size + if (B >= 5 && H == 256) + return nullptr; // no 5-byte fixed-size coding + + // first compute the range of the coding, in 64 bits + int64_t range = 0; + { + int64_t H_i = 1; + for (int i = 0; i < B; i++) + { + range += H_i; + H_i *= H; + } + range *= L; + range += H_i; + } + assert(range > 0); // no useless codings, please + + int this_umax; + + // now, compute min and max + if (range >= ((int64_t)1 << 32)) + { + this_umax = INT_MAX_VALUE; + this->umin = INT_MIN_VALUE; + this->max = INT_MAX_VALUE; + this->min = INT_MIN_VALUE; + } + else + { + this_umax = (range > INT_MAX_VALUE) ? INT_MAX_VALUE : (int)range - 1; + this->max = this_umax; + this->min = this->umin = 0; + if (S != 0 && range != 0) + { + int64_t maxPosCode = range - 1; + int64_t maxNegCode = range - 1; + while (IS_NEG_CODE(S, maxPosCode)) + --maxPosCode; + while (!IS_NEG_CODE(S, maxNegCode)) + --maxNegCode; + int maxPos = decode_sign(S, (uint32_t)maxPosCode); + if (maxPos < 0) + this->max = INT_MAX_VALUE; // 32-bit wraparound + else + this->max = maxPos; + if (maxNegCode < 0) + this->min = 0; // No negative codings at all. + else + this->min = decode_sign(S, (uint32_t)maxNegCode); + } + } + + assert(!(isFullRange | isSigned | isSubrange)); // init + if (min < 0) + this->isSigned = true; + if (max < INT_MAX_VALUE && range <= INT_MAX_VALUE) + this->isSubrange = true; + if (max == INT_MAX_VALUE && min == INT_MIN_VALUE) + this->isFullRange = true; + + // do this last, to reduce MT exposure (should have a membar too) + this->umax = this_umax; + + return this; } coding *coding::findBySpec(int spec) { - for (coding *scan = &basic_codings[0];; scan++) - { - if (scan->spec == spec) - return scan->init(); - if (scan->spec == 0) - break; - } - coding *ptr = NEW(coding, 1); - if (!ptr) - return nullptr; - coding *c = ptr->initFrom(spec); - if (c == nullptr) - { - ::free(ptr); - } - else - // else caller should free it... - c->isMalloc = true; - return c; + for (coding *scan = &basic_codings[0];; scan++) + { + if (scan->spec == spec) + return scan->init(); + if (scan->spec == 0) + break; + } + coding *ptr = NEW(coding, 1); + if (!ptr) + return nullptr; + coding *c = ptr->initFrom(spec); + if (c == nullptr) + { + ::free(ptr); + } + else + // else caller should free it... + c->isMalloc = true; + return c; } coding *coding::findBySpec(int B, int H, int S, int D) { - if (B < 1 || B > B_MAX) - return nullptr; - if (H < 1 || H > 256) - return nullptr; - if (S < 0 || S > 2) - return nullptr; - if (D < 0 || D > 1) - return nullptr; - return findBySpec(CODING_SPEC(B, H, S, D)); + if (B < 1 || B > B_MAX) + return nullptr; + if (H < 1 || H > 256) + return nullptr; + if (S < 0 || S > 2) + return nullptr; + if (D < 0 || D > 1) + return nullptr; + return findBySpec(CODING_SPEC(B, H, S, D)); } void coding::free() { - if (isMalloc) - { - ::free(this); - } + if (isMalloc) + { + ::free(this); + } } void coding_method::reset(value_stream *state) { - assert(state->rp == state->rplimit); // not in mid-stream, please - // assert(this == vs0.cm); - state[0] = vs0; - if (uValues != nullptr) - { - uValues->reset(state->helper()); - } + assert(state->rp == state->rplimit); // not in mid-stream, please + // assert(this == vs0.cm); + state[0] = vs0; + if (uValues != nullptr) + { + uValues->reset(state->helper()); + } } uint32_t coding::parse(byte *&rp, int B, int H) { - int L = 256 - H; - byte *ptr = rp; - // hand peel the i==0 part of the loop: - uint32_t b_i = *ptr++ & 0xFF; - if (B == 1 || b_i < (uint32_t)L) - { - rp = ptr; - return b_i; - } - uint32_t sum = b_i; - uint32_t H_i = H; - assert(B <= B_MAX); - for (int i = 2; i <= B_MAX; i++) - { // easy for compilers to unroll if desired - b_i = *ptr++ & 0xFF; - sum += b_i * H_i; - if (i == B || b_i < (uint32_t)L) - { - rp = ptr; - return sum; - } - H_i *= H; - } - assert(false); - return 0; + int L = 256 - H; + byte *ptr = rp; + // hand peel the i==0 part of the loop: + uint32_t b_i = *ptr++ & 0xFF; + if (B == 1 || b_i < (uint32_t)L) + { + rp = ptr; + return b_i; + } + uint32_t sum = b_i; + uint32_t H_i = H; + assert(B <= B_MAX); + for (int i = 2; i <= B_MAX; i++) + { // easy for compilers to unroll if desired + b_i = *ptr++ & 0xFF; + sum += b_i * H_i; + if (i == B || b_i < (uint32_t)L) + { + rp = ptr; + return sum; + } + H_i *= H; + } + assert(false); + return 0; } uint32_t coding::parse_lgH(byte *&rp, int B, int H, int lgH) { - assert(H == (1 << lgH)); - int L = 256 - (1 << lgH); - byte *ptr = rp; - // hand peel the i==0 part of the loop: - uint32_t b_i = *ptr++ & 0xFF; - if (B == 1 || b_i < (uint32_t)L) - { - rp = ptr; - return b_i; - } - uint32_t sum = b_i; - uint32_t lg_H_i = lgH; - assert(B <= B_MAX); - for (int i = 2; i <= B_MAX; i++) - { // easy for compilers to unroll if desired - b_i = *ptr++ & 0xFF; - sum += b_i << lg_H_i; - if (i == B || b_i < (uint32_t)L) - { - rp = ptr; - return sum; - } - lg_H_i += lgH; - } - assert(false); - return 0; + assert(H == (1 << lgH)); + int L = 256 - (1 << lgH); + byte *ptr = rp; + // hand peel the i==0 part of the loop: + uint32_t b_i = *ptr++ & 0xFF; + if (B == 1 || b_i < (uint32_t)L) + { + rp = ptr; + return b_i; + } + uint32_t sum = b_i; + uint32_t lg_H_i = lgH; + assert(B <= B_MAX); + for (int i = 2; i <= B_MAX; i++) + { // easy for compilers to unroll if desired + b_i = *ptr++ & 0xFF; + sum += b_i << lg_H_i; + if (i == B || b_i < (uint32_t)L) + { + rp = ptr; + return sum; + } + lg_H_i += lgH; + } + assert(false); + return 0; } static const char ERB[] = "EOF reading band"; void coding::parseMultiple(byte *&rp, int N, byte *limit, int B, int H) { - if (N < 0) - { - unpack_abort("bad value count"); - return; - } - byte *ptr = rp; - if (B == 1 || H == 256) - { - size_t len = (size_t)N * B; - if (len / B != (size_t)N || ptr + len > limit) - { - unpack_abort(ERB); - return; - } - rp = ptr + len; - return; - } - // Note: We assume rp has enough zero-padding. - int L = 256 - H; - int n = B; - while (N > 0) - { - ptr += 1; - if (--n == 0) - { - // end of encoding at B bytes, regardless of byte value - } - else - { - int b = (ptr[-1] & 0xFF); - if (b >= L) - { - // keep going, unless we find a byte < L - continue; - } - } - // found the last byte - N -= 1; - n = B; // reset length counter - // do an error check here - if (ptr > limit) - { - unpack_abort(ERB); - return; - } - } - rp = ptr; - return; + if (N < 0) + { + unpack_abort("bad value count"); + return; + } + byte *ptr = rp; + if (B == 1 || H == 256) + { + size_t len = (size_t)N * B; + if (len / B != (size_t)N || ptr + len > limit) + { + unpack_abort(ERB); + return; + } + rp = ptr + len; + return; + } + // Note: We assume rp has enough zero-padding. + int L = 256 - H; + int n = B; + while (N > 0) + { + ptr += 1; + if (--n == 0) + { + // end of encoding at B bytes, regardless of byte value + } + else + { + int b = (ptr[-1] & 0xFF); + if (b >= L) + { + // keep going, unless we find a byte < L + continue; + } + } + // found the last byte + N -= 1; + n = B; // reset length counter + // do an error check here + if (ptr > limit) + { + unpack_abort(ERB); + return; + } + } + rp = ptr; + return; } bool value_stream::hasHelper() { - // If my coding method is a pop-style method, - // then I need a second value stream to transmit - // unfavored values. - // This can be determined by examining fValues. - return cm->fValues != nullptr; + // If my coding method is a pop-style method, + // then I need a second value stream to transmit + // unfavored values. + // This can be determined by examining fValues. + return cm->fValues != nullptr; } void value_stream::init(byte *rp_, byte *rplimit_, coding *defc) { - rp = rp_; - rplimit = rplimit_; - sum = 0; - cm = nullptr; // no need in the simple case - setCoding(defc); + rp = rp_; + rplimit = rplimit_; + sum = 0; + cm = nullptr; // no need in the simple case + setCoding(defc); } void value_stream::setCoding(coding *defc) { - if (defc == nullptr) - { - unpack_abort("bad coding"); - defc = coding::findByIndex(_meta_canon_min); // random pick for recovery - } - - c = (*defc); - - // choose cmk - cmk = cmk_ERROR; - switch (c.spec) - { - case BYTE1_spec: - cmk = cmk_BYTE1; - break; - case CHAR3_spec: - cmk = cmk_CHAR3; - break; - case UNSIGNED5_spec: - cmk = cmk_UNSIGNED5; - break; - case DELTA5_spec: - cmk = cmk_DELTA5; - break; - case BCI5_spec: - cmk = cmk_BCI5; - break; - case BRANCH5_spec: - cmk = cmk_BRANCH5; - break; - default: - if (c.D() == 0) - { - switch (c.S()) - { - case 0: - cmk = cmk_BHS0; - break; - case 1: - cmk = cmk_BHS1; - break; - default: - cmk = cmk_BHS; - break; - } - } - else - { - if (c.S() == 1) - { - if (c.isFullRange) - cmk = cmk_BHS1D1full; - if (c.isSubrange) - cmk = cmk_BHS1D1sub; - } - if (cmk == cmk_ERROR) - cmk = cmk_BHSD1; - } - } + if (defc == nullptr) + { + unpack_abort("bad coding"); + defc = coding::findByIndex(_meta_canon_min); // random pick for recovery + } + + c = (*defc); + + // choose cmk + cmk = cmk_ERROR; + switch (c.spec) + { + case BYTE1_spec: + cmk = cmk_BYTE1; + break; + case CHAR3_spec: + cmk = cmk_CHAR3; + break; + case UNSIGNED5_spec: + cmk = cmk_UNSIGNED5; + break; + case DELTA5_spec: + cmk = cmk_DELTA5; + break; + case BCI5_spec: + cmk = cmk_BCI5; + break; + case BRANCH5_spec: + cmk = cmk_BRANCH5; + break; + default: + if (c.D() == 0) + { + switch (c.S()) + { + case 0: + cmk = cmk_BHS0; + break; + case 1: + cmk = cmk_BHS1; + break; + default: + cmk = cmk_BHS; + break; + } + } + else + { + if (c.S() == 1) + { + if (c.isFullRange) + cmk = cmk_BHS1D1full; + if (c.isSubrange) + cmk = cmk_BHS1D1sub; + } + if (cmk == cmk_ERROR) + cmk = cmk_BHSD1; + } + } } static int getPopValue(value_stream *self, uint32_t uval) { - if (uval > 0) - { - // note that the initial parse performed a range check - assert(uval <= (uint32_t)self->cm->fVlength); - return self->cm->fValues[uval - 1]; - } - else - { - // take an unfavored value - return self->helper()->getInt(); - } + if (uval > 0) + { + // note that the initial parse performed a range check + assert(uval <= (uint32_t)self->cm->fVlength); + return self->cm->fValues[uval - 1]; + } + else + { + // take an unfavored value + return self->helper()->getInt(); + } } int coding::sumInUnsignedRange(int x, int y) { - assert(isSubrange); - int range = (int)(umax + 1); - assert(range > 0); - x += y; - if (x != (int)((int64_t)(x - y) + (int64_t)y)) - { - // 32-bit overflow interferes with range reduction. - // Back off from the overflow by adding a multiple of range: - if (x < 0) - { - x -= range; - assert(x >= 0); - } - else - { - x += range; - assert(x < 0); - } - } - if (x < 0) - { - x += range; - if (x >= 0) - return x; - } - else if (x >= range) - { - x -= range; - if (x < range) - return x; - } - else - { - // in range - return x; - } - // do it the hard way - x %= range; - if (x < 0) - x += range; - return x; + assert(isSubrange); + int range = (int)(umax + 1); + assert(range > 0); + x += y; + if (x != (int)((int64_t)(x - y) + (int64_t)y)) + { + // 32-bit overflow interferes with range reduction. + // Back off from the overflow by adding a multiple of range: + if (x < 0) + { + x -= range; + assert(x >= 0); + } + else + { + x += range; + assert(x < 0); + } + } + if (x < 0) + { + x += range; + if (x >= 0) + return x; + } + else if (x >= range) + { + x -= range; + if (x < range) + return x; + } + else + { + // in range + return x; + } + // do it the hard way + x %= range; + if (x < 0) + x += range; + return x; } static int getDeltaValue(value_stream *self, uint32_t uval, bool isSubrange) { - assert((uint32_t)(self->c.isSubrange) == (uint32_t)isSubrange); - assert(self->c.isSubrange | self->c.isFullRange); - if (isSubrange) - return self->sum = self->c.sumInUnsignedRange(self->sum, (int)uval); - else - return self->sum += (int)uval; + assert((uint32_t)(self->c.isSubrange) == (uint32_t)isSubrange); + assert(self->c.isSubrange | self->c.isFullRange); + if (isSubrange) + return self->sum = self->c.sumInUnsignedRange(self->sum, (int)uval); + else + return self->sum += (int)uval; } bool value_stream::hasValue() { - if (rp < rplimit) - return true; - if (cm == nullptr) - return false; - if (cm->next == nullptr) - return false; - cm->next->reset(this); - return hasValue(); + if (rp < rplimit) + return true; + if (cm == nullptr) + return false; + if (cm->next == nullptr) + return false; + cm->next->reset(this); + return hasValue(); } int value_stream::getInt() { - if (rp >= rplimit) - { - // Advance to next coding segment. - if (rp > rplimit || cm == nullptr || cm->next == nullptr) - { - // Must perform this check and throw an exception on bad input. - unpack_abort(ERB); - return 0; - } - cm->next->reset(this); - return getInt(); - } - - CODING_PRIVATE(c.spec); - uint32_t uval; - enum - { - B5 = 5, - B3 = 3, - H128 = 128, - H64 = 64, - H4 = 4 - }; - switch (cmk) - { - case cmk_BHS: - assert(D == 0); - uval = coding::parse(rp, B, H); - if (S == 0) - return (int)uval; - return decode_sign(S, uval); - - case cmk_BHS0: - assert(S == 0 && D == 0); - uval = coding::parse(rp, B, H); - return (int)uval; - - case cmk_BHS1: - assert(S == 1 && D == 0); - uval = coding::parse(rp, B, H); - return DECODE_SIGN_S1(uval); - - case cmk_BYTE1: - assert(c.spec == BYTE1_spec); - assert(B == 1 && H == 256 && S == 0 && D == 0); - return *rp++ & 0xFF; - - case cmk_CHAR3: - assert(c.spec == CHAR3_spec); - assert(B == B3 && H == H128 && S == 0 && D == 0); - return coding::parse_lgH(rp, B3, H128, 7); - - case cmk_UNSIGNED5: - assert(c.spec == UNSIGNED5_spec); - assert(B == B5 && H == H64 && S == 0 && D == 0); - return coding::parse_lgH(rp, B5, H64, 6); - - case cmk_BHSD1: - assert(D == 1); - uval = coding::parse(rp, B, H); - if (S != 0) - uval = (uint32_t)decode_sign(S, uval); - return getDeltaValue(this, uval, (bool)c.isSubrange); - - case cmk_BHS1D1full: - assert(S == 1 && D == 1 && c.isFullRange); - uval = coding::parse(rp, B, H); - uval = (uint32_t)DECODE_SIGN_S1(uval); - return getDeltaValue(this, uval, false); - - case cmk_BHS1D1sub: - assert(S == 1 && D == 1 && c.isSubrange); - uval = coding::parse(rp, B, H); - uval = (uint32_t)DECODE_SIGN_S1(uval); - return getDeltaValue(this, uval, true); - - case cmk_DELTA5: - assert(c.spec == DELTA5_spec); - assert(B == B5 && H == H64 && S == 1 && D == 1 && c.isFullRange); - uval = coding::parse_lgH(rp, B5, H64, 6); - sum += DECODE_SIGN_S1(uval); - return sum; - - case cmk_BCI5: - assert(c.spec == BCI5_spec); - assert(B == B5 && H == H4 && S == 0 && D == 0); - return coding::parse_lgH(rp, B5, H4, 2); - - case cmk_BRANCH5: - assert(c.spec == BRANCH5_spec); - assert(B == B5 && H == H4 && S == 2 && D == 0); - uval = coding::parse_lgH(rp, B5, H4, 2); - return decode_sign(S, uval); - - case cmk_pop: - uval = coding::parse(rp, B, H); - if (S != 0) - { - uval = (uint32_t)decode_sign(S, uval); - } - if (D != 0) - { - assert(c.isSubrange | c.isFullRange); - if (c.isSubrange) - sum = c.sumInUnsignedRange(sum, (int)uval); - else - sum += (int)uval; - uval = (uint32_t)sum; - } - return getPopValue(this, uval); - - case cmk_pop_BHS0: - assert(S == 0 && D == 0); - uval = coding::parse(rp, B, H); - return getPopValue(this, uval); - - case cmk_pop_BYTE1: - assert(c.spec == BYTE1_spec); - assert(B == 1 && H == 256 && S == 0 && D == 0); - return getPopValue(this, *rp++ & 0xFF); - - default: - break; - } - assert(false); - return 0; + if (rp >= rplimit) + { + // Advance to next coding segment. + if (rp > rplimit || cm == nullptr || cm->next == nullptr) + { + // Must perform this check and throw an exception on bad input. + unpack_abort(ERB); + return 0; + } + cm->next->reset(this); + return getInt(); + } + + CODING_PRIVATE(c.spec); + uint32_t uval; + enum + { + B5 = 5, + B3 = 3, + H128 = 128, + H64 = 64, + H4 = 4 + }; + switch (cmk) + { + case cmk_BHS: + assert(D == 0); + uval = coding::parse(rp, B, H); + if (S == 0) + return (int)uval; + return decode_sign(S, uval); + + case cmk_BHS0: + assert(S == 0 && D == 0); + uval = coding::parse(rp, B, H); + return (int)uval; + + case cmk_BHS1: + assert(S == 1 && D == 0); + uval = coding::parse(rp, B, H); + return DECODE_SIGN_S1(uval); + + case cmk_BYTE1: + assert(c.spec == BYTE1_spec); + assert(B == 1 && H == 256 && S == 0 && D == 0); + return *rp++ & 0xFF; + + case cmk_CHAR3: + assert(c.spec == CHAR3_spec); + assert(B == B3 && H == H128 && S == 0 && D == 0); + return coding::parse_lgH(rp, B3, H128, 7); + + case cmk_UNSIGNED5: + assert(c.spec == UNSIGNED5_spec); + assert(B == B5 && H == H64 && S == 0 && D == 0); + return coding::parse_lgH(rp, B5, H64, 6); + + case cmk_BHSD1: + assert(D == 1); + uval = coding::parse(rp, B, H); + if (S != 0) + uval = (uint32_t)decode_sign(S, uval); + return getDeltaValue(this, uval, (bool)c.isSubrange); + + case cmk_BHS1D1full: + assert(S == 1 && D == 1 && c.isFullRange); + uval = coding::parse(rp, B, H); + uval = (uint32_t)DECODE_SIGN_S1(uval); + return getDeltaValue(this, uval, false); + + case cmk_BHS1D1sub: + assert(S == 1 && D == 1 && c.isSubrange); + uval = coding::parse(rp, B, H); + uval = (uint32_t)DECODE_SIGN_S1(uval); + return getDeltaValue(this, uval, true); + + case cmk_DELTA5: + assert(c.spec == DELTA5_spec); + assert(B == B5 && H == H64 && S == 1 && D == 1 && c.isFullRange); + uval = coding::parse_lgH(rp, B5, H64, 6); + sum += DECODE_SIGN_S1(uval); + return sum; + + case cmk_BCI5: + assert(c.spec == BCI5_spec); + assert(B == B5 && H == H4 && S == 0 && D == 0); + return coding::parse_lgH(rp, B5, H4, 2); + + case cmk_BRANCH5: + assert(c.spec == BRANCH5_spec); + assert(B == B5 && H == H4 && S == 2 && D == 0); + uval = coding::parse_lgH(rp, B5, H4, 2); + return decode_sign(S, uval); + + case cmk_pop: + uval = coding::parse(rp, B, H); + if (S != 0) + { + uval = (uint32_t)decode_sign(S, uval); + } + if (D != 0) + { + assert(c.isSubrange | c.isFullRange); + if (c.isSubrange) + sum = c.sumInUnsignedRange(sum, (int)uval); + else + sum += (int)uval; + uval = (uint32_t)sum; + } + return getPopValue(this, uval); + + case cmk_pop_BHS0: + assert(S == 0 && D == 0); + uval = coding::parse(rp, B, H); + return getPopValue(this, uval); + + case cmk_pop_BYTE1: + assert(c.spec == BYTE1_spec); + assert(B == 1 && H == 256 && S == 0 && D == 0); + return getPopValue(this, *rp++ & 0xFF); + + default: + break; + } + assert(false); + return 0; } static int moreCentral(int x, int y) { // used to find end of Pop.{F} - // Suggested implementation from the Pack200 specification: - uint32_t kx = (x >> 31) ^ (x << 1); - uint32_t ky = (y >> 31) ^ (y << 1); - return (kx < ky ? x : y); + // Suggested implementation from the Pack200 specification: + uint32_t kx = (x >> 31) ^ (x << 1); + uint32_t ky = (y >> 31) ^ (y << 1); + return (kx < ky ? x : y); } // static maybe_inline // int moreCentral2(int x, int y, int min) { @@ -641,7 +641,7 @@ static const byte *no_meta[] = {nullptr}; #define NO_META (*(byte **)no_meta) enum { - POP_FAVORED_N = -2 + POP_FAVORED_N = -2 }; // mode bits @@ -650,395 +650,395 @@ enum // This function knows all about meta-coding. void coding_method::init(byte *&band_rp, byte *band_limit, byte *&meta_rp, int mode, - coding *defc, int N, intlist *valueSink) + coding *defc, int N, intlist *valueSink) { - assert(N != 0); - - assert(u != nullptr); // must be pre-initialized - // if (u == nullptr) u = unpacker::current(); // expensive - - int op = (meta_rp == nullptr) ? _meta_default : (*meta_rp++ & 0xFF); - coding *foundc = nullptr; - coding *to_free = nullptr; - - if (op == _meta_default) - { - foundc = defc; - // and fall through - } - else if (op >= _meta_canon_min && op <= _meta_canon_max) - { - foundc = coding::findByIndex(op); - // and fall through - } - else if (op == _meta_arb) - { - int args = (*meta_rp++ & 0xFF); - // args = (D:[0..1] + 2*S[0..2] + 8*(B:[1..5]-1)) - int D = ((args >> 0) & 1); - int S = ((args >> 1) & 3); - int B = ((args >> 3) & -1) + 1; - // & (H[1..256]-1) - int H = (*meta_rp++ & 0xFF) + 1; - foundc = coding::findBySpec(B, H, S, D); - to_free = foundc; // findBySpec may dynamically allocate - if (foundc == nullptr) - { - unpack_abort("illegal arbitrary coding"); - return; - } - // and fall through - } - else if (op >= _meta_run && op < _meta_pop) - { - int args = (op - _meta_run); - // args: KX:[0..3] + 4*(KBFlag:[0..1]) + 8*(ABDef:[0..2]) - int KX = ((args >> 0) & 3); - int KBFlag = ((args >> 2) & 1); - int ABDef = ((args >> 3) & -1); - assert(ABDef <= 2); - // & KB: one of [0..255] if KBFlag=1 - int KB = (!KBFlag ? 3 : (*meta_rp++ & 0xFF)); - int K = (KB + 1) << (KX * 4); - int N2 = (N >= 0) ? N - K : N; - if (N == 0 || (N2 <= 0 && N2 != N)) - { - unpack_abort("illegal run encoding"); - } - if ((mode & DISABLE_RUN) != 0) - { - unpack_abort("illegal nested run encoding"); - } - - // & Enc{ ACode } if ADef=0 (ABDef != 1) - // No direct nesting of 'run' in ACode, but in BCode it's OK. - int disRun = mode | DISABLE_RUN; - if (ABDef == 1) - { - this->init(band_rp, band_limit, NO_META, disRun, defc, K, valueSink); - } - else - { - this->init(band_rp, band_limit, meta_rp, disRun, defc, K, valueSink); - } - - // & Enc{ BCode } if BDef=0 (ABDef != 2) - coding_method *tail = U_NEW(coding_method, 1); - if (!tail) - return; - tail->u = u; - - // The 'run' codings may be nested indirectly via 'pop' codings. - // This means that this->next may already be filled in, if - // ACode was of type 'pop' with a 'run' token coding. - // No problem: Just chain the upcoming BCode onto the end. - for (coding_method *self = this;; self = self->next) - { - if (self->next == nullptr) - { - self->next = tail; - break; - } - } - - if (ABDef == 2) - { - tail->init(band_rp, band_limit, NO_META, mode, defc, N2, valueSink); - } - else - { - tail->init(band_rp, band_limit, meta_rp, mode, defc, N2, valueSink); - } - // Note: The preceding calls to init should be tail-recursive. - - return; // done; no falling through - } - else if (op >= _meta_pop && op < _meta_limit) - { - int args = (op - _meta_pop); - // args: (FDef:[0..1]) + 2*UDef:[0..1] + 4*(TDefL:[0..11]) - int FDef = ((args >> 0) & 1); - int UDef = ((args >> 1) & 1); - int TDefL = ((args >> 2) & -1); - assert(TDefL <= 11); - int TDef = (TDefL > 0); - int TL = (TDefL <= 6) ? (2 << TDefL) : (256 - (4 << (11 - TDefL))); - int TH = (256 - TL); - if (N <= 0) - { - unpack_abort("illegal pop encoding"); - } - if ((mode & DISABLE_POP) != 0) - { - unpack_abort("illegal nested pop encoding"); - } - - // No indirect nesting of 'pop', but 'run' is OK. - int disPop = DISABLE_POP; - - // & Enc{ FCode } if FDef=0 - int FN = POP_FAVORED_N; - assert(valueSink == nullptr); - intlist fValueSink; - fValueSink.init(); - coding_method fval; - BYTES_OF(fval).clear(); - fval.u = u; - if (FDef != 0) - { - fval.init(band_rp, band_limit, NO_META, disPop, defc, FN, &fValueSink); - } - else - { - fval.init(band_rp, band_limit, meta_rp, disPop, defc, FN, &fValueSink); - } - bytes fvbuf; - fValues = (u->saveTo(fvbuf, fValueSink.b), (int *)fvbuf.ptr); - fVlength = fValueSink.length(); // i.e., the parameter K - fValueSink.free(); - - // Skip the first {F} run in all subsequent passes. - // The next call to this->init(...) will set vs0.rp to point after the {F}. - - // & Enc{ TCode } if TDef=0 (TDefL==0) - if (TDef != 0) - { - coding *tcode = coding::findBySpec(1, 256); // BYTE1 - // find the most narrowly sufficient code: - for (int B = 2; B <= B_MAX; B++) - { - if (fVlength <= tcode->umax) - break; // found it - tcode->free(); - tcode = coding::findBySpec(B, TH); - if (!tcode) - return; - } - if (!(fVlength <= tcode->umax)) - { - unpack_abort("pop.L value too small"); - } - this->init(band_rp, band_limit, NO_META, disPop, tcode, N, nullptr); - tcode->free(); - } - else - { - this->init(band_rp, band_limit, meta_rp, disPop, defc, N, nullptr); - } - - // Count the number of zero tokens right now. - // Also verify that they are in bounds. - int UN = 0; // one {U} for each zero in {T} - value_stream vs = vs0; - for (int i = 0; i < N; i++) - { - uint32_t val = vs.getInt(); - if (val == 0) - UN += 1; - if (!(val <= (uint32_t)fVlength)) - { - unpack_abort("pop token out of range"); - } - } - vs.done(); - - // & Enc{ UCode } if UDef=0 - if (UN != 0) - { - uValues = U_NEW(coding_method, 1); - if (uValues == nullptr) - return; - uValues->u = u; - if (UDef != 0) - { - uValues->init(band_rp, band_limit, NO_META, disPop, defc, UN, nullptr); - } - else - { - uValues->init(band_rp, band_limit, meta_rp, disPop, defc, UN, nullptr); - } - } - else - { - if (UDef == 0) - { - int uop = (*meta_rp++ & 0xFF); - if (uop > _meta_canon_max) - // %%% Spec. requires the more strict (uop != _meta_default). - unpack_abort("bad meta-coding for empty pop/U"); - } - } - - // Bug fix for 6259542 - // Last of all, adjust vs0.cmk to the 'pop' flavor - for (coding_method *self = this; self != nullptr; self = self->next) - { - coding_method_kind cmk2 = cmk_pop; - switch (self->vs0.cmk) - { - case cmk_BHS0: - cmk2 = cmk_pop_BHS0; - break; - case cmk_BYTE1: - cmk2 = cmk_pop_BYTE1; - break; - default: - break; - } - self->vs0.cmk = cmk2; - if (self != this) - { - assert(self->fValues == nullptr); // no double init - self->fValues = this->fValues; - self->fVlength = this->fVlength; - assert(self->uValues == nullptr); // must stay nullptr - } - } - - return; // done; no falling through - } - else - { - unpack_abort("bad meta-coding"); - } - - // Common code here skips a series of values with one coding. - assert(foundc != nullptr); - - assert(vs0.cmk == cmk_ERROR); // no garbage, please - assert(vs0.rp == nullptr); // no garbage, please - assert(vs0.rplimit == nullptr); // no garbage, please - assert(vs0.sum == 0); // no garbage, please - - vs0.init(band_rp, band_limit, foundc); - - // Done with foundc. Free if necessary. - if (to_free != nullptr) - { - to_free->free(); - to_free = nullptr; - } - foundc = nullptr; - - coding &c = vs0.c; - CODING_PRIVATE(c.spec); - // assert sane N - assert((uint32_t)N < INT_MAX_VALUE || N == POP_FAVORED_N); - - // Look at the values, or at least skip over them quickly. - if (valueSink == nullptr) - { - // Skip and ignore values in the first pass. - c.parseMultiple(band_rp, N, band_limit, B, H); - } - else if (N >= 0) - { - // Pop coding, {F} sequence, initial run of values... - assert((mode & DISABLE_POP) != 0); - value_stream vs = vs0; - for (int n = 0; n < N; n++) - { - int val = vs.getInt(); - valueSink->add(val); - } - band_rp = vs.rp; - } - else - { - // Pop coding, {F} sequence, final run of values... - assert((mode & DISABLE_POP) != 0); - assert(N == POP_FAVORED_N); - int min = INT_MIN_VALUE; // farthest from the center - // min2 is based on the buggy specification of centrality in version 150.7 - // no known implementations transmit this value, but just in case... - // int min2 = INT_MIN_VALUE; - int last = 0; - // if there were initial runs, find the potential sentinels in them: - for (int i = 0; i < valueSink->length(); i++) - { - last = valueSink->get(i); - min = moreCentral(min, last); - // min2 = moreCentral2(min2, last, min); - } - value_stream vs = vs0; - for (;;) - { - int val = vs.getInt(); - if (valueSink->length() > 0 && (val == last || val == min)) //|| val == min2 - break; - valueSink->add(val); - last = val; - min = moreCentral(min, last); - // min2 = moreCentral2(min2, last, min); - } - band_rp = vs.rp; - } - - // Get an accurate upper limit now. - vs0.rplimit = band_rp; - vs0.cm = this; - - return; // success + assert(N != 0); + + assert(u != nullptr); // must be pre-initialized + // if (u == nullptr) u = unpacker::current(); // expensive + + int op = (meta_rp == nullptr) ? _meta_default : (*meta_rp++ & 0xFF); + coding *foundc = nullptr; + coding *to_free = nullptr; + + if (op == _meta_default) + { + foundc = defc; + // and fall through + } + else if (op >= _meta_canon_min && op <= _meta_canon_max) + { + foundc = coding::findByIndex(op); + // and fall through + } + else if (op == _meta_arb) + { + int args = (*meta_rp++ & 0xFF); + // args = (D:[0..1] + 2*S[0..2] + 8*(B:[1..5]-1)) + int D = ((args >> 0) & 1); + int S = ((args >> 1) & 3); + int B = ((args >> 3) & -1) + 1; + // & (H[1..256]-1) + int H = (*meta_rp++ & 0xFF) + 1; + foundc = coding::findBySpec(B, H, S, D); + to_free = foundc; // findBySpec may dynamically allocate + if (foundc == nullptr) + { + unpack_abort("illegal arbitrary coding"); + return; + } + // and fall through + } + else if (op >= _meta_run && op < _meta_pop) + { + int args = (op - _meta_run); + // args: KX:[0..3] + 4*(KBFlag:[0..1]) + 8*(ABDef:[0..2]) + int KX = ((args >> 0) & 3); + int KBFlag = ((args >> 2) & 1); + int ABDef = ((args >> 3) & -1); + assert(ABDef <= 2); + // & KB: one of [0..255] if KBFlag=1 + int KB = (!KBFlag ? 3 : (*meta_rp++ & 0xFF)); + int K = (KB + 1) << (KX * 4); + int N2 = (N >= 0) ? N - K : N; + if (N == 0 || (N2 <= 0 && N2 != N)) + { + unpack_abort("illegal run encoding"); + } + if ((mode & DISABLE_RUN) != 0) + { + unpack_abort("illegal nested run encoding"); + } + + // & Enc{ ACode } if ADef=0 (ABDef != 1) + // No direct nesting of 'run' in ACode, but in BCode it's OK. + int disRun = mode | DISABLE_RUN; + if (ABDef == 1) + { + this->init(band_rp, band_limit, NO_META, disRun, defc, K, valueSink); + } + else + { + this->init(band_rp, band_limit, meta_rp, disRun, defc, K, valueSink); + } + + // & Enc{ BCode } if BDef=0 (ABDef != 2) + coding_method *tail = U_NEW(coding_method, 1); + if (!tail) + return; + tail->u = u; + + // The 'run' codings may be nested indirectly via 'pop' codings. + // This means that this->next may already be filled in, if + // ACode was of type 'pop' with a 'run' token coding. + // No problem: Just chain the upcoming BCode onto the end. + for (coding_method *self = this;; self = self->next) + { + if (self->next == nullptr) + { + self->next = tail; + break; + } + } + + if (ABDef == 2) + { + tail->init(band_rp, band_limit, NO_META, mode, defc, N2, valueSink); + } + else + { + tail->init(band_rp, band_limit, meta_rp, mode, defc, N2, valueSink); + } + // Note: The preceding calls to init should be tail-recursive. + + return; // done; no falling through + } + else if (op >= _meta_pop && op < _meta_limit) + { + int args = (op - _meta_pop); + // args: (FDef:[0..1]) + 2*UDef:[0..1] + 4*(TDefL:[0..11]) + int FDef = ((args >> 0) & 1); + int UDef = ((args >> 1) & 1); + int TDefL = ((args >> 2) & -1); + assert(TDefL <= 11); + int TDef = (TDefL > 0); + int TL = (TDefL <= 6) ? (2 << TDefL) : (256 - (4 << (11 - TDefL))); + int TH = (256 - TL); + if (N <= 0) + { + unpack_abort("illegal pop encoding"); + } + if ((mode & DISABLE_POP) != 0) + { + unpack_abort("illegal nested pop encoding"); + } + + // No indirect nesting of 'pop', but 'run' is OK. + int disPop = DISABLE_POP; + + // & Enc{ FCode } if FDef=0 + int FN = POP_FAVORED_N; + assert(valueSink == nullptr); + intlist fValueSink; + fValueSink.init(); + coding_method fval; + BYTES_OF(fval).clear(); + fval.u = u; + if (FDef != 0) + { + fval.init(band_rp, band_limit, NO_META, disPop, defc, FN, &fValueSink); + } + else + { + fval.init(band_rp, band_limit, meta_rp, disPop, defc, FN, &fValueSink); + } + bytes fvbuf; + fValues = (u->saveTo(fvbuf, fValueSink.b), (int *)fvbuf.ptr); + fVlength = fValueSink.length(); // i.e., the parameter K + fValueSink.free(); + + // Skip the first {F} run in all subsequent passes. + // The next call to this->init(...) will set vs0.rp to point after the {F}. + + // & Enc{ TCode } if TDef=0 (TDefL==0) + if (TDef != 0) + { + coding *tcode = coding::findBySpec(1, 256); // BYTE1 + // find the most narrowly sufficient code: + for (int B = 2; B <= B_MAX; B++) + { + if (fVlength <= tcode->umax) + break; // found it + tcode->free(); + tcode = coding::findBySpec(B, TH); + if (!tcode) + return; + } + if (!(fVlength <= tcode->umax)) + { + unpack_abort("pop.L value too small"); + } + this->init(band_rp, band_limit, NO_META, disPop, tcode, N, nullptr); + tcode->free(); + } + else + { + this->init(band_rp, band_limit, meta_rp, disPop, defc, N, nullptr); + } + + // Count the number of zero tokens right now. + // Also verify that they are in bounds. + int UN = 0; // one {U} for each zero in {T} + value_stream vs = vs0; + for (int i = 0; i < N; i++) + { + uint32_t val = vs.getInt(); + if (val == 0) + UN += 1; + if (!(val <= (uint32_t)fVlength)) + { + unpack_abort("pop token out of range"); + } + } + vs.done(); + + // & Enc{ UCode } if UDef=0 + if (UN != 0) + { + uValues = U_NEW(coding_method, 1); + if (uValues == nullptr) + return; + uValues->u = u; + if (UDef != 0) + { + uValues->init(band_rp, band_limit, NO_META, disPop, defc, UN, nullptr); + } + else + { + uValues->init(band_rp, band_limit, meta_rp, disPop, defc, UN, nullptr); + } + } + else + { + if (UDef == 0) + { + int uop = (*meta_rp++ & 0xFF); + if (uop > _meta_canon_max) + // %%% Spec. requires the more strict (uop != _meta_default). + unpack_abort("bad meta-coding for empty pop/U"); + } + } + + // Bug fix for 6259542 + // Last of all, adjust vs0.cmk to the 'pop' flavor + for (coding_method *self = this; self != nullptr; self = self->next) + { + coding_method_kind cmk2 = cmk_pop; + switch (self->vs0.cmk) + { + case cmk_BHS0: + cmk2 = cmk_pop_BHS0; + break; + case cmk_BYTE1: + cmk2 = cmk_pop_BYTE1; + break; + default: + break; + } + self->vs0.cmk = cmk2; + if (self != this) + { + assert(self->fValues == nullptr); // no double init + self->fValues = this->fValues; + self->fVlength = this->fVlength; + assert(self->uValues == nullptr); // must stay nullptr + } + } + + return; // done; no falling through + } + else + { + unpack_abort("bad meta-coding"); + } + + // Common code here skips a series of values with one coding. + assert(foundc != nullptr); + + assert(vs0.cmk == cmk_ERROR); // no garbage, please + assert(vs0.rp == nullptr); // no garbage, please + assert(vs0.rplimit == nullptr); // no garbage, please + assert(vs0.sum == 0); // no garbage, please + + vs0.init(band_rp, band_limit, foundc); + + // Done with foundc. Free if necessary. + if (to_free != nullptr) + { + to_free->free(); + to_free = nullptr; + } + foundc = nullptr; + + coding &c = vs0.c; + CODING_PRIVATE(c.spec); + // assert sane N + assert((uint32_t)N < INT_MAX_VALUE || N == POP_FAVORED_N); + + // Look at the values, or at least skip over them quickly. + if (valueSink == nullptr) + { + // Skip and ignore values in the first pass. + c.parseMultiple(band_rp, N, band_limit, B, H); + } + else if (N >= 0) + { + // Pop coding, {F} sequence, initial run of values... + assert((mode & DISABLE_POP) != 0); + value_stream vs = vs0; + for (int n = 0; n < N; n++) + { + int val = vs.getInt(); + valueSink->add(val); + } + band_rp = vs.rp; + } + else + { + // Pop coding, {F} sequence, final run of values... + assert((mode & DISABLE_POP) != 0); + assert(N == POP_FAVORED_N); + int min = INT_MIN_VALUE; // farthest from the center + // min2 is based on the buggy specification of centrality in version 150.7 + // no known implementations transmit this value, but just in case... + // int min2 = INT_MIN_VALUE; + int last = 0; + // if there were initial runs, find the potential sentinels in them: + for (int i = 0; i < valueSink->length(); i++) + { + last = valueSink->get(i); + min = moreCentral(min, last); + // min2 = moreCentral2(min2, last, min); + } + value_stream vs = vs0; + for (;;) + { + int val = vs.getInt(); + if (valueSink->length() > 0 && (val == last || val == min)) //|| val == min2 + break; + valueSink->add(val); + last = val; + min = moreCentral(min, last); + // min2 = moreCentral2(min2, last, min); + } + band_rp = vs.rp; + } + + // Get an accurate upper limit now. + vs0.rplimit = band_rp; + vs0.cm = this; + + return; // success } coding basic_codings[] = { - // This one is not a usable irregular coding, but is used by cp_Utf8_chars. - CODING_INIT(3, 128, 0, 0), - - // Fixed-length codings: - CODING_INIT(1, 256, 0, 0), CODING_INIT(1, 256, 1, 0), CODING_INIT(1, 256, 0, 1), - CODING_INIT(1, 256, 1, 1), CODING_INIT(2, 256, 0, 0), CODING_INIT(2, 256, 1, 0), - CODING_INIT(2, 256, 0, 1), CODING_INIT(2, 256, 1, 1), CODING_INIT(3, 256, 0, 0), - CODING_INIT(3, 256, 1, 0), CODING_INIT(3, 256, 0, 1), CODING_INIT(3, 256, 1, 1), - CODING_INIT(4, 256, 0, 0), CODING_INIT(4, 256, 1, 0), CODING_INIT(4, 256, 0, 1), - CODING_INIT(4, 256, 1, 1), - - // Full-range variable-length codings: - CODING_INIT(5, 4, 0, 0), CODING_INIT(5, 4, 1, 0), CODING_INIT(5, 4, 2, 0), - CODING_INIT(5, 16, 0, 0), CODING_INIT(5, 16, 1, 0), CODING_INIT(5, 16, 2, 0), - CODING_INIT(5, 32, 0, 0), CODING_INIT(5, 32, 1, 0), CODING_INIT(5, 32, 2, 0), - CODING_INIT(5, 64, 0, 0), CODING_INIT(5, 64, 1, 0), CODING_INIT(5, 64, 2, 0), - CODING_INIT(5, 128, 0, 0), CODING_INIT(5, 128, 1, 0), CODING_INIT(5, 128, 2, 0), - CODING_INIT(5, 4, 0, 1), CODING_INIT(5, 4, 1, 1), CODING_INIT(5, 4, 2, 1), - CODING_INIT(5, 16, 0, 1), CODING_INIT(5, 16, 1, 1), CODING_INIT(5, 16, 2, 1), - CODING_INIT(5, 32, 0, 1), CODING_INIT(5, 32, 1, 1), CODING_INIT(5, 32, 2, 1), - CODING_INIT(5, 64, 0, 1), CODING_INIT(5, 64, 1, 1), CODING_INIT(5, 64, 2, 1), - CODING_INIT(5, 128, 0, 1), CODING_INIT(5, 128, 1, 1), CODING_INIT(5, 128, 2, 1), - - // Variable length subrange codings: - CODING_INIT(2, 192, 0, 0), CODING_INIT(2, 224, 0, 0), CODING_INIT(2, 240, 0, 0), - CODING_INIT(2, 248, 0, 0), CODING_INIT(2, 252, 0, 0), CODING_INIT(2, 8, 0, 1), - CODING_INIT(2, 8, 1, 1), CODING_INIT(2, 16, 0, 1), CODING_INIT(2, 16, 1, 1), - CODING_INIT(2, 32, 0, 1), CODING_INIT(2, 32, 1, 1), CODING_INIT(2, 64, 0, 1), - CODING_INIT(2, 64, 1, 1), CODING_INIT(2, 128, 0, 1), CODING_INIT(2, 128, 1, 1), - CODING_INIT(2, 192, 0, 1), CODING_INIT(2, 192, 1, 1), CODING_INIT(2, 224, 0, 1), - CODING_INIT(2, 224, 1, 1), CODING_INIT(2, 240, 0, 1), CODING_INIT(2, 240, 1, 1), - CODING_INIT(2, 248, 0, 1), CODING_INIT(2, 248, 1, 1), CODING_INIT(3, 192, 0, 0), - CODING_INIT(3, 224, 0, 0), CODING_INIT(3, 240, 0, 0), CODING_INIT(3, 248, 0, 0), - CODING_INIT(3, 252, 0, 0), CODING_INIT(3, 8, 0, 1), CODING_INIT(3, 8, 1, 1), - CODING_INIT(3, 16, 0, 1), CODING_INIT(3, 16, 1, 1), CODING_INIT(3, 32, 0, 1), - CODING_INIT(3, 32, 1, 1), CODING_INIT(3, 64, 0, 1), CODING_INIT(3, 64, 1, 1), - CODING_INIT(3, 128, 0, 1), CODING_INIT(3, 128, 1, 1), CODING_INIT(3, 192, 0, 1), - CODING_INIT(3, 192, 1, 1), CODING_INIT(3, 224, 0, 1), CODING_INIT(3, 224, 1, 1), - CODING_INIT(3, 240, 0, 1), CODING_INIT(3, 240, 1, 1), CODING_INIT(3, 248, 0, 1), - CODING_INIT(3, 248, 1, 1), CODING_INIT(4, 192, 0, 0), CODING_INIT(4, 224, 0, 0), - CODING_INIT(4, 240, 0, 0), CODING_INIT(4, 248, 0, 0), CODING_INIT(4, 252, 0, 0), - CODING_INIT(4, 8, 0, 1), CODING_INIT(4, 8, 1, 1), CODING_INIT(4, 16, 0, 1), - CODING_INIT(4, 16, 1, 1), CODING_INIT(4, 32, 0, 1), CODING_INIT(4, 32, 1, 1), - CODING_INIT(4, 64, 0, 1), CODING_INIT(4, 64, 1, 1), CODING_INIT(4, 128, 0, 1), - CODING_INIT(4, 128, 1, 1), CODING_INIT(4, 192, 0, 1), CODING_INIT(4, 192, 1, 1), - CODING_INIT(4, 224, 0, 1), CODING_INIT(4, 224, 1, 1), CODING_INIT(4, 240, 0, 1), - CODING_INIT(4, 240, 1, 1), CODING_INIT(4, 248, 0, 1), CODING_INIT(4, 248, 1, 1), - CODING_INIT(0, 0, 0, 0)}; + // This one is not a usable irregular coding, but is used by cp_Utf8_chars. + CODING_INIT(3, 128, 0, 0), + + // Fixed-length codings: + CODING_INIT(1, 256, 0, 0), CODING_INIT(1, 256, 1, 0), CODING_INIT(1, 256, 0, 1), + CODING_INIT(1, 256, 1, 1), CODING_INIT(2, 256, 0, 0), CODING_INIT(2, 256, 1, 0), + CODING_INIT(2, 256, 0, 1), CODING_INIT(2, 256, 1, 1), CODING_INIT(3, 256, 0, 0), + CODING_INIT(3, 256, 1, 0), CODING_INIT(3, 256, 0, 1), CODING_INIT(3, 256, 1, 1), + CODING_INIT(4, 256, 0, 0), CODING_INIT(4, 256, 1, 0), CODING_INIT(4, 256, 0, 1), + CODING_INIT(4, 256, 1, 1), + + // Full-range variable-length codings: + CODING_INIT(5, 4, 0, 0), CODING_INIT(5, 4, 1, 0), CODING_INIT(5, 4, 2, 0), + CODING_INIT(5, 16, 0, 0), CODING_INIT(5, 16, 1, 0), CODING_INIT(5, 16, 2, 0), + CODING_INIT(5, 32, 0, 0), CODING_INIT(5, 32, 1, 0), CODING_INIT(5, 32, 2, 0), + CODING_INIT(5, 64, 0, 0), CODING_INIT(5, 64, 1, 0), CODING_INIT(5, 64, 2, 0), + CODING_INIT(5, 128, 0, 0), CODING_INIT(5, 128, 1, 0), CODING_INIT(5, 128, 2, 0), + CODING_INIT(5, 4, 0, 1), CODING_INIT(5, 4, 1, 1), CODING_INIT(5, 4, 2, 1), + CODING_INIT(5, 16, 0, 1), CODING_INIT(5, 16, 1, 1), CODING_INIT(5, 16, 2, 1), + CODING_INIT(5, 32, 0, 1), CODING_INIT(5, 32, 1, 1), CODING_INIT(5, 32, 2, 1), + CODING_INIT(5, 64, 0, 1), CODING_INIT(5, 64, 1, 1), CODING_INIT(5, 64, 2, 1), + CODING_INIT(5, 128, 0, 1), CODING_INIT(5, 128, 1, 1), CODING_INIT(5, 128, 2, 1), + + // Variable length subrange codings: + CODING_INIT(2, 192, 0, 0), CODING_INIT(2, 224, 0, 0), CODING_INIT(2, 240, 0, 0), + CODING_INIT(2, 248, 0, 0), CODING_INIT(2, 252, 0, 0), CODING_INIT(2, 8, 0, 1), + CODING_INIT(2, 8, 1, 1), CODING_INIT(2, 16, 0, 1), CODING_INIT(2, 16, 1, 1), + CODING_INIT(2, 32, 0, 1), CODING_INIT(2, 32, 1, 1), CODING_INIT(2, 64, 0, 1), + CODING_INIT(2, 64, 1, 1), CODING_INIT(2, 128, 0, 1), CODING_INIT(2, 128, 1, 1), + CODING_INIT(2, 192, 0, 1), CODING_INIT(2, 192, 1, 1), CODING_INIT(2, 224, 0, 1), + CODING_INIT(2, 224, 1, 1), CODING_INIT(2, 240, 0, 1), CODING_INIT(2, 240, 1, 1), + CODING_INIT(2, 248, 0, 1), CODING_INIT(2, 248, 1, 1), CODING_INIT(3, 192, 0, 0), + CODING_INIT(3, 224, 0, 0), CODING_INIT(3, 240, 0, 0), CODING_INIT(3, 248, 0, 0), + CODING_INIT(3, 252, 0, 0), CODING_INIT(3, 8, 0, 1), CODING_INIT(3, 8, 1, 1), + CODING_INIT(3, 16, 0, 1), CODING_INIT(3, 16, 1, 1), CODING_INIT(3, 32, 0, 1), + CODING_INIT(3, 32, 1, 1), CODING_INIT(3, 64, 0, 1), CODING_INIT(3, 64, 1, 1), + CODING_INIT(3, 128, 0, 1), CODING_INIT(3, 128, 1, 1), CODING_INIT(3, 192, 0, 1), + CODING_INIT(3, 192, 1, 1), CODING_INIT(3, 224, 0, 1), CODING_INIT(3, 224, 1, 1), + CODING_INIT(3, 240, 0, 1), CODING_INIT(3, 240, 1, 1), CODING_INIT(3, 248, 0, 1), + CODING_INIT(3, 248, 1, 1), CODING_INIT(4, 192, 0, 0), CODING_INIT(4, 224, 0, 0), + CODING_INIT(4, 240, 0, 0), CODING_INIT(4, 248, 0, 0), CODING_INIT(4, 252, 0, 0), + CODING_INIT(4, 8, 0, 1), CODING_INIT(4, 8, 1, 1), CODING_INIT(4, 16, 0, 1), + CODING_INIT(4, 16, 1, 1), CODING_INIT(4, 32, 0, 1), CODING_INIT(4, 32, 1, 1), + CODING_INIT(4, 64, 0, 1), CODING_INIT(4, 64, 1, 1), CODING_INIT(4, 128, 0, 1), + CODING_INIT(4, 128, 1, 1), CODING_INIT(4, 192, 0, 1), CODING_INIT(4, 192, 1, 1), + CODING_INIT(4, 224, 0, 1), CODING_INIT(4, 224, 1, 1), CODING_INIT(4, 240, 0, 1), + CODING_INIT(4, 240, 1, 1), CODING_INIT(4, 248, 0, 1), CODING_INIT(4, 248, 1, 1), + CODING_INIT(0, 0, 0, 0)}; #define BASIC_INDEX_LIMIT (int)(sizeof(basic_codings) / sizeof(basic_codings[0]) - 1) coding *coding::findByIndex(int idx) { - int index_limit = BASIC_INDEX_LIMIT; - assert(_meta_canon_min == 1 && _meta_canon_max + 1 == index_limit); + int index_limit = BASIC_INDEX_LIMIT; + assert(_meta_canon_min == 1 && _meta_canon_max + 1 == index_limit); - if (idx >= _meta_canon_min && idx <= _meta_canon_max) - return basic_codings[idx].init(); - else - return nullptr; + if (idx >= _meta_canon_min && idx <= _meta_canon_max) + return basic_codings[idx].init(); + else + return nullptr; } -- cgit v1.2.3