1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsTArray_h__
#define nsTArray_h__
#include "nsTArrayForwardDeclare.h"
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/BinarySearch.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/fallible.h"
#include "mozilla/Function.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/ReverseIterator.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Span.h"
#include <string.h>
#include "nsCycleCollectionNoteChild.h"
#include "nsAlgorithm.h"
#include "nscore.h"
#include "nsQuickSort.h"
#include "nsDebug.h"
#include "nsISupportsImpl.h"
#include "nsRegionFwd.h"
#include <initializer_list>
#include <new>
namespace JS {
template<class T>
class Heap;
class ObjectPtr;
} /* namespace JS */
class nsRegion;
namespace mozilla {
namespace layers {
struct TileClient;
} // namespace layers
} // namespace mozilla
namespace mozilla {
struct SerializedStructuredCloneBuffer;
} // namespace mozilla
namespace mozilla {
namespace dom {
namespace ipc {
class StructuredCloneData;
} // namespace ipc
} // namespace dom
} // namespace mozilla
namespace mozilla {
namespace dom {
class ClonedMessageData;
class MessagePortMessage;
namespace indexedDB {
struct StructuredCloneReadInfo;
class SerializedStructuredCloneReadInfo;
class ObjectStoreCursorResponse;
} // namespace indexedDB
} // namespace dom
} // namespace mozilla
class JSStructuredCloneData;
//
// nsTArray is a resizable array class, like std::vector.
//
// Unlike std::vector, which follows C++'s construction/destruction rules,
// nsTArray assumes that your "T" can be memmoved()'ed safely.
//
// The public classes defined in this header are
//
// nsTArray<T>,
// FallibleTArray<T>,
// AutoTArray<T, N>, and
//
// nsTArray and AutoTArray are infallible by default. To opt-in to fallible
// behaviour, use the `mozilla::fallible` parameter and check the return value.
//
// If you just want to declare the nsTArray types (e.g., if you're in a header
// file and don't need the full nsTArray definitions) consider including
// nsTArrayForwardDeclare.h instead of nsTArray.h.
//
// The template parameter (i.e., T in nsTArray<T>) specifies the type of the
// elements and has the following requirements:
//
// T MUST be safely memmove()'able.
// T MUST define a copy-constructor.
// T MAY define operator< for sorting.
// T MAY define operator== for searching.
//
// (Note that the memmove requirement may be relaxed for certain types - see
// nsTArray_CopyChooser below.)
//
// For methods taking a Comparator instance, the Comparator must be a class
// defining the following methods:
//
// class Comparator {
// public:
// /** @return True if the elements are equals; false otherwise. */
// bool Equals(const elem_type& a, const Item& b) const;
//
// /** @return True if (a < b); false otherwise. */
// bool LessThan(const elem_type& a, const Item& b) const;
// };
//
// The Equals method is used for searching, and the LessThan method is used for
// searching and sorting. The |Item| type above can be arbitrary, but must
// match the Item type passed to the sort or search function.
//
//
// nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types
// which are used because you cannot use a templated type which is bound to
// void as an argument to a void function. In order to work around that, we
// encode either a void or a boolean inside these proxy objects, and pass them
// to the aforementioned function instead, and then use the type information to
// decide what to do in the function.
//
// Note that public nsTArray methods should never return a proxy type. Such
// types are only meant to be used in the internal nsTArray helper methods.
// Public methods returning non-proxy types cannot be called from other
// nsTArray members.
//
struct nsTArrayFallibleResult
{
// Note: allows implicit conversions from and to bool
MOZ_IMPLICIT nsTArrayFallibleResult(bool aResult) : mResult(aResult) {}
MOZ_IMPLICIT operator bool() { return mResult; }
private:
bool mResult;
};
struct nsTArrayInfallibleResult
{
};
//
// nsTArray*Allocators must all use the same |free()|, to allow swap()'ing
// between fallible and infallible variants.
//
struct nsTArrayFallibleAllocatorBase
{
typedef bool ResultType;
typedef nsTArrayFallibleResult ResultTypeProxy;
static ResultType Result(ResultTypeProxy aResult) { return aResult; }
static bool Successful(ResultTypeProxy aResult) { return aResult; }
static ResultTypeProxy SuccessResult() { return true; }
static ResultTypeProxy FailureResult() { return false; }
static ResultType ConvertBoolToResultType(bool aValue) { return aValue; }
};
struct nsTArrayInfallibleAllocatorBase
{
typedef void ResultType;
typedef nsTArrayInfallibleResult ResultTypeProxy;
static ResultType Result(ResultTypeProxy aResult) {}
static bool Successful(ResultTypeProxy) { return true; }
static ResultTypeProxy SuccessResult() { return ResultTypeProxy(); }
static ResultTypeProxy FailureResult()
{
NS_RUNTIMEABORT("Infallible nsTArray should never fail");
return ResultTypeProxy();
}
static ResultType ConvertBoolToResultType(bool aValue)
{
if (!aValue) {
NS_RUNTIMEABORT("infallible nsTArray should never convert false to ResultType");
}
}
};
struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
{
static void* Malloc(size_t aSize) { return malloc(aSize); }
static void* Realloc(void* aPtr, size_t aSize)
{
return realloc(aPtr, aSize);
}
static void Free(void* aPtr) { free(aPtr); }
static void SizeTooBig(size_t) {}
};
#if defined(MOZALLOC_HAVE_XMALLOC)
#include "mozilla/mozalloc_abort.h"
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
static void* Malloc(size_t aSize) { return moz_xmalloc(aSize); }
static void* Realloc(void* aPtr, size_t aSize)
{
return moz_xrealloc(aPtr, aSize);
}
static void Free(void* aPtr) { free(aPtr); }
static void SizeTooBig(size_t aSize) { NS_ABORT_OOM(aSize); }
};
#else
#include <stdlib.h>
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
static void* Malloc(size_t aSize)
{
void* ptr = malloc(aSize);
if (MOZ_UNLIKELY(!ptr)) {
NS_ABORT_OOM(aSize);
}
return ptr;
}
static void* Realloc(void* aPtr, size_t aSize)
{
void* newptr = realloc(aPtr, aSize);
if (MOZ_UNLIKELY(!newptr && aSize)) {
NS_ABORT_OOM(aSize);
}
return newptr;
}
static void Free(void* aPtr) { free(aPtr); }
static void SizeTooBig(size_t aSize) { NS_ABORT_OOM(aSize); }
};
#endif
// nsTArray_base stores elements into the space allocated beyond
// sizeof(*this). This is done to minimize the size of the nsTArray
// object when it is empty.
struct nsTArrayHeader
{
static nsTArrayHeader sEmptyHdr;
uint32_t mLength;
uint32_t mCapacity : 31;
uint32_t mIsAutoArray : 1;
};
// This class provides a SafeElementAt method to nsTArray<T*> which does
// not take a second default value parameter.
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper
{
typedef E* elem_type;
typedef size_t index_type;
// No implementation is provided for these two methods, and that is on
// purpose, since we don't support these functions on non-pointer type
// instantiations.
elem_type& SafeElementAt(index_type aIndex);
const elem_type& SafeElementAt(index_type aIndex) const;
};
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper<E*, Derived>
{
typedef E* elem_type;
//typedef const E* const_elem_type; XXX: see below
typedef size_t index_type;
elem_type SafeElementAt(index_type aIndex)
{
return static_cast<Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
// XXX: Probably should return const_elem_type, but callsites must be fixed.
// Also, the use of const_elem_type for nsTArray<xpcGCCallback> in
// xpcprivate.h causes build failures on Windows because xpcGCCallback is a
// function pointer and MSVC doesn't like qualifying it with |const|.
elem_type SafeElementAt(index_type aIndex) const
{
return static_cast<const Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
};
// E is the base type that the smart pointer is templated over; the
// smart pointer can act as E*.
template<class E, class Derived>
struct nsTArray_SafeElementAtSmartPtrHelper
{
typedef E* elem_type;
typedef const E* const_elem_type;
typedef size_t index_type;
elem_type SafeElementAt(index_type aIndex)
{
return static_cast<Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
// XXX: Probably should return const_elem_type, but callsites must be fixed.
elem_type SafeElementAt(index_type aIndex) const
{
return static_cast<const Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
};
template<class T> class nsCOMPtr;
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived>
: public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper<RefPtr<E>, Derived>
: public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};
namespace mozilla {
template<class T> class OwningNonNull;
} // namespace mozilla
template<class E, class Derived>
struct nsTArray_SafeElementAtHelper<mozilla::OwningNonNull<E>, Derived>
{
typedef E* elem_type;
typedef const E* const_elem_type;
typedef size_t index_type;
elem_type SafeElementAt(index_type aIndex)
{
if (aIndex < static_cast<Derived*>(this)->Length()) {
return static_cast<Derived*>(this)->ElementAt(aIndex);
}
return nullptr;
}
// XXX: Probably should return const_elem_type, but callsites must be fixed.
elem_type SafeElementAt(index_type aIndex) const
{
if (aIndex < static_cast<const Derived*>(this)->Length()) {
return static_cast<const Derived*>(this)->ElementAt(aIndex);
}
return nullptr;
}
};
// Servo bindings.
extern "C" void Gecko_EnsureTArrayCapacity(void* aArray,
size_t aCapacity,
size_t aElementSize);
extern "C" void Gecko_ClearPODTArray(void* aArray,
size_t aElementSize,
size_t aElementAlign);
MOZ_NORETURN MOZ_COLD void
InvalidArrayIndex_CRASH(size_t aIndex, size_t aLength);
//
// This class serves as a base class for nsTArray. It shouldn't be used
// directly. It holds common implementation code that does not depend on the
// element type of the nsTArray.
//
template<class Alloc, class Copy>
class nsTArray_base
{
// Allow swapping elements with |nsTArray_base|s created using a
// different allocator. This is kosher because all allocators use
// the same free().
template<class Allocator, class Copier>
friend class nsTArray_base;
friend void Gecko_EnsureTArrayCapacity(void* aArray, size_t aCapacity,
size_t aElemSize);
friend void Gecko_ClearPODTArray(void* aTArray, size_t aElementSize,
size_t aElementAlign);
protected:
typedef nsTArrayHeader Header;
public:
typedef size_t size_type;
typedef size_t index_type;
// @return The number of elements in the array.
size_type Length() const { return mHdr->mLength; }
// @return True if the array is empty or false otherwise.
bool IsEmpty() const { return Length() == 0; }
// @return The number of elements that can fit in the array without forcing
// the array to be re-allocated. The length of an array is always less
// than or equal to its capacity.
size_type Capacity() const { return mHdr->mCapacity; }
#ifdef DEBUG
void* DebugGetHeader() const { return mHdr; }
#endif
protected:
nsTArray_base();
~nsTArray_base();
// Resize the storage if necessary to achieve the requested capacity.
// @param aCapacity The requested number of array elements.
// @param aElemSize The size of an array element.
// @return False if insufficient memory is available; true otherwise.
template<typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy EnsureCapacity(size_type aCapacity,
size_type aElemSize);
// Extend the storage to accommodate aCount extra elements.
// @param aLength The current size of the array.
// @param aCount The number of elements to add.
// @param aElemSize The size of an array element.
// @return False if insufficient memory is available or the new length
// would overflow; true otherwise.
template<typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy ExtendCapacity(size_type aLength,
size_type aCount,
size_type aElemSize);
// Tries to resize the storage to the minimum required amount. If this fails,
// the array is left as-is.
// @param aElemSize The size of an array element.
// @param aElemAlign The alignment in bytes of an array element.
void ShrinkCapacity(size_type aElemSize, size_t aElemAlign);
// This method may be called to resize a "gap" in the array by shifting
// elements around. It updates mLength appropriately. If the resulting
// array has zero elements, then the array's memory is free'd.
// @param aStart The starting index of the gap.
// @param aOldLen The current length of the gap.
// @param aNewLen The desired length of the gap.
// @param aElemSize The size of an array element.
// @param aElemAlign The alignment in bytes of an array element.
template<typename ActualAlloc>
void ShiftData(index_type aStart, size_type aOldLen, size_type aNewLen,
size_type aElemSize, size_t aElemAlign);
// This method increments the length member of the array's header.
// Note that mHdr may actually be sEmptyHdr in the case where a
// zero-length array is inserted into our array. But then aNum should
// always be 0.
void IncrementLength(size_t aNum)
{
if (mHdr == EmptyHdr()) {
if (MOZ_UNLIKELY(aNum != 0)) {
// Writing a non-zero length to the empty header would be extremely bad.
MOZ_CRASH();
}
} else {
mHdr->mLength += aNum;
}
}
// This method inserts blank slots into the array.
// @param aIndex the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param aCount the number of slots to insert
// @param aElementSize the size of an array element.
// @param aElemAlign the alignment in bytes of an array element.
template<typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy
InsertSlotsAt(index_type aIndex, size_type aCount,
size_type aElementSize, size_t aElemAlign);
template<typename ActualAlloc, class Allocator>
typename ActualAlloc::ResultTypeProxy
SwapArrayElements(nsTArray_base<Allocator, Copy>& aOther,
size_type aElemSize,
size_t aElemAlign);
// This is an RAII class used in SwapArrayElements.
class IsAutoArrayRestorer
{
public:
IsAutoArrayRestorer(nsTArray_base<Alloc, Copy>& aArray, size_t aElemAlign);
~IsAutoArrayRestorer();
private:
nsTArray_base<Alloc, Copy>& mArray;
size_t mElemAlign;
bool mIsAuto;
};
// Helper function for SwapArrayElements. Ensures that if the array
// is an AutoTArray that it doesn't use the built-in buffer.
template<typename ActualAlloc>
bool EnsureNotUsingAutoArrayBuffer(size_type aElemSize);
// Returns true if this nsTArray is an AutoTArray with a built-in buffer.
bool IsAutoArray() const { return mHdr->mIsAutoArray; }
// Returns a Header for the built-in buffer of this AutoTArray.
Header* GetAutoArrayBuffer(size_t aElemAlign)
{
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(aElemAlign);
}
const Header* GetAutoArrayBuffer(size_t aElemAlign) const
{
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(aElemAlign);
}
// Returns a Header for the built-in buffer of this AutoTArray, but doesn't
// assert that we are an AutoTArray.
Header* GetAutoArrayBufferUnsafe(size_t aElemAlign)
{
return const_cast<Header*>(static_cast<const nsTArray_base<Alloc, Copy>*>(
this)->GetAutoArrayBufferUnsafe(aElemAlign));
}
const Header* GetAutoArrayBufferUnsafe(size_t aElemAlign) const;
// Returns true if this is an AutoTArray and it currently uses the
// built-in buffer to store its elements.
bool UsesAutoArrayBuffer() const;
// The array's elements (prefixed with a Header). This pointer is never
// null. If the array is empty, then this will point to sEmptyHdr.
Header* mHdr;
Header* Hdr() const { return mHdr; }
Header** PtrToHdr() { return &mHdr; }
static Header* EmptyHdr() { return &Header::sEmptyHdr; }
};
//
// This class defines convenience functions for element specific operations.
// Specialize this template if necessary.
//
template<class E>
class nsTArrayElementTraits
{
public:
// Invoke the default constructor in place.
static inline void Construct(E* aE)
{
// Do NOT call "E()"! That triggers C++ "default initialization"
// which zeroes out POD ("plain old data") types such as regular
// ints. We don't want that because it can be a performance issue
// and people don't expect it; nsTArray should work like a regular
// C/C++ array in this respect.
new (static_cast<void*>(aE)) E;
}
// Invoke the copy-constructor in place.
template<class A>
static inline void Construct(E* aE, A&& aArg)
{
typedef typename mozilla::RemoveCV<E>::Type E_NoCV;
typedef typename mozilla::RemoveCV<A>::Type A_NoCV;
static_assert(!mozilla::IsSame<E_NoCV*, A_NoCV>::value,
"For safety, we disallow constructing nsTArray<E> elements "
"from E* pointers. See bug 960591.");
new (static_cast<void*>(aE)) E(mozilla::Forward<A>(aArg));
}
// Invoke the destructor in place.
static inline void Destruct(E* aE) { aE->~E(); }
};
// The default comparator used by nsTArray
template<class A, class B>
class nsDefaultComparator
{
public:
bool Equals(const A& aA, const B& aB) const { return aA == aB; }
bool LessThan(const A& aA, const B& aB) const { return aA < aB; }
};
template<bool IsPod, bool IsSameType>
struct AssignRangeAlgorithm
{
template<class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* aElements, IndexType aStart,
SizeType aCount, const Item* aValues)
{
ElemType* iter = aElements + aStart;
ElemType* end = iter + aCount;
for (; iter != end; ++iter, ++aValues) {
nsTArrayElementTraits<ElemType>::Construct(iter, *aValues);
}
}
};
template<>
struct AssignRangeAlgorithm<true, true>
{
template<class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* aElements, IndexType aStart,
SizeType aCount, const Item* aValues)
{
memcpy(aElements + aStart, aValues, aCount * sizeof(ElemType));
}
};
//
// Normally elements are copied with memcpy and memmove, but for some element
// types that is problematic. The nsTArray_CopyChooser template class can be
// specialized to ensure that copying calls constructors and destructors
// instead, as is done below for JS::Heap<E> elements.
//
//
// A class that defines how to copy elements using memcpy/memmove.
//
struct nsTArray_CopyWithMemutils
{
const static bool allowRealloc = true;
static void MoveNonOverlappingRegionWithHeader(void* aDest, const void* aSrc,
size_t aCount, size_t aElemSize)
{
memcpy(aDest, aSrc, sizeof(nsTArrayHeader) + aCount * aElemSize);
}
static void MoveOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
memmove(aDest, aSrc, aCount * aElemSize);
}
static void MoveNonOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
memcpy(aDest, aSrc, aCount * aElemSize);
}
};
//
// A template class that defines how to copy elements calling their constructors
// and destructors appropriately.
//
template<class ElemType>
struct nsTArray_CopyWithConstructors
{
typedef nsTArrayElementTraits<ElemType> traits;
const static bool allowRealloc = false;
static void MoveNonOverlappingRegionWithHeader(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
nsTArrayHeader* destHeader = static_cast<nsTArrayHeader*>(aDest);
nsTArrayHeader* srcHeader = static_cast<nsTArrayHeader*>(aSrc);
*destHeader = *srcHeader;
MoveNonOverlappingRegion(static_cast<uint8_t*>(aDest) + sizeof(nsTArrayHeader),
static_cast<uint8_t*>(aSrc) + sizeof(nsTArrayHeader),
aCount, aElemSize);
}
// These functions are defined by analogy with memmove and memcpy.
// What they actually do is slightly different: MoveOverlappingRegion
// checks to see which direction the movement needs to take place,
// whether from back-to-front of the range to be moved or from
// front-to-back. MoveNonOverlappingRegion assumes that moving
// front-to-back is always valid. So they're really more like
// std::move{_backward,} in that respect. We keep these names because
// we think they read slightly better, and MoveNonOverlappingRegion is
// only ever called on overlapping regions from MoveOverlappingRegion.
static void MoveOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
ElemType* destElem = static_cast<ElemType*>(aDest);
ElemType* srcElem = static_cast<ElemType*>(aSrc);
ElemType* destElemEnd = destElem + aCount;
ElemType* srcElemEnd = srcElem + aCount;
if (destElem == srcElem) {
return; // In practice, we don't do this.
}
// Figure out whether to copy back-to-front or front-to-back.
if (srcElemEnd > destElem && srcElemEnd < destElemEnd) {
while (destElemEnd != destElem) {
--destElemEnd;
--srcElemEnd;
traits::Construct(destElemEnd, mozilla::Move(*srcElemEnd));
traits::Destruct(srcElemEnd);
}
} else {
MoveNonOverlappingRegion(aDest, aSrc, aCount, aElemSize);
}
}
static void MoveNonOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize)
{
ElemType* destElem = static_cast<ElemType*>(aDest);
ElemType* srcElem = static_cast<ElemType*>(aSrc);
ElemType* destElemEnd = destElem + aCount;
#ifdef DEBUG
ElemType* srcElemEnd = srcElem + aCount;
MOZ_ASSERT(srcElemEnd <= destElem || srcElemEnd > destElemEnd);
#endif
while (destElem != destElemEnd) {
traits::Construct(destElem, mozilla::Move(*srcElem));
traits::Destruct(srcElem);
++destElem;
++srcElem;
}
}
};
//
// The default behaviour is to use memcpy/memmove for everything.
//
template<class E>
struct MOZ_NEEDS_MEMMOVABLE_TYPE nsTArray_CopyChooser
{
using Type = nsTArray_CopyWithMemutils;
};
//
// Some classes require constructors/destructors to be called, so they are
// specialized here.
//
#define DECLARE_USE_COPY_CONSTRUCTORS(T) \
template<> \
struct nsTArray_CopyChooser<T> \
{ \
using Type = nsTArray_CopyWithConstructors<T>; \
};
#define DECLARE_USE_COPY_CONSTRUCTORS_FOR_TEMPLATE(T) \
template<typename S> \
struct nsTArray_CopyChooser<T<S>> \
{ \
using Type = nsTArray_CopyWithConstructors<T<S>>; \
};
DECLARE_USE_COPY_CONSTRUCTORS_FOR_TEMPLATE(JS::Heap)
DECLARE_USE_COPY_CONSTRUCTORS(nsRegion)
DECLARE_USE_COPY_CONSTRUCTORS(nsIntRegion)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::layers::TileClient)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::SerializedStructuredCloneBuffer)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::ipc::StructuredCloneData)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::ClonedMessageData)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::indexedDB::StructuredCloneReadInfo);
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::indexedDB::ObjectStoreCursorResponse)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::indexedDB::SerializedStructuredCloneReadInfo);
DECLARE_USE_COPY_CONSTRUCTORS(JSStructuredCloneData)
DECLARE_USE_COPY_CONSTRUCTORS(mozilla::dom::MessagePortMessage)
DECLARE_USE_COPY_CONSTRUCTORS(JS::ObjectPtr)
//
// Base class for nsTArray_Impl that is templated on element type and derived
// nsTArray_Impl class, to allow extra conversions to be added for specific
// types.
//
template<class E, class Derived>
struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper<E, Derived>
{
};
//
// Specialization of nsTArray_TypedBase for arrays containing JS::Heap<E>
// elements.
//
// These conversions are safe because JS::Heap<E> and E share the same
// representation, and since the result of the conversions are const references
// we won't miss any barriers.
//
// The static_cast is necessary to obtain the correct address for the derived
// class since we are a base class used in multiple inheritance.
//
template<class E, class Derived>
struct nsTArray_TypedBase<JS::Heap<E>, Derived>
: public nsTArray_SafeElementAtHelper<JS::Heap<E>, Derived>
{
operator const nsTArray<E>&()
{
static_assert(sizeof(E) == sizeof(JS::Heap<E>),
"JS::Heap<E> must be binary compatible with E.");
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<nsTArray<E> *>(self);
}
operator const FallibleTArray<E>&()
{
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<FallibleTArray<E> *>(self);
}
};
namespace detail {
template<class Item, class Comparator>
struct ItemComparatorEq
{
const Item& mItem;
const Comparator& mComp;
ItemComparatorEq(const Item& aItem, const Comparator& aComp)
: mItem(aItem)
, mComp(aComp)
{}
template<class T>
int operator()(const T& aElement) const {
if (mComp.Equals(aElement, mItem)) {
return 0;
}
return mComp.LessThan(aElement, mItem) ? 1 : -1;
}
};
template<class Item, class Comparator>
struct ItemComparatorFirstElementGT
{
const Item& mItem;
const Comparator& mComp;
ItemComparatorFirstElementGT(const Item& aItem, const Comparator& aComp)
: mItem(aItem)
, mComp(aComp)
{}
template<class T>
int operator()(const T& aElement) const {
if (mComp.LessThan(aElement, mItem) ||
mComp.Equals(aElement, mItem)) {
return 1;
} else {
return -1;
}
}
};
} // namespace detail
//
// nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray,
// AutoTArray.
//
// The only situation in which you might need to use nsTArray_Impl in your code
// is if you're writing code which mutates a TArray which may or may not be
// infallible.
//
// Code which merely reads from a TArray which may or may not be infallible can
// simply cast the TArray to |const nsTArray&|; both fallible and infallible
// TArrays can be cast to |const nsTArray&|.
//
template<class E, class Alloc>
class nsTArray_Impl
: public nsTArray_base<Alloc, typename nsTArray_CopyChooser<E>::Type>
, public nsTArray_TypedBase<E, nsTArray_Impl<E, Alloc>>
{
private:
typedef nsTArrayFallibleAllocator FallibleAlloc;
typedef nsTArrayInfallibleAllocator InfallibleAlloc;
public:
typedef typename nsTArray_CopyChooser<E>::Type copy_type;
typedef nsTArray_base<Alloc, copy_type> base_type;
typedef typename base_type::size_type size_type;
typedef typename base_type::index_type index_type;
typedef E elem_type;
typedef nsTArray_Impl<E, Alloc> self_type;
typedef nsTArrayElementTraits<E> elem_traits;
typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type;
typedef elem_type* iterator;
typedef const elem_type* const_iterator;
typedef mozilla::ReverseIterator<elem_type*> reverse_iterator;
typedef mozilla::ReverseIterator<const elem_type*> const_reverse_iterator;
using safeelementat_helper_type::SafeElementAt;
using base_type::EmptyHdr;
// A special value that is used to indicate an invalid or unknown index
// into the array.
static const index_type NoIndex = index_type(-1);
using base_type::Length;
//
// Finalization method
//
~nsTArray_Impl() { Clear(); }
//
// Initialization methods
//
nsTArray_Impl() {}
// Initialize this array and pre-allocate some number of elements.
explicit nsTArray_Impl(size_type aCapacity) { SetCapacity(aCapacity); }
// Initialize this array with an r-value.
// Allow different types of allocators, since the allocator doesn't matter.
template<typename Allocator>
explicit nsTArray_Impl(nsTArray_Impl<E, Allocator>&& aOther)
{
SwapElements(aOther);
}
// The array's copy-constructor performs a 'deep' copy of the given array.
// @param aOther The array object to copy.
//
// It's very important that we declare this method as taking |const
// self_type&| as opposed to taking |const nsTArray_Impl<E, OtherAlloc>| for
// an arbitrary OtherAlloc.
//
// If we don't declare a constructor taking |const self_type&|, C++ generates
// a copy-constructor for this class which merely copies the object's
// members, which is obviously wrong.
//
// You can pass an nsTArray_Impl<E, OtherAlloc> to this method because
// nsTArray_Impl<E, X> can be cast to const nsTArray_Impl<E, Y>&. So the
// effect on the API is the same as if we'd declared this method as taking
// |const nsTArray_Impl<E, OtherAlloc>&|.
explicit nsTArray_Impl(const self_type& aOther) { AppendElements(aOther); }
explicit nsTArray_Impl(std::initializer_list<E> aIL) { AppendElements(aIL.begin(), aIL.size()); }
// Allow converting to a const array with a different kind of allocator,
// Since the allocator doesn't matter for const arrays
template<typename Allocator>
operator const nsTArray_Impl<E, Allocator>&() const
{
return *reinterpret_cast<const nsTArray_Impl<E, Allocator>*>(this);
}
// And we have to do this for our subclasses too
operator const nsTArray<E>&() const
{
return *reinterpret_cast<const InfallibleTArray<E>*>(this);
}
operator const FallibleTArray<E>&() const
{
return *reinterpret_cast<const FallibleTArray<E>*>(this);
}
// The array's assignment operator performs a 'deep' copy of the given
// array. It is optimized to reuse existing storage if possible.
// @param aOther The array object to copy.
self_type& operator=(const self_type& aOther)
{
if (this != &aOther) {
ReplaceElementsAt(0, Length(), aOther.Elements(), aOther.Length());
}
return *this;
}
// The array's move assignment operator steals the underlying data from
// the other array.
// @param other The array object to move from.
self_type& operator=(self_type&& aOther)
{
if (this != &aOther) {
Clear();
SwapElements(aOther);
}
return *this;
}
// Return true if this array has the same length and the same
// elements as |aOther|.
template<typename Allocator>
bool operator==(const nsTArray_Impl<E, Allocator>& aOther) const
{
size_type len = Length();
if (len != aOther.Length()) {
return false;
}
// XXX std::equal would be as fast or faster here
for (index_type i = 0; i < len; ++i) {
if (!(operator[](i) == aOther[i])) {
return false;
}
}
return true;
}
// Return true if this array does not have the same length and the same
// elements as |aOther|.
bool operator!=(const self_type& aOther) const { return !operator==(aOther); }
template<typename Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther)
{
ReplaceElementsAt(0, Length(), aOther.Elements(), aOther.Length());
return *this;
}
template<typename Allocator>
self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther)
{
Clear();
SwapElements(aOther);
return *this;
}
// @return The amount of memory used by this nsTArray_Impl, excluding
// sizeof(*this). If you want to measure anything hanging off the array, you
// must iterate over the elements and measure them individually; hence the
// "Shallow" prefix.
size_t ShallowSizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr()) {
return 0;
}
return aMallocSizeOf(this->Hdr());
}
// @return The amount of memory used by this nsTArray_Impl, including
// sizeof(*this). If you want to measure anything hanging off the array, you
// must iterate over the elements and measure them individually; hence the
// "Shallow" prefix.
size_t ShallowSizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
}
//
// Accessor methods
//
// This method provides direct access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
elem_type* Elements() { return reinterpret_cast<elem_type*>(Hdr() + 1); }
// This method provides direct, readonly access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
const elem_type* Elements() const
{
return reinterpret_cast<const elem_type*>(Hdr() + 1);
}
// This method provides direct access to an element of the array. The given
// index must be within the array bounds.
// @param aIndex The index of an element in the array.
// @return A reference to the i'th element of the array.
elem_type& ElementAt(index_type aIndex)
{
if (MOZ_UNLIKELY(aIndex >= Length())) {
InvalidArrayIndex_CRASH(aIndex, Length());
}
return Elements()[aIndex];
}
// This method provides direct, readonly access to an element of the array
// The given index must be within the array bounds.
// @param aIndex The index of an element in the array.
// @return A const reference to the i'th element of the array.
const elem_type& ElementAt(index_type aIndex) const
{
if (MOZ_UNLIKELY(aIndex >= Length())) {
InvalidArrayIndex_CRASH(aIndex, Length());
}
return Elements()[aIndex];
}
// This method provides direct access to an element of the array in a bounds
// safe manner. If the requested index is out of bounds the provided default
// value is returned.
// @param aIndex The index of an element in the array.
// @param aDef The value to return if the index is out of bounds.
elem_type& SafeElementAt(index_type aIndex, elem_type& aDef)
{
return aIndex < Length() ? Elements()[aIndex] : aDef;
}
// This method provides direct access to an element of the array in a bounds
// safe manner. If the requested index is out of bounds the provided default
// value is returned.
// @param aIndex The index of an element in the array.
// @param aDef The value to return if the index is out of bounds.
const elem_type& SafeElementAt(index_type aIndex, const elem_type& aDef) const
{
return aIndex < Length() ? Elements()[aIndex] : aDef;
}
// Shorthand for ElementAt(aIndex)
elem_type& operator[](index_type aIndex) { return ElementAt(aIndex); }
// Shorthand for ElementAt(aIndex)
const elem_type& operator[](index_type aIndex) const { return ElementAt(aIndex); }
// Shorthand for ElementAt(length - 1)
elem_type& LastElement() { return ElementAt(Length() - 1); }
// Shorthand for ElementAt(length - 1)
const elem_type& LastElement() const { return ElementAt(Length() - 1); }
// Shorthand for SafeElementAt(length - 1, def)
elem_type& SafeLastElement(elem_type& aDef)
{
return SafeElementAt(Length() - 1, aDef);
}
// Shorthand for SafeElementAt(length - 1, def)
const elem_type& SafeLastElement(const elem_type& aDef) const
{
return SafeElementAt(Length() - 1, aDef);
}
// Methods for range-based for loops.
iterator begin() { return Elements(); }
const_iterator begin() const { return Elements(); }
const_iterator cbegin() const { return begin(); }
iterator end() { return Elements() + Length(); }
const_iterator end() const { return Elements() + Length(); }
const_iterator cend() const { return end(); }
// Methods for reverse iterating.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator crbegin() const { return rbegin(); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
const_reverse_iterator crend() const { return rend(); }
// Span integration
operator mozilla::Span<elem_type>()
{
return mozilla::Span<elem_type>(Elements(), Length());
}
operator mozilla::Span<const elem_type>() const
{
return mozilla::Span<const elem_type>(Elements(), Length());
}
//
// Search methods
//
// This method searches for the first element in this array that is equal
// to the given element.
// @param aItem The item to search for.
// @param aComp The Comparator used to determine element equality.
// @return true if the element was found.
template<class Item, class Comparator>
bool Contains(const Item& aItem, const Comparator& aComp) const
{
return IndexOf(aItem, 0, aComp) != NoIndex;
}
// This method searches for the first element in this array that is equal
// to the given element. This method assumes that 'operator==' is defined
// for elem_type.
// @param aItem The item to search for.
// @return true if the element was found.
template<class Item>
bool Contains(const Item& aItem) const
{
return IndexOf(aItem) != NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element.
// @param aItem The item to search for.
// @param aStart The index to start from.
// @param aComp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type IndexOf(const Item& aItem, index_type aStart,
const Comparator& aComp) const
{
const elem_type* iter = Elements() + aStart;
const elem_type* iend = Elements() + Length();
for (; iter != iend; ++iter) {
if (aComp.Equals(*iter, aItem)) {
return index_type(iter - Elements());
}
}
return NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for elem_type.
// @param aItem The item to search for.
// @param aStart The index to start from.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type IndexOf(const Item& aItem, index_type aStart = 0) const
{
return IndexOf(aItem, aStart, nsDefaultComparator<elem_type, Item>());
}
// This method searches for the offset of the last element in this
// array that is equal to the given element.
// @param aItem The item to search for.
// @param aStart The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @param aComp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type LastIndexOf(const Item& aItem, index_type aStart,
const Comparator& aComp) const
{
size_type endOffset = aStart >= Length() ? Length() : aStart + 1;
const elem_type* iend = Elements() - 1;
const elem_type* iter = iend + endOffset;
for (; iter != iend; --iter) {
if (aComp.Equals(*iter, aItem)) {
return index_type(iter - Elements());
}
}
return NoIndex;
}
// This method searches for the offset of the last element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for elem_type.
// @param aItem The item to search for.
// @param aStart The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type LastIndexOf(const Item& aItem,
index_type aStart = NoIndex) const
{
return LastIndexOf(aItem, aStart, nsDefaultComparator<elem_type, Item>());
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// If there is more than one equivalent element, there is no guarantee
// on which one will be returned.
// @param aItem The item to search for.
// @param aComp The Comparator used.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type BinaryIndexOf(const Item& aItem, const Comparator& aComp) const
{
using mozilla::BinarySearchIf;
typedef ::detail::ItemComparatorEq<Item, Comparator> Cmp;
size_t index;
bool found = BinarySearchIf(*this, 0, Length(), Cmp(aItem, aComp), &index);
return found ? index : NoIndex;
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// This method assumes that 'operator==' and 'operator<' are defined.
// @param aItem The item to search for.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type BinaryIndexOf(const Item& aItem) const
{
return BinaryIndexOf(aItem, nsDefaultComparator<elem_type, Item>());
}
//
// Mutation methods
//
template<class Allocator, typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType Assign(
const nsTArray_Impl<E, Allocator>& aOther)
{
return ActualAlloc::ConvertBoolToResultType(
!!ReplaceElementsAt<E, ActualAlloc>(0, Length(),
aOther.Elements(), aOther.Length()));
}
template<class Allocator>
MOZ_MUST_USE
bool Assign(const nsTArray_Impl<E, Allocator>& aOther,
const mozilla::fallible_t&)
{
return Assign<Allocator, FallibleAlloc>(aOther);
}
template<class Allocator>
void Assign(nsTArray_Impl<E, Allocator>&& aOther)
{
Clear();
SwapElements(aOther);
}
// This method call the destructor on each element of the array, empties it,
// but does not shrink the array's capacity.
// See also SetLengthAndRetainStorage.
// Make sure to call Compact() if needed to avoid keeping a huge array
// around.
void ClearAndRetainStorage()
{
if (base_type::mHdr == EmptyHdr()) {
return;
}
DestructRange(0, Length());
base_type::mHdr->mLength = 0;
}
// This method modifies the length of the array, but unlike SetLength
// it doesn't deallocate/reallocate the current internal storage.
// The new length MUST be shorter than or equal to the current capacity.
// If the new length is larger than the existing length of the array,
// then new elements will be constructed using elem_type's default
// constructor. If shorter, elements will be destructed and removed.
// See also ClearAndRetainStorage.
// @param aNewLen The desired length of this array.
void SetLengthAndRetainStorage(size_type aNewLen)
{
MOZ_ASSERT(aNewLen <= base_type::Capacity());
size_type oldLen = Length();
if (aNewLen > oldLen) {
InsertElementsAt(oldLen, aNewLen - oldLen);
return;
}
if (aNewLen < oldLen) {
DestructRange(aNewLen, oldLen - aNewLen);
base_type::mHdr->mLength = aNewLen;
}
}
// This method replaces a range of elements in this array.
// @param aStart The starting index of the elements to replace.
// @param aCount The number of elements to replace. This may be zero to
// insert elements without removing any existing elements.
// @param aArray The values to copy into this array. Must be non-null,
// and these elements must not already exist in the array
// being modified.
// @param aArrayLen The number of values to copy into this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const Item* aArray, size_type aArrayLen);
public:
template<class Item>
MOZ_MUST_USE
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const Item* aArray, size_type aArrayLen,
const mozilla::fallible_t&)
{
return ReplaceElementsAt<Item, FallibleAlloc>(aStart, aCount,
aArray, aArrayLen);
}
// A variation on the ReplaceElementsAt method defined above.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const nsTArray<Item>& aArray)
{
return ReplaceElementsAt<Item, ActualAlloc>(
aStart, aCount, aArray.Elements(), aArray.Length());
}
template<class Item, typename ActualAlloc = Alloc>
elem_type* ReplaceElementsAt(index_type aStart,
size_type aCount,
mozilla::Span<const Item> aSpan)
{
return ReplaceElementsAt<Item, ActualAlloc>(
aStart, aCount, aSpan.Elements(), aSpan.Length());
}
public:
template<class Item>
MOZ_MUST_USE
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const nsTArray<Item>& aArray,
const mozilla::fallible_t&)
{
return ReplaceElementsAt<Item, FallibleAlloc>(aStart, aCount, aArray);
}
template<class Item>
MOZ_MUST_USE elem_type* ReplaceElementsAt(index_type aStart,
size_type aCount,
mozilla::Span<const Item> aSpan,
const mozilla::fallible_t&)
{
return ReplaceElementsAt<Item, FallibleAlloc>(aStart, aCount, aSpan);
}
// A variation on the ReplaceElementsAt method defined above.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const Item& aItem)
{
return ReplaceElementsAt<Item, ActualAlloc>(aStart, aCount, &aItem, 1);
}
public:
template<class Item>
MOZ_MUST_USE
elem_type* ReplaceElementsAt(index_type aStart, size_type aCount,
const Item& aItem, const mozilla::fallible_t&)
{
return ReplaceElementsAt<Item, FallibleAlloc>(aStart, aCount, aItem);
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type* ReplaceElementAt(index_type aIndex, const Item& aItem)
{
return ReplaceElementsAt(aIndex, 1, &aItem, 1);
}
// A variation on the ReplaceElementsAt method defined above.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* InsertElementsAt(index_type aIndex, const Item* aArray,
size_type aArrayLen)
{
return ReplaceElementsAt<Item, ActualAlloc>(aIndex, 0, aArray, aArrayLen);
}
public:
template<class Item>
MOZ_MUST_USE
elem_type* InsertElementsAt(index_type aIndex, const Item* aArray,
size_type aArrayLen, const mozilla::fallible_t&)
{
return InsertElementsAt<Item, FallibleAlloc>(aIndex, aArray, aArrayLen);
}
// A variation on the ReplaceElementsAt method defined above.
protected:
template<class Item, class Allocator, typename ActualAlloc = Alloc>
elem_type* InsertElementsAt(index_type aIndex,
const nsTArray_Impl<Item, Allocator>& aArray)
{
return ReplaceElementsAt<Item, ActualAlloc>(
aIndex, 0, aArray.Elements(), aArray.Length());
}
template<class Item, typename ActualAlloc = Alloc>
elem_type* InsertElementsAt(index_type aIndex,
mozilla::Span<const Item> aSpan)
{
return ReplaceElementsAt<Item, ActualAlloc>(
aIndex, 0, aSpan.Elements(), aSpan.Length());
}
public:
template<class Item, class Allocator>
MOZ_MUST_USE
elem_type* InsertElementsAt(index_type aIndex,
const nsTArray_Impl<Item, Allocator>& aArray,
const mozilla::fallible_t&)
{
return InsertElementsAt<Item, Allocator, FallibleAlloc>(aIndex, aArray);
}
// Insert a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly inserted element, or null on OOM.
protected:
template<typename ActualAlloc = Alloc>
elem_type* InsertElementAt(index_type aIndex);
public:
MOZ_MUST_USE
elem_type* InsertElementAt(index_type aIndex, const mozilla::fallible_t&)
{
return InsertElementAt<FallibleAlloc>(aIndex);
}
template<class Item>
MOZ_MUST_USE elem_type* InsertElementsAt(index_type aIndex,
mozilla::Span<const Item> aSpan,
const mozilla::fallible_t&)
{
return InsertElementsAt<Item, FallibleAlloc>(aIndex, aSpan);
}
// Insert a new element, move constructing if possible.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* InsertElementAt(index_type aIndex, Item&& aItem);
public:
template<class Item>
MOZ_MUST_USE
elem_type* InsertElementAt(index_type aIndex, Item&& aItem,
const mozilla::fallible_t&)
{
return InsertElementAt<Item, FallibleAlloc>(aIndex,
mozilla::Forward<Item>(aItem));
}
// This method searches for the smallest index of an element that is strictly
// greater than |aItem|. If |aItem| is inserted at this index, the array will
// remain sorted and |aItem| would come after all elements that are equal to
// it. If |aItem| is greater than or equal to all elements in the array, the
// array length is returned.
//
// Note that consumers who want to know whether there are existing items equal
// to |aItem| in the array can just check that the return value here is > 0
// and indexing into the previous slot gives something equal to |aItem|.
//
//
// @param aItem The item to search for.
// @param aComp The Comparator used.
// @return The index of greatest element <= to |aItem|
// @precondition The array is sorted
template<class Item, class Comparator>
index_type IndexOfFirstElementGt(const Item& aItem,
const Comparator& aComp) const
{
using mozilla::BinarySearchIf;
typedef ::detail::ItemComparatorFirstElementGT<Item, Comparator> Cmp;
size_t index;
BinarySearchIf(*this, 0, Length(), Cmp(aItem, aComp), &index);
return index;
}
// A variation on the IndexOfFirstElementGt method defined above.
template<class Item>
index_type
IndexOfFirstElementGt(const Item& aItem) const
{
return IndexOfFirstElementGt(aItem, nsDefaultComparator<elem_type, Item>());
}
// Inserts |aItem| at such an index to guarantee that if the array
// was previously sorted, it will remain sorted after this
// insertion.
protected:
template<class Item, class Comparator, typename ActualAlloc = Alloc>
elem_type* InsertElementSorted(Item&& aItem, const Comparator& aComp)
{
index_type index = IndexOfFirstElementGt<Item, Comparator>(aItem, aComp);
return InsertElementAt<Item, ActualAlloc>(
index, mozilla::Forward<Item>(aItem));
}
public:
template<class Item, class Comparator>
MOZ_MUST_USE
elem_type* InsertElementSorted(Item&& aItem, const Comparator& aComp,
const mozilla::fallible_t&)
{
return InsertElementSorted<Item, Comparator, FallibleAlloc>(
mozilla::Forward<Item>(aItem), aComp);
}
// A variation on the InsertElementSorted method defined above.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* InsertElementSorted(Item&& aItem)
{
nsDefaultComparator<elem_type, Item> comp;
return InsertElementSorted<Item, decltype(comp), ActualAlloc>(
mozilla::Forward<Item>(aItem), comp);
}
public:
template<class Item>
MOZ_MUST_USE
elem_type* InsertElementSorted(Item&& aItem, const mozilla::fallible_t&)
{
return InsertElementSorted<Item, FallibleAlloc>(
mozilla::Forward<Item>(aItem));
}
// This method appends elements to the end of this array.
// @param aArray The elements to append to this array.
// @param aArrayLen The number of elements to append to this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* AppendElements(const Item* aArray, size_type aArrayLen);
template<class Item, typename ActualAlloc = Alloc>
elem_type* AppendElements(mozilla::Span<const Item> aSpan)
{
return AppendElements<Item, FallibleAlloc>(aSpan.Elements(),
aSpan.Length());
}
public:
template<class Item>
/* MOZ_MUST_USE */
elem_type* AppendElements(const Item* aArray, size_type aArrayLen,
const mozilla::fallible_t&)
{
return AppendElements<Item, FallibleAlloc>(aArray, aArrayLen);
}
template<class Item>
/* MOZ_MUST_USE */
elem_type* AppendElements(mozilla::Span<const Item> aSpan,
const mozilla::fallible_t&)
{
return AppendElements<Item, FallibleAlloc>(aSpan.Elements(),
aSpan.Length());
}
// A variation on the AppendElements method defined above.
protected:
template<class Item, class Allocator, typename ActualAlloc = Alloc>
elem_type* AppendElements(const nsTArray_Impl<Item, Allocator>& aArray)
{
return AppendElements<Item, ActualAlloc>(aArray.Elements(), aArray.Length());
}
public:
template<class Item, class Allocator>
/* MOZ_MUST_USE */
elem_type* AppendElements(const nsTArray_Impl<Item, Allocator>& aArray,
const mozilla::fallible_t&)
{
return AppendElements<Item, Allocator, FallibleAlloc>(aArray);
}
// Move all elements from another array to the end of this array.
// @return A pointer to the newly appended elements, or null on OOM.
protected:
template<class Item, class Allocator, typename ActualAlloc = Alloc>
elem_type* AppendElements(nsTArray_Impl<Item, Allocator>&& aArray);
public:
template<class Item, class Allocator, typename ActualAlloc = Alloc>
/* MOZ_MUST_USE */
elem_type* AppendElements(nsTArray_Impl<Item, Allocator>&& aArray,
const mozilla::fallible_t&)
{
return AppendElements<Item, Allocator>(mozilla::Move(aArray));
}
// Append a new element, move constructing if possible.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* AppendElement(Item&& aItem);
public:
template<class Item>
/* MOZ_MUST_USE */
elem_type* AppendElement(Item&& aItem,
const mozilla::fallible_t&)
{
return AppendElement<Item, FallibleAlloc>(mozilla::Forward<Item>(aItem));
}
// Append new elements without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended elements, or null on OOM.
protected:
template<typename ActualAlloc = Alloc>
elem_type* AppendElements(size_type aCount) {
if (!ActualAlloc::Successful(this->template ExtendCapacity<ActualAlloc>(
Length(), aCount, sizeof(elem_type)))) {
return nullptr;
}
elem_type* elems = Elements() + Length();
size_type i;
for (i = 0; i < aCount; ++i) {
elem_traits::Construct(elems + i);
}
this->IncrementLength(aCount);
return elems;
}
public:
/* MOZ_MUST_USE */
elem_type* AppendElements(size_type aCount,
const mozilla::fallible_t&)
{
return AppendElements<FallibleAlloc>(aCount);
}
// Append a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended element, or null on OOM.
protected:
template<typename ActualAlloc = Alloc>
elem_type* AppendElement()
{
return AppendElements<ActualAlloc>(1);
}
public:
/* MOZ_MUST_USE */
elem_type* AppendElement(const mozilla::fallible_t&)
{
return AppendElement<FallibleAlloc>();
}
// This method removes a range of elements from this array.
// @param aStart The starting index of the elements to remove.
// @param aCount The number of elements to remove.
void RemoveElementsAt(index_type aStart, size_type aCount);
// A variation on the RemoveElementsAt method defined above.
void RemoveElementAt(index_type aIndex) { RemoveElementsAt(aIndex, 1); }
// A variation on the RemoveElementsAt method defined above.
void Clear() { RemoveElementsAt(0, Length()); }
// This method removes elements based on the return value of the
// callback function aPredicate. If the function returns true for
// an element, the element is removed. aPredicate will be called
// for each element in order. It is not safe to access the array
// inside aPredicate.
template<typename Predicate>
void RemoveElementsBy(Predicate aPredicate);
// This helper function combines IndexOf with RemoveElementAt to "search
// and destroy" the first element that is equal to the given element.
// @param aItem The item to search for.
// @param aComp The Comparator used to determine element equality.
// @return true if the element was found
template<class Item, class Comparator>
bool RemoveElement(const Item& aItem, const Comparator& aComp)
{
index_type i = IndexOf(aItem, 0, aComp);
if (i == NoIndex) {
return false;
}
RemoveElementAt(i);
return true;
}
// A variation on the RemoveElement method defined above that assumes
// that 'operator==' is defined for elem_type.
template<class Item>
bool RemoveElement(const Item& aItem)
{
return RemoveElement(aItem, nsDefaultComparator<elem_type, Item>());
}
// This helper function combines IndexOfFirstElementGt with
// RemoveElementAt to "search and destroy" the last element that
// is equal to the given element.
// @param aItem The item to search for.
// @param aComp The Comparator used to determine element equality.
// @return true if the element was found
template<class Item, class Comparator>
bool RemoveElementSorted(const Item& aItem, const Comparator& aComp)
{
index_type index = IndexOfFirstElementGt(aItem, aComp);
if (index > 0 && aComp.Equals(ElementAt(index - 1), aItem)) {
RemoveElementAt(index - 1);
return true;
}
return false;
}
// A variation on the RemoveElementSorted method defined above.
template<class Item>
bool RemoveElementSorted(const Item& aItem)
{
return RemoveElementSorted(aItem, nsDefaultComparator<elem_type, Item>());
}
// This method causes the elements contained in this array and the given
// array to be swapped.
template<class Allocator>
typename Alloc::ResultType SwapElements(nsTArray_Impl<E, Allocator>& aOther)
{
return Alloc::Result(this->template SwapArrayElements<Alloc>(
aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type)));
}
//
// Allocation
//
// This method may increase the capacity of this array object by the
// specified amount. This method may be called in advance of several
// AppendElement operations to minimize heap re-allocations. This method
// will not reduce the number of elements in this array.
// @param aCapacity The desired capacity of this array.
// @return True if the operation succeeded; false if we ran out of memory
protected:
template<typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType SetCapacity(size_type aCapacity)
{
return ActualAlloc::Result(this->template EnsureCapacity<ActualAlloc>(
aCapacity, sizeof(elem_type)));
}
public:
MOZ_MUST_USE
bool SetCapacity(size_type aCapacity, const mozilla::fallible_t&)
{
return SetCapacity<FallibleAlloc>(aCapacity);
}
// This method modifies the length of the array. If the new length is
// larger than the existing length of the array, then new elements will be
// constructed using elem_type's default constructor. Otherwise, this call
// removes elements from the array (see also RemoveElementsAt).
// @param aNewLen The desired length of this array.
// @return True if the operation succeeded; false otherwise.
// See also TruncateLength if the new length is guaranteed to be smaller than
// the old.
protected:
template<typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType SetLength(size_type aNewLen)
{
size_type oldLen = Length();
if (aNewLen > oldLen) {
return ActualAlloc::ConvertBoolToResultType(
InsertElementsAt<ActualAlloc>(oldLen, aNewLen - oldLen) != nullptr);
}
TruncateLength(aNewLen);
return ActualAlloc::ConvertBoolToResultType(true);
}
public:
MOZ_MUST_USE
bool SetLength(size_type aNewLen, const mozilla::fallible_t&)
{
return SetLength<FallibleAlloc>(aNewLen);
}
// This method modifies the length of the array, but may only be
// called when the new length is shorter than the old. It can
// therefore be called when elem_type has no default constructor,
// unlike SetLength. It removes elements from the array (see also
// RemoveElementsAt).
// @param aNewLen The desired length of this array.
void TruncateLength(size_type aNewLen)
{
size_type oldLen = Length();
MOZ_ASSERT(aNewLen <= oldLen,
"caller should use SetLength instead");
RemoveElementsAt(aNewLen, oldLen - aNewLen);
}
// This method ensures that the array has length at least the given
// length. If the current length is shorter than the given length,
// then new elements will be constructed using elem_type's default
// constructor.
// @param aMinLen The desired minimum length of this array.
// @return True if the operation succeeded; false otherwise.
protected:
template<typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType EnsureLengthAtLeast(size_type aMinLen)
{
size_type oldLen = Length();
if (aMinLen > oldLen) {
return ActualAlloc::ConvertBoolToResultType(
!!InsertElementsAt<ActualAlloc>(oldLen, aMinLen - oldLen));
}
return ActualAlloc::ConvertBoolToResultType(true);
}
public:
MOZ_MUST_USE
bool EnsureLengthAtLeast(size_type aMinLen, const mozilla::fallible_t&)
{
return EnsureLengthAtLeast<FallibleAlloc>(aMinLen);
}
// This method inserts elements into the array, constructing
// them using elem_type's default constructor.
// @param aIndex the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param aCount the number of elements to insert
protected:
template<typename ActualAlloc = Alloc>
elem_type* InsertElementsAt(index_type aIndex, size_type aCount)
{
if (!ActualAlloc::Successful(this->template InsertSlotsAt<ActualAlloc>(
aIndex, aCount, sizeof(elem_type), MOZ_ALIGNOF(elem_type)))) {
return nullptr;
}
// Initialize the extra array elements
elem_type* iter = Elements() + aIndex;
elem_type* iend = iter + aCount;
for (; iter != iend; ++iter) {
elem_traits::Construct(iter);
}
return Elements() + aIndex;
}
public:
MOZ_MUST_USE
elem_type* InsertElementsAt(index_type aIndex, size_type aCount,
const mozilla::fallible_t&)
{
return InsertElementsAt<FallibleAlloc>(aIndex, aCount);
}
// This method inserts elements into the array, constructing them
// elem_type's copy constructor (or whatever one-arg constructor
// happens to match the Item type).
// @param aIndex the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param aCount the number of elements to insert.
// @param aItem the value to use when constructing the new elements.
protected:
template<class Item, typename ActualAlloc = Alloc>
elem_type* InsertElementsAt(index_type aIndex, size_type aCount,
const Item& aItem);
public:
template<class Item>
MOZ_MUST_USE
elem_type* InsertElementsAt(index_type aIndex, size_type aCount,
const Item& aItem, const mozilla::fallible_t&)
{
return InsertElementsAt<Item, FallibleAlloc>(aIndex, aCount, aItem);
}
// This method may be called to minimize the memory used by this array.
void Compact()
{
ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type));
}
//
// Sorting
//
// This function is meant to be used with the NS_QuickSort function. It
// maps the callback API expected by NS_QuickSort to the Comparator API
// used by nsTArray_Impl. See nsTArray_Impl::Sort.
template<class Comparator>
static int Compare(const void* aE1, const void* aE2, void* aData)
{
const Comparator* c = reinterpret_cast<const Comparator*>(aData);
const elem_type* a = static_cast<const elem_type*>(aE1);
const elem_type* b = static_cast<const elem_type*>(aE2);
return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1);
}
// This method sorts the elements of the array. It uses the LessThan
// method defined on the given Comparator object to collate elements.
// @param aComp The Comparator used to collate elements.
template<class Comparator>
void Sort(const Comparator& aComp)
{
NS_QuickSort(Elements(), Length(), sizeof(elem_type),
Compare<Comparator>, const_cast<Comparator*>(&aComp));
}
// A variation on the Sort method defined above that assumes that
// 'operator<' is defined for elem_type.
void Sort() { Sort(nsDefaultComparator<elem_type, elem_type>()); }
protected:
using base_type::Hdr;
using base_type::ShrinkCapacity;
// This method invokes elem_type's destructor on a range of elements.
// @param aStart The index of the first element to destroy.
// @param aCount The number of elements to destroy.
void DestructRange(index_type aStart, size_type aCount)
{
elem_type* iter = Elements() + aStart;
elem_type *iend = iter + aCount;
for (; iter != iend; ++iter) {
elem_traits::Destruct(iter);
}
}
// This method invokes elem_type's copy-constructor on a range of elements.
// @param aStart The index of the first element to construct.
// @param aCount The number of elements to construct.
// @param aValues The array of elements to copy.
template<class Item>
void AssignRange(index_type aStart, size_type aCount, const Item* aValues)
{
AssignRangeAlgorithm<mozilla::IsPod<Item>::value,
mozilla::IsSame<Item, elem_type>::value>
::implementation(Elements(), aStart, aCount, aValues);
}
};
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::ReplaceElementsAt(index_type aStart, size_type aCount,
const Item* aArray, size_type aArrayLen) -> elem_type*
{
// Adjust memory allocation up-front to catch errors.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + aArrayLen - aCount, sizeof(elem_type)))) {
return nullptr;
}
DestructRange(aStart, aCount);
this->template ShiftData<ActualAlloc>(aStart, aCount, aArrayLen,
sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
AssignRange(aStart, aArrayLen, aArray);
return Elements() + aStart;
}
template<typename E, class Alloc>
void
nsTArray_Impl<E, Alloc>::RemoveElementsAt(index_type aStart, size_type aCount)
{
MOZ_ASSERT(aCount == 0 || aStart < Length(), "Invalid aStart index");
MOZ_ASSERT(aStart + aCount <= Length(), "Invalid length");
// Check that the previous assert didn't overflow
MOZ_ASSERT(aStart <= aStart + aCount, "Start index plus length overflows");
DestructRange(aStart, aCount);
this->template ShiftData<InfallibleAlloc>(aStart, aCount, 0,
sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
}
template<typename E, class Alloc>
template<typename Predicate>
void
nsTArray_Impl<E, Alloc>::RemoveElementsBy(Predicate aPredicate)
{
if (base_type::mHdr == EmptyHdr()) {
return;
}
index_type j = 0;
index_type len = Length();
for (index_type i = 0; i < len; ++i) {
if (aPredicate(Elements()[i])) {
elem_traits::Destruct(Elements() + i);
} else {
if (j < i) {
copy_type::MoveNonOverlappingRegion(Elements() + j, Elements() + i,
1, sizeof(elem_type));
}
++j;
}
}
base_type::mHdr->mLength = j;
}
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::InsertElementsAt(index_type aIndex, size_type aCount,
const Item& aItem) -> elem_type*
{
if (!ActualAlloc::Successful(this->template InsertSlotsAt<ActualAlloc>(
aIndex, aCount, sizeof(elem_type), MOZ_ALIGNOF(elem_type)))) {
return nullptr;
}
// Initialize the extra array elements
elem_type* iter = Elements() + aIndex;
elem_type* iend = iter + aCount;
for (; iter != iend; ++iter) {
elem_traits::Construct(iter, aItem);
}
return Elements() + aIndex;
}
template<typename E, class Alloc>
template<typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::InsertElementAt(index_type aIndex) -> elem_type*
{
// Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(elem_type)))) {
return nullptr;
}
this->template ShiftData<ActualAlloc>(aIndex, 0, 1, sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
elem_type* elem = Elements() + aIndex;
elem_traits::Construct(elem);
return elem;
}
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::InsertElementAt(index_type aIndex, Item&& aItem) -> elem_type*
{
// Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(elem_type)))) {
return nullptr;
}
this->template ShiftData<ActualAlloc>(aIndex, 0, 1, sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
elem_type* elem = Elements() + aIndex;
elem_traits::Construct(elem, mozilla::Forward<Item>(aItem));
return elem;
}
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::AppendElements(const Item* aArray, size_type aArrayLen) -> elem_type*
{
if (!ActualAlloc::Successful(this->template ExtendCapacity<ActualAlloc>(
Length(), aArrayLen, sizeof(elem_type)))) {
return nullptr;
}
index_type len = Length();
AssignRange(len, aArrayLen, aArray);
this->IncrementLength(aArrayLen);
return Elements() + len;
}
template<typename E, class Alloc>
template<class Item, class Allocator, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::AppendElements(nsTArray_Impl<Item, Allocator>&& aArray) -> elem_type*
{
MOZ_ASSERT(&aArray != this, "argument must be different aArray");
if (Length() == 0) {
SwapElements<ActualAlloc>(aArray);
return Elements();
}
index_type len = Length();
index_type otherLen = aArray.Length();
if (!Alloc::Successful(this->template ExtendCapacity<Alloc>(
len, otherLen, sizeof(elem_type)))) {
return nullptr;
}
copy_type::MoveNonOverlappingRegion(Elements() + len, aArray.Elements(), otherLen,
sizeof(elem_type));
this->IncrementLength(otherLen);
aArray.template ShiftData<Alloc>(0, otherLen, 0, sizeof(elem_type),
MOZ_ALIGNOF(elem_type));
return Elements() + len;
}
template<typename E, class Alloc>
template<class Item, typename ActualAlloc>
auto
nsTArray_Impl<E, Alloc>::AppendElement(Item&& aItem) -> elem_type*
{
// Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(elem_type)))) {
return nullptr;
}
elem_type* elem = Elements() + Length();
elem_traits::Construct(elem, mozilla::Forward<Item>(aItem));
this->IncrementLength(1);
return elem;
}
template<typename E, typename Alloc>
inline void
ImplCycleCollectionUnlink(nsTArray_Impl<E, Alloc>& aField)
{
aField.Clear();
}
template<typename E, typename Alloc>
inline void
ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
nsTArray_Impl<E, Alloc>& aField,
const char* aName,
uint32_t aFlags = 0)
{
aFlags |= CycleCollectionEdgeNameArrayFlag;
size_t length = aField.Length();
for (size_t i = 0; i < length; ++i) {
ImplCycleCollectionTraverse(aCallback, aField[i], aName, aFlags);
}
}
//
// nsTArray is an infallible vector class. See the comment at the top of this
// file for more details.
//
template<class E>
class nsTArray : public nsTArray_Impl<E, nsTArrayInfallibleAllocator>
{
public:
typedef nsTArray_Impl<E, nsTArrayInfallibleAllocator> base_type;
typedef nsTArray<E> self_type;
typedef typename base_type::size_type size_type;
nsTArray() {}
explicit nsTArray(size_type aCapacity) : base_type(aCapacity) {}
explicit nsTArray(const nsTArray& aOther) : base_type(aOther) {}
MOZ_IMPLICIT nsTArray(nsTArray&& aOther) : base_type(mozilla::Move(aOther)) {}
MOZ_IMPLICIT nsTArray(std::initializer_list<E> aIL) : base_type(aIL) {}
template<class Allocator>
explicit nsTArray(const nsTArray_Impl<E, Allocator>& aOther)
: base_type(aOther)
{
}
template<class Allocator>
MOZ_IMPLICIT nsTArray(nsTArray_Impl<E, Allocator>&& aOther)
: base_type(mozilla::Move(aOther))
{
}
self_type& operator=(const self_type& aOther)
{
base_type::operator=(aOther);
return *this;
}
template<class Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther)
{
base_type::operator=(aOther);
return *this;
}
self_type& operator=(self_type&& aOther)
{
base_type::operator=(mozilla::Move(aOther));
return *this;
}
template<class Allocator>
self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther)
{
base_type::operator=(mozilla::Move(aOther));
return *this;
}
using base_type::AppendElement;
using base_type::AppendElements;
using base_type::EnsureLengthAtLeast;
using base_type::InsertElementAt;
using base_type::InsertElementsAt;
using base_type::InsertElementSorted;
using base_type::ReplaceElementsAt;
using base_type::SetCapacity;
using base_type::SetLength;
};
//
// FallibleTArray is a fallible vector class.
//
template<class E>
class FallibleTArray : public nsTArray_Impl<E, nsTArrayFallibleAllocator>
{
public:
typedef nsTArray_Impl<E, nsTArrayFallibleAllocator> base_type;
typedef FallibleTArray<E> self_type;
typedef typename base_type::size_type size_type;
FallibleTArray() {}
explicit FallibleTArray(size_type aCapacity) : base_type(aCapacity) {}
explicit FallibleTArray(const FallibleTArray<E>& aOther) : base_type(aOther) {}
FallibleTArray(FallibleTArray<E>&& aOther)
: base_type(mozilla::Move(aOther))
{
}
template<class Allocator>
explicit FallibleTArray(const nsTArray_Impl<E, Allocator>& aOther)
: base_type(aOther)
{
}
template<class Allocator>
explicit FallibleTArray(nsTArray_Impl<E, Allocator>&& aOther)
: base_type(mozilla::Move(aOther))
{
}
self_type& operator=(const self_type& aOther)
{
base_type::operator=(aOther);
return *this;
}
template<class Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther)
{
base_type::operator=(aOther);
return *this;
}
self_type& operator=(self_type&& aOther)
{
base_type::operator=(mozilla::Move(aOther));
return *this;
}
template<class Allocator>
self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther)
{
base_type::operator=(mozilla::Move(aOther));
return *this;
}
};
//
// AutoTArray<E, N> is like nsTArray<E>, but with N elements of inline storage.
// Storing more than N elements is fine, but it will cause a heap allocation.
//
template<class E, size_t N>
class MOZ_NON_MEMMOVABLE AutoTArray : public nsTArray<E>
{
static_assert(N != 0, "AutoTArray<E, 0> should be specialized");
public:
typedef AutoTArray<E, N> self_type;
typedef nsTArray<E> base_type;
typedef typename base_type::Header Header;
typedef typename base_type::elem_type elem_type;
AutoTArray()
{
Init();
}
AutoTArray(const self_type& aOther)
{
Init();
this->AppendElements(aOther);
}
explicit AutoTArray(const base_type& aOther)
{
Init();
this->AppendElements(aOther);
}
explicit AutoTArray(base_type&& aOther)
{
Init();
this->SwapElements(aOther);
}
template<typename Allocator>
explicit AutoTArray(nsTArray_Impl<elem_type, Allocator>&& aOther)
{
Init();
this->SwapElements(aOther);
}
MOZ_IMPLICIT AutoTArray(std::initializer_list<E> aIL)
{
Init();
this->AppendElements(aIL.begin(), aIL.size());
}
self_type& operator=(const self_type& aOther)
{
base_type::operator=(aOther);
return *this;
}
template<typename Allocator>
self_type& operator=(const nsTArray_Impl<elem_type, Allocator>& aOther)
{
base_type::operator=(aOther);
return *this;
}
private:
// nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer
// to mAutoBuf.
template<class Allocator, class Copier>
friend class nsTArray_base;
void Init()
{
static_assert(MOZ_ALIGNOF(elem_type) <= 8,
"can't handle alignments greater than 8, "
"see nsTArray_base::UsesAutoArrayBuffer()");
// Temporary work around for VS2012 RC compiler crash
Header** phdr = base_type::PtrToHdr();
*phdr = reinterpret_cast<Header*>(&mAutoBuf);
(*phdr)->mLength = 0;
(*phdr)->mCapacity = N;
(*phdr)->mIsAutoArray = 1;
MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) ==
reinterpret_cast<Header*>(&mAutoBuf),
"GetAutoArrayBuffer needs to be fixed");
}
// Declare mAutoBuf aligned to the maximum of the header's alignment and
// elem_type's alignment. We need to use a union rather than
// MOZ_ALIGNED_DECL because GCC is picky about what goes into
// __attribute__((aligned(foo))).
union
{
char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)];
// Do the max operation inline to ensure that it is a compile-time constant.
mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(elem_type)) ?
MOZ_ALIGNOF(Header) : MOZ_ALIGNOF(elem_type)> mAlign;
};
};
//
// Specialization of AutoTArray<E, N> for the case where N == 0.
// AutoTArray<E, 0> behaves exactly like nsTArray<E>, but without this
// specialization, it stores a useless inline header.
//
// We do have many AutoTArray<E, 0> objects in memory: about 2,000 per tab as
// of May 2014. These are typically not explicitly AutoTArray<E, 0> but rather
// AutoTArray<E, N> for some value N depending on template parameters, in
// generic code.
//
// For that reason, we optimize this case with the below partial specialization,
// which ensures that AutoTArray<E, 0> is just like nsTArray<E>, without any
// inline header overhead.
//
template<class E>
class AutoTArray<E, 0> : public nsTArray<E>
{
};
template<class E, size_t N>
struct nsTArray_CopyChooser<AutoTArray<E, N>>
{
typedef nsTArray_CopyWithConstructors<AutoTArray<E, N>> Type;
};
// Span integration
namespace mozilla {
template<class ElementType, class TArrayAlloc>
Span<ElementType>
MakeSpan(nsTArray_Impl<ElementType, TArrayAlloc>& aTArray)
{
return aTArray;
}
template<class ElementType, class TArrayAlloc>
Span<const ElementType>
MakeSpan(const nsTArray_Impl<ElementType, TArrayAlloc>& aTArray)
{
return aTArray;
}
} // namespace mozilla
// Assert that AutoTArray doesn't have any extra padding inside.
//
// It's important that the data stored in this auto array takes up a multiple of
// 8 bytes; e.g. AutoTArray<uint32_t, 1> wouldn't work. Since AutoTArray
// contains a pointer, its size must be a multiple of alignof(void*). (This is
// because any type may be placed into an array, and there's no padding between
// elements of an array.) The compiler pads the end of the structure to
// enforce this rule.
//
// If we used AutoTArray<uint32_t, 1> below, this assertion would fail on a
// 64-bit system, where the compiler inserts 4 bytes of padding at the end of
// the auto array to make its size a multiple of alignof(void*) == 8 bytes.
static_assert(sizeof(AutoTArray<uint32_t, 2>) ==
sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2,
"AutoTArray shouldn't contain any extra padding, "
"see the comment");
// Definitions of nsTArray_Impl methods
#include "nsTArray-inl.h"
#endif // nsTArray_h__
|