1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A helper module to probe the Windows Registry when looking for
//! windows-specific tools.
use std::process::Command;
use Tool;
macro_rules! otry {
($expr:expr) => (match $expr {
Some(val) => val,
None => return None,
})
}
/// Attempts to find a tool within an MSVC installation using the Windows
/// registry as a point to search from.
///
/// The `target` argument is the target that the tool should work for (e.g.
/// compile or link for) and the `tool` argument is the tool to find (e.g.
/// `cl.exe` or `link.exe`).
///
/// This function will return `None` if the tool could not be found, or it will
/// return `Some(cmd)` which represents a command that's ready to execute the
/// tool with the appropriate environment variables set.
///
/// Note that this function always returns `None` for non-MSVC targets.
pub fn find(target: &str, tool: &str) -> Option<Command> {
find_tool(target, tool).map(|c| c.to_command())
}
/// Similar to the `find` function above, this function will attempt the same
/// operation (finding a MSVC tool in a local install) but instead returns a
/// `Tool` which may be introspected.
#[cfg(not(windows))]
pub fn find_tool(_target: &str, _tool: &str) -> Option<Tool> {
None
}
/// Documented above.
#[cfg(windows)]
pub fn find_tool(target: &str, tool: &str) -> Option<Tool> {
use std::env;
use std::ffi::OsString;
use std::mem;
use std::path::{Path, PathBuf};
use registry::{RegistryKey, LOCAL_MACHINE};
struct MsvcTool {
tool: PathBuf,
libs: Vec<PathBuf>,
path: Vec<PathBuf>,
include: Vec<PathBuf>,
}
impl MsvcTool {
fn new(tool: PathBuf) -> MsvcTool {
MsvcTool {
tool: tool,
libs: Vec::new(),
path: Vec::new(),
include: Vec::new(),
}
}
fn into_tool(self) -> Tool {
let MsvcTool { tool, libs, path, include } = self;
let mut tool = Tool::new(tool.into());
add_env(&mut tool, "LIB", libs);
add_env(&mut tool, "PATH", path);
add_env(&mut tool, "INCLUDE", include);
return tool
}
}
// This logic is all tailored for MSVC, if we're not that then bail out
// early.
if !target.contains("msvc") {
return None
}
// Looks like msbuild isn't located in the same location as other tools like
// cl.exe and lib.exe. To handle this we probe for it manually with
// dedicated registry keys.
if tool.contains("msbuild") {
return find_msbuild(target)
}
// If VCINSTALLDIR is set, then someone's probably already run vcvars and we
// should just find whatever that indicates.
if env::var_os("VCINSTALLDIR").is_some() {
return env::var_os("PATH").and_then(|path| {
env::split_paths(&path).map(|p| p.join(tool)).find(|p| p.exists())
}).map(|path| {
Tool::new(path.into())
})
}
// Ok, if we're here, now comes the fun part of the probing. Default shells
// or shells like MSYS aren't really configured to execute `cl.exe` and the
// various compiler tools shipped as part of Visual Studio. Here we try to
// first find the relevant tool, then we also have to be sure to fill in
// environment variables like `LIB`, `INCLUDE`, and `PATH` to ensure that
// the tool is actually usable.
return find_msvc_latest(tool, target, "15.0").or_else(|| {
find_msvc_latest(tool, target, "14.0")
}).or_else(|| {
find_msvc_12(tool, target)
}).or_else(|| {
find_msvc_11(tool, target)
});
// For MSVC 14 or newer we need to find the Universal CRT as well as either
// the Windows 10 SDK or Windows 8.1 SDK.
fn find_msvc_latest(tool: &str, target: &str, ver: &str) -> Option<Tool> {
let vcdir = otry!(get_vc_dir(ver));
let mut tool = otry!(get_tool(tool, &vcdir, target));
let sub = otry!(lib_subdir(target));
let (ucrt, ucrt_version) = otry!(get_ucrt_dir());
let ucrt_include = ucrt.join("include").join(&ucrt_version);
tool.include.push(ucrt_include.join("ucrt"));
let ucrt_lib = ucrt.join("lib").join(&ucrt_version);
tool.libs.push(ucrt_lib.join("ucrt").join(sub));
if let Some((sdk, version)) = get_sdk10_dir() {
tool.path.push(sdk.join("bin").join(sub));
let sdk_lib = sdk.join("lib").join(&version);
tool.libs.push(sdk_lib.join("um").join(sub));
let sdk_include = sdk.join("include").join(&version);
tool.include.push(sdk_include.join("um"));
tool.include.push(sdk_include.join("winrt"));
tool.include.push(sdk_include.join("shared"));
} else if let Some(sdk) = get_sdk81_dir() {
tool.path.push(sdk.join("bin").join(sub));
let sdk_lib = sdk.join("lib").join("winv6.3");
tool.libs.push(sdk_lib.join("um").join(sub));
let sdk_include = sdk.join("include");
tool.include.push(sdk_include.join("um"));
tool.include.push(sdk_include.join("winrt"));
tool.include.push(sdk_include.join("shared"));
} else {
return None
}
Some(tool.into_tool())
}
// For MSVC 12 we need to find the Windows 8.1 SDK.
fn find_msvc_12(tool: &str, target: &str) -> Option<Tool> {
let vcdir = otry!(get_vc_dir("12.0"));
let mut tool = otry!(get_tool(tool, &vcdir, target));
let sub = otry!(lib_subdir(target));
let sdk81 = otry!(get_sdk81_dir());
tool.path.push(sdk81.join("bin").join(sub));
let sdk_lib = sdk81.join("lib").join("winv6.3");
tool.libs.push(sdk_lib.join("um").join(sub));
let sdk_include = sdk81.join("include");
tool.include.push(sdk_include.join("shared"));
tool.include.push(sdk_include.join("um"));
tool.include.push(sdk_include.join("winrt"));
Some(tool.into_tool())
}
// For MSVC 11 we need to find the Windows 8 SDK.
fn find_msvc_11(tool: &str, target: &str) -> Option<Tool> {
let vcdir = otry!(get_vc_dir("11.0"));
let mut tool = otry!(get_tool(tool, &vcdir, target));
let sub = otry!(lib_subdir(target));
let sdk8 = otry!(get_sdk8_dir());
tool.path.push(sdk8.join("bin").join(sub));
let sdk_lib = sdk8.join("lib").join("win8");
tool.libs.push(sdk_lib.join("um").join(sub));
let sdk_include = sdk8.join("include");
tool.include.push(sdk_include.join("shared"));
tool.include.push(sdk_include.join("um"));
tool.include.push(sdk_include.join("winrt"));
Some(tool.into_tool())
}
fn add_env(tool: &mut Tool, env: &str, paths: Vec<PathBuf>) {
let prev = env::var_os(env).unwrap_or(OsString::new());
let prev = env::split_paths(&prev);
let new = paths.into_iter().chain(prev);
tool.env.push((env.to_string().into(), env::join_paths(new).unwrap()));
}
// Given a possible MSVC installation directory, we look for the linker and
// then add the MSVC library path.
fn get_tool(tool: &str, path: &Path, target: &str) -> Option<MsvcTool> {
bin_subdir(target).into_iter().map(|(sub, host)| {
(path.join("bin").join(sub).join(tool),
path.join("bin").join(host))
}).filter(|&(ref path, _)| {
path.is_file()
}).map(|(path, host)| {
let mut tool = MsvcTool::new(path);
tool.path.push(host);
tool
}).filter_map(|mut tool| {
let sub = otry!(vc_lib_subdir(target));
tool.libs.push(path.join("lib").join(sub));
tool.include.push(path.join("include"));
Some(tool)
}).next()
}
// To find MSVC we look in a specific registry key for the version we are
// trying to find.
fn get_vc_dir(ver: &str) -> Option<PathBuf> {
let key = r"SOFTWARE\Microsoft\VisualStudio\SxS\VC7";
let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok());
let path = otry!(key.query_str(ver).ok());
Some(path.into())
}
// To find the Universal CRT we look in a specific registry key for where
// all the Universal CRTs are located and then sort them asciibetically to
// find the newest version. While this sort of sorting isn't ideal, it is
// what vcvars does so that's good enough for us.
//
// Returns a pair of (root, version) for the ucrt dir if found
fn get_ucrt_dir() -> Option<(PathBuf, String)> {
let key = r"SOFTWARE\Microsoft\Windows Kits\Installed Roots";
let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok());
let root = otry!(key.query_str("KitsRoot10").ok());
let readdir = otry!(Path::new(&root).join("lib").read_dir().ok());
let max_libdir = otry!(readdir.filter_map(|dir| {
dir.ok()
}).map(|dir| {
dir.path()
}).filter(|dir| {
dir.components().last().and_then(|c| {
c.as_os_str().to_str()
}).map(|c| {
c.starts_with("10.") && dir.join("ucrt").is_dir()
}).unwrap_or(false)
}).max());
let version = max_libdir.components().last().unwrap();
let version = version.as_os_str().to_str().unwrap().to_string();
Some((root.into(), version))
}
// Vcvars finds the correct version of the Windows 10 SDK by looking
// for the include `um\Windows.h` because sometimes a given version will
// only have UCRT bits without the rest of the SDK. Since we only care about
// libraries and not includes, we instead look for `um\x64\kernel32.lib`.
// Since the 32-bit and 64-bit libraries are always installed together we
// only need to bother checking x64, making this code a tiny bit simpler.
// Like we do for the Universal CRT, we sort the possibilities
// asciibetically to find the newest one as that is what vcvars does.
fn get_sdk10_dir() -> Option<(PathBuf, String)> {
let key = r"SOFTWARE\Microsoft\Microsoft SDKs\Windows\v10.0";
let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok());
let root = otry!(key.query_str("InstallationFolder").ok());
let readdir = otry!(Path::new(&root).join("lib").read_dir().ok());
let mut dirs = readdir.filter_map(|dir| dir.ok())
.map(|dir| dir.path())
.collect::<Vec<_>>();
dirs.sort();
let dir = otry!(dirs.into_iter().rev().filter(|dir| {
dir.join("um").join("x64").join("kernel32.lib").is_file()
}).next());
let version = dir.components().last().unwrap();
let version = version.as_os_str().to_str().unwrap().to_string();
Some((root.into(), version))
}
// Interestingly there are several subdirectories, `win7` `win8` and
// `winv6.3`. Vcvars seems to only care about `winv6.3` though, so the same
// applies to us. Note that if we were targetting kernel mode drivers
// instead of user mode applications, we would care.
fn get_sdk81_dir() -> Option<PathBuf> {
let key = r"SOFTWARE\Microsoft\Microsoft SDKs\Windows\v8.1";
let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok());
let root = otry!(key.query_str("InstallationFolder").ok());
Some(root.into())
}
fn get_sdk8_dir() -> Option<PathBuf> {
let key = r"SOFTWARE\Microsoft\Microsoft SDKs\Windows\v8.0";
let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok());
let root = otry!(key.query_str("InstallationFolder").ok());
Some(root.into())
}
const PROCESSOR_ARCHITECTURE_INTEL: u16 = 0;
const PROCESSOR_ARCHITECTURE_AMD64: u16 = 9;
const X86: u16 = PROCESSOR_ARCHITECTURE_INTEL;
const X86_64: u16 = PROCESSOR_ARCHITECTURE_AMD64;
// When choosing the tool to use, we have to choose the one which matches
// the target architecture. Otherwise we end up in situations where someone
// on 32-bit Windows is trying to cross compile to 64-bit and it tries to
// invoke the native 64-bit compiler which won't work.
//
// For the return value of this function, the first member of the tuple is
// the folder of the tool we will be invoking, while the second member is
// the folder of the host toolchain for that tool which is essential when
// using a cross linker. We return a Vec since on x64 there are often two
// linkers that can target the architecture we desire. The 64-bit host
// linker is preferred, and hence first, due to 64-bit allowing it more
// address space to work with and potentially being faster.
fn bin_subdir(target: &str) -> Vec<(&'static str, &'static str)> {
let arch = target.split('-').next().unwrap();
match (arch, host_arch()) {
("i686", X86) => vec![("", "")],
("i686", X86_64) => vec![("amd64_x86", "amd64"), ("", "")],
("x86_64", X86) => vec![("x86_amd64", "")],
("x86_64", X86_64) => vec![("amd64", "amd64"), ("x86_amd64", "")],
("arm", X86) => vec![("x86_arm", "")],
("arm", X86_64) => vec![("amd64_arm", "amd64"), ("x86_arm", "")],
_ => vec![],
}
}
fn lib_subdir(target: &str) -> Option<&'static str> {
let arch = target.split('-').next().unwrap();
match arch {
"i686" => Some("x86"),
"x86_64" => Some("x64"),
"arm" => Some("arm"),
_ => None,
}
}
// MSVC's x86 libraries are not in a subfolder
fn vc_lib_subdir(target: &str) -> Option<&'static str> {
let arch = target.split('-').next().unwrap();
match arch {
"i686" => Some(""),
"x86_64" => Some("amd64"),
"arm" => Some("arm"),
_ => None,
}
}
#[allow(bad_style)]
fn host_arch() -> u16 {
type DWORD = u32;
type WORD = u16;
type LPVOID = *mut u8;
type DWORD_PTR = usize;
#[repr(C)]
struct SYSTEM_INFO {
wProcessorArchitecture: WORD,
_wReserved: WORD,
_dwPageSize: DWORD,
_lpMinimumApplicationAddress: LPVOID,
_lpMaximumApplicationAddress: LPVOID,
_dwActiveProcessorMask: DWORD_PTR,
_dwNumberOfProcessors: DWORD,
_dwProcessorType: DWORD,
_dwAllocationGranularity: DWORD,
_wProcessorLevel: WORD,
_wProcessorRevision: WORD,
}
extern "system" {
fn GetNativeSystemInfo(lpSystemInfo: *mut SYSTEM_INFO);
}
unsafe {
let mut info = mem::zeroed();
GetNativeSystemInfo(&mut info);
info.wProcessorArchitecture
}
}
// Given a registry key, look at all the sub keys and find the one which has
// the maximal numeric value.
//
// Returns the name of the maximal key as well as the opened maximal key.
fn max_version(key: &RegistryKey) -> Option<(OsString, RegistryKey)> {
let mut max_vers = 0;
let mut max_key = None;
for subkey in key.iter().filter_map(|k| k.ok()) {
let val = subkey.to_str().and_then(|s| {
s.trim_left_matches("v").replace(".", "").parse().ok()
});
let val = match val {
Some(s) => s,
None => continue,
};
if val > max_vers {
if let Ok(k) = key.open(&subkey) {
max_vers = val;
max_key = Some((subkey, k));
}
}
}
return max_key
}
// see http://stackoverflow.com/questions/328017/path-to-msbuild
fn find_msbuild(target: &str) -> Option<Tool> {
let key = r"SOFTWARE\Microsoft\MSBuild\ToolsVersions";
LOCAL_MACHINE.open(key.as_ref()).ok().and_then(|key| {
max_version(&key).and_then(|(_vers, key)| {
key.query_str("MSBuildToolsPath").ok()
})
}).map(|path| {
let mut path = PathBuf::from(path);
path.push("MSBuild.exe");
let mut tool = Tool::new(path);
if target.contains("x86_64") {
tool.env.push(("Platform".into(), "X64".into()));
}
tool
})
}
}
|