summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/hiprec_convolve_test_util.cc
blob: 4dee6ab4d3195f903ef23e830e4c2184c9eaa51c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "test/hiprec_convolve_test_util.h"

#include "av1/common/restoration.h"

using std::tr1::tuple;
using std::tr1::make_tuple;

namespace libaom_test {

// Generate a random pair of filter kernels, using the ranges
// of possible values from the loop-restoration experiment
static void generate_kernels(ACMRandom *rnd, InterpKernel hkernel,
                             InterpKernel vkernel) {
  hkernel[0] = hkernel[6] =
      WIENER_FILT_TAP0_MINV +
      rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 1 - WIENER_FILT_TAP0_MINV);
  hkernel[1] = hkernel[5] =
      WIENER_FILT_TAP1_MINV +
      rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 1 - WIENER_FILT_TAP1_MINV);
  hkernel[2] = hkernel[4] =
      WIENER_FILT_TAP2_MINV +
      rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 1 - WIENER_FILT_TAP2_MINV);
  hkernel[3] = -(hkernel[0] + hkernel[1] + hkernel[2]);
  hkernel[7] = 0;

  vkernel[0] = vkernel[6] =
      WIENER_FILT_TAP0_MINV +
      rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 1 - WIENER_FILT_TAP0_MINV);
  vkernel[1] = vkernel[5] =
      WIENER_FILT_TAP1_MINV +
      rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 1 - WIENER_FILT_TAP1_MINV);
  vkernel[2] = vkernel[4] =
      WIENER_FILT_TAP2_MINV +
      rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 1 - WIENER_FILT_TAP2_MINV);
  vkernel[3] = -(vkernel[0] + vkernel[1] + vkernel[2]);
  vkernel[7] = 0;
}

namespace AV1HiprecConvolve {

::testing::internal::ParamGenerator<HiprecConvolveParam> BuildParams(
    hiprec_convolve_func filter) {
  const HiprecConvolveParam params[] = {
    make_tuple(8, 8, 50000, filter), make_tuple(64, 64, 1000, filter),
    make_tuple(32, 8, 10000, filter),
  };
  return ::testing::ValuesIn(params);
}

AV1HiprecConvolveTest::~AV1HiprecConvolveTest() {}
void AV1HiprecConvolveTest::SetUp() {
  rnd_.Reset(ACMRandom::DeterministicSeed());
}

void AV1HiprecConvolveTest::TearDown() { libaom_test::ClearSystemState(); }

void AV1HiprecConvolveTest::RunCheckOutput(hiprec_convolve_func test_impl) {
  const int w = 128, h = 128;
  const int out_w = GET_PARAM(0), out_h = GET_PARAM(1);
  const int num_iters = GET_PARAM(2);
  int i, j;

  uint8_t *input_ = new uint8_t[h * w];
  uint8_t *input = input_;

  // The convolve functions always write rows with widths that are multiples of
  // 8.
  // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8.
  int output_n = ((out_w + 7) & ~7) * out_h;
  uint8_t *output = new uint8_t[output_n];
  uint8_t *output2 = new uint8_t[output_n];

  // Generate random filter kernels
  DECLARE_ALIGNED(16, InterpKernel, hkernel);
  DECLARE_ALIGNED(16, InterpKernel, vkernel);

  generate_kernels(&rnd_, hkernel, vkernel);

  for (i = 0; i < h; ++i)
    for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8();

  for (i = 0; i < num_iters; ++i) {
    // Choose random locations within the source block
    int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7);
    int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7);
    aom_convolve8_add_src_hip_c(input + offset_r * w + offset_c, w, output,
                                out_w, hkernel, 16, vkernel, 16, out_w, out_h);
    test_impl(input + offset_r * w + offset_c, w, output2, out_w, hkernel, 16,
              vkernel, 16, out_w, out_h);

    for (j = 0; j < out_w * out_h; ++j)
      ASSERT_EQ(output[j], output2[j])
          << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", "
          << (j / out_w) << ") on iteration " << i;
  }
  delete[] input_;
  delete[] output;
  delete[] output2;
}
}  // namespace AV1HiprecConvolve

#if CONFIG_HIGHBITDEPTH
namespace AV1HighbdHiprecConvolve {

::testing::internal::ParamGenerator<HighbdHiprecConvolveParam> BuildParams(
    highbd_hiprec_convolve_func filter) {
  const HighbdHiprecConvolveParam params[] = {
    make_tuple(8, 8, 50000, 8, filter),   make_tuple(64, 64, 1000, 8, filter),
    make_tuple(32, 8, 10000, 8, filter),  make_tuple(8, 8, 50000, 10, filter),
    make_tuple(64, 64, 1000, 10, filter), make_tuple(32, 8, 10000, 10, filter),
    make_tuple(8, 8, 50000, 12, filter),  make_tuple(64, 64, 1000, 12, filter),
    make_tuple(32, 8, 10000, 12, filter),
  };
  return ::testing::ValuesIn(params);
}

AV1HighbdHiprecConvolveTest::~AV1HighbdHiprecConvolveTest() {}
void AV1HighbdHiprecConvolveTest::SetUp() {
  rnd_.Reset(ACMRandom::DeterministicSeed());
}

void AV1HighbdHiprecConvolveTest::TearDown() {
  libaom_test::ClearSystemState();
}

void AV1HighbdHiprecConvolveTest::RunCheckOutput(
    highbd_hiprec_convolve_func test_impl) {
  const int w = 128, h = 128;
  const int out_w = GET_PARAM(0), out_h = GET_PARAM(1);
  const int num_iters = GET_PARAM(2);
  const int bd = GET_PARAM(3);
  int i, j;

  uint16_t *input = new uint16_t[h * w];

  // The convolve functions always write rows with widths that are multiples of
  // 8.
  // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8.
  int output_n = ((out_w + 7) & ~7) * out_h;
  uint16_t *output = new uint16_t[output_n];
  uint16_t *output2 = new uint16_t[output_n];

  // Generate random filter kernels
  DECLARE_ALIGNED(16, InterpKernel, hkernel);
  DECLARE_ALIGNED(16, InterpKernel, vkernel);

  generate_kernels(&rnd_, hkernel, vkernel);

  for (i = 0; i < h; ++i)
    for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1);

  uint8_t *input_ptr = CONVERT_TO_BYTEPTR(input);
  uint8_t *output_ptr = CONVERT_TO_BYTEPTR(output);
  uint8_t *output2_ptr = CONVERT_TO_BYTEPTR(output2);

  for (i = 0; i < num_iters; ++i) {
    // Choose random locations within the source block
    int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7);
    int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7);
    aom_highbd_convolve8_add_src_hip_c(input_ptr + offset_r * w + offset_c, w,
                                       output_ptr, out_w, hkernel, 16, vkernel,
                                       16, out_w, out_h, bd);
    test_impl(input_ptr + offset_r * w + offset_c, w, output2_ptr, out_w,
              hkernel, 16, vkernel, 16, out_w, out_h, bd);

    for (j = 0; j < out_w * out_h; ++j)
      ASSERT_EQ(output[j], output2[j])
          << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", "
          << (j / out_w) << ") on iteration " << i;
  }
  delete[] input;
  delete[] output;
  delete[] output2;
}
}  // namespace AV1HighbdHiprecConvolve
#endif  // CONFIG_HIGHBITDEPTH
}  // namespace libaom_test