summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/av1_inv_txfm_test.cc
blob: 873e806852825d53ee96e8381be18b3fced9b974 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "third_party/googletest/src/googletest/include/gtest/gtest.h"

#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/av1_txfm_test.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/blockd.h"
#include "av1/common/scan.h"
#include "aom/aom_integer.h"
#include "aom_dsp/inv_txfm.h"

using libaom_test::ACMRandom;

namespace {

typedef void (*IdctFunc)(const tran_low_t *in, tran_low_t *out);

class TransTestBase {
 public:
  virtual ~TransTestBase() {}

 protected:
  void RunInvAccuracyCheck() {
    tran_low_t input[64];
    tran_low_t output[64];
    double ref_input[64];
    double ref_output[64];

    ACMRandom rnd(ACMRandom::DeterministicSeed());
    const int count_test_block = 5000;
    for (int ti = 0; ti < count_test_block; ++ti) {
      for (int ni = 0; ni < txfm_size_; ++ni) {
        input[ni] = rnd.Rand8() - rnd.Rand8();
        ref_input[ni] = static_cast<double>(input[ni]);
      }

      inv_txfm_(input, output);
      libaom_test::reference_idct_1d(ref_input, ref_output, txfm_size_);

      for (int ni = 0; ni < txfm_size_; ++ni) {
        EXPECT_LE(
            abs(output[ni] - static_cast<tran_low_t>(round(ref_output[ni]))),
            max_error_);
      }
    }
  }

  double max_error_;
  int txfm_size_;
  IdctFunc inv_txfm_;
};

typedef std::tr1::tuple<IdctFunc, int, int> IdctParam;
class AV1InvTxfm : public TransTestBase,
                   public ::testing::TestWithParam<IdctParam> {
 public:
  virtual void SetUp() {
    inv_txfm_ = GET_PARAM(0);
    txfm_size_ = GET_PARAM(1);
    max_error_ = GET_PARAM(2);
  }
  virtual void TearDown() {}
};

TEST_P(AV1InvTxfm, RunInvAccuracyCheck) { RunInvAccuracyCheck(); }

INSTANTIATE_TEST_CASE_P(C, AV1InvTxfm,
                        ::testing::Values(IdctParam(&aom_idct4_c, 4, 1),
                                          IdctParam(&aom_idct8_c, 8, 2),
                                          IdctParam(&aom_idct16_c, 16, 4),
                                          IdctParam(&aom_idct32_c, 32, 6)));

#if CONFIG_AV1_ENCODER
typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, InvTxfmFunc, TX_SIZE, int>
    PartialInvTxfmParam;
#if !CONFIG_ADAPT_SCAN
const int kMaxNumCoeffs = 1024;
#endif
class AV1PartialIDctTest
    : public ::testing::TestWithParam<PartialInvTxfmParam> {
 public:
  virtual ~AV1PartialIDctTest() {}
  virtual void SetUp() {
    ftxfm_ = GET_PARAM(0);
    full_itxfm_ = GET_PARAM(1);
    partial_itxfm_ = GET_PARAM(2);
    tx_size_ = GET_PARAM(3);
    last_nonzero_ = GET_PARAM(4);
  }

  virtual void TearDown() { libaom_test::ClearSystemState(); }

 protected:
  int last_nonzero_;
  TX_SIZE tx_size_;
  FwdTxfmFunc ftxfm_;
  InvTxfmFunc full_itxfm_;
  InvTxfmFunc partial_itxfm_;
};

#if !CONFIG_ADAPT_SCAN
static MB_MODE_INFO get_mbmi() {
  MB_MODE_INFO mbmi;
  mbmi.ref_frame[0] = LAST_FRAME;
  assert(is_inter_block(&mbmi));
  return mbmi;
}

TEST_P(AV1PartialIDctTest, RunQuantCheck) {
  int size;
  switch (tx_size_) {
    case TX_4X4: size = 4; break;
    case TX_8X8: size = 8; break;
    case TX_16X16: size = 16; break;
    case TX_32X32: size = 32; break;
    default: FAIL() << "Wrong Size!"; break;
  }
  DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]);

  const int count_test_block = 1000;
  const int block_size = size * size;

  DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]);

  int max_error = 0;
  for (int m = 0; m < count_test_block; ++m) {
    // clear out destination buffer
    memset(dst1, 0, sizeof(*dst1) * block_size);
    memset(dst2, 0, sizeof(*dst2) * block_size);
    memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size);
    memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size);

    ACMRandom rnd(ACMRandom::DeterministicSeed());

    for (int n = 0; n < count_test_block; ++n) {
      // Initialize a test block with input range [-255, 255].
      if (n == 0) {
        for (int j = 0; j < block_size; ++j) input_extreme_block[j] = 255;
      } else if (n == 1) {
        for (int j = 0; j < block_size; ++j) input_extreme_block[j] = -255;
      } else {
        for (int j = 0; j < block_size; ++j) {
          input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
        }
      }

      ftxfm_(input_extreme_block, output_ref_block, size);

      // quantization with maximum allowed step sizes
      test_coef_block1[0] = (output_ref_block[0] / 1336) * 1336;
      MB_MODE_INFO mbmi = get_mbmi();
      for (int j = 1; j < last_nonzero_; ++j)
        test_coef_block1[get_scan((const AV1_COMMON *)NULL, tx_size_, DCT_DCT,
                                  &mbmi)
                             ->scan[j]] = (output_ref_block[j] / 1828) * 1828;
    }

    ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size));
    ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block1, dst2, size));

    for (int j = 0; j < block_size; ++j) {
      const int diff = dst1[j] - dst2[j];
      const int error = diff * diff;
      if (max_error < error) max_error = error;
    }
  }

  EXPECT_EQ(0, max_error)
      << "Error: partial inverse transform produces different results";
}

TEST_P(AV1PartialIDctTest, ResultsMatch) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int size;
  switch (tx_size_) {
    case TX_4X4: size = 4; break;
    case TX_8X8: size = 8; break;
    case TX_16X16: size = 16; break;
    case TX_32X32: size = 32; break;
    default: FAIL() << "Wrong Size!"; break;
  }
  DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]);
  const int count_test_block = 1000;
  const int max_coeff = 32766 / 4;
  const int block_size = size * size;
  int max_error = 0;
  for (int i = 0; i < count_test_block; ++i) {
    // clear out destination buffer
    memset(dst1, 0, sizeof(*dst1) * block_size);
    memset(dst2, 0, sizeof(*dst2) * block_size);
    memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size);
    memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size);
    int max_energy_leftover = max_coeff * max_coeff;
    for (int j = 0; j < last_nonzero_; ++j) {
      int16_t coef = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) *
                                          (rnd.Rand16() - 32768) / 65536);
      max_energy_leftover -= coef * coef;
      if (max_energy_leftover < 0) {
        max_energy_leftover = 0;
        coef = 0;
      }
      MB_MODE_INFO mbmi = get_mbmi();
      test_coef_block1[get_scan((const AV1_COMMON *)NULL, tx_size_, DCT_DCT,
                                &mbmi)
                           ->scan[j]] = coef;
    }

    memcpy(test_coef_block2, test_coef_block1,
           sizeof(*test_coef_block2) * block_size);

    ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size));
    ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block2, dst2, size));

    for (int j = 0; j < block_size; ++j) {
      const int diff = dst1[j] - dst2[j];
      const int error = diff * diff;
      if (max_error < error) max_error = error;
    }
  }

  EXPECT_EQ(0, max_error)
      << "Error: partial inverse transform produces different results";
}
#endif
using std::tr1::make_tuple;

INSTANTIATE_TEST_CASE_P(
    C, AV1PartialIDctTest,
    ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c,
                                 &aom_idct32x32_34_add_c, TX_32X32, 34),
                      make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c,
                                 &aom_idct32x32_1_add_c, TX_32X32, 1),
                      make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_c,
                                 &aom_idct16x16_10_add_c, TX_16X16, 10),
                      make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_c,
                                 &aom_idct16x16_1_add_c, TX_16X16, 1),
                      make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c,
                                 &aom_idct8x8_12_add_c, TX_8X8, 12),
                      make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c,
                                 &aom_idct8x8_1_add_c, TX_8X8, 1),
                      make_tuple(&aom_fdct4x4_c, &aom_idct4x4_16_add_c,
                                 &aom_idct4x4_1_add_c, TX_4X4, 1)));
#endif  // CONFIG_AV1_ENCODER
}  // namespace