1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/transform_test_base.h"
#include "test/util.h"
#include "aom_ports/mem.h"
using libaom_test::ACMRandom;
namespace {
typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param);
using std::tr1::tuple;
using libaom_test::FhtFunc;
typedef tuple<FhtFunc, IhtFunc, TX_TYPE, aom_bit_depth_t, int> Ht32x32Param;
void fht32x32_ref(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param) {
av1_fht32x32_c(in, out, stride, txfm_param);
}
#if CONFIG_HIGHBITDEPTH
typedef void (*IHbdHtFunc)(const tran_low_t *in, uint8_t *out, int stride,
TX_TYPE tx_type, int bd);
typedef void (*HbdHtFunc)(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, int bd);
// Target optimized function, tx_type, bit depth
typedef tuple<HbdHtFunc, TX_TYPE, int> HighbdHt32x32Param;
void highbd_fht32x32_ref(const int16_t *in, int32_t *out, int stride,
TX_TYPE tx_type, int bd) {
av1_fwd_txfm2d_32x32_c(in, out, stride, tx_type, bd);
}
#endif // CONFIG_HIGHBITDEPTH
#if (HAVE_SSE2 || HAVE_AVX2) && !CONFIG_DAALA_DCT32
void dummy_inv_txfm(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param) {
(void)in;
(void)out;
(void)stride;
(void)txfm_param;
}
#endif
class AV1Trans32x32HT : public libaom_test::TransformTestBase,
public ::testing::TestWithParam<Ht32x32Param> {
public:
virtual ~AV1Trans32x32HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
pitch_ = 32;
height_ = 32;
fwd_txfm_ref = fht32x32_ref;
bit_depth_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
num_coeffs_ = GET_PARAM(4);
txfm_param_.tx_type = GET_PARAM(2);
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunFwdTxfm(const int16_t *in, tran_low_t *out, int stride) {
fwd_txfm_(in, out, stride, &txfm_param_);
}
void RunInvTxfm(const tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride, &txfm_param_);
}
FhtFunc fwd_txfm_;
IhtFunc inv_txfm_;
};
TEST_P(AV1Trans32x32HT, CoeffCheck) { RunCoeffCheck(); }
TEST_P(AV1Trans32x32HT, MemCheck) { RunMemCheck(); }
#if CONFIG_HIGHBITDEPTH
class AV1HighbdTrans32x32HT
: public ::testing::TestWithParam<HighbdHt32x32Param> {
public:
virtual ~AV1HighbdTrans32x32HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
fwd_txfm_ref_ = highbd_fht32x32_ref;
tx_type_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
mask_ = (1 << bit_depth_) - 1;
num_coeffs_ = 1024;
input_ = reinterpret_cast<int16_t *>(
aom_memalign(32, sizeof(int16_t) * num_coeffs_));
output_ = reinterpret_cast<int32_t *>(
aom_memalign(32, sizeof(int32_t) * num_coeffs_));
output_ref_ = reinterpret_cast<int32_t *>(
aom_memalign(32, sizeof(int32_t) * num_coeffs_));
}
virtual void TearDown() {
aom_free(input_);
aom_free(output_);
aom_free(output_ref_);
libaom_test::ClearSystemState();
}
protected:
void RunBitexactCheck();
private:
HbdHtFunc fwd_txfm_;
HbdHtFunc fwd_txfm_ref_;
TX_TYPE tx_type_;
int bit_depth_;
int mask_;
int num_coeffs_;
int16_t *input_;
int32_t *output_;
int32_t *output_ref_;
};
void AV1HighbdTrans32x32HT::RunBitexactCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int i, j;
const int stride = 32;
const int num_tests = 1000;
for (i = 0; i < num_tests; ++i) {
for (j = 0; j < num_coeffs_; ++j) {
input_[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
}
fwd_txfm_ref_(input_, output_ref_, stride, tx_type_, bit_depth_);
ASM_REGISTER_STATE_CHECK(
fwd_txfm_(input_, output_, stride, tx_type_, bit_depth_));
for (j = 0; j < num_coeffs_; ++j) {
EXPECT_EQ(output_ref_[j], output_[j])
<< "Not bit-exact result at index: " << j << " at test block: " << i;
}
}
}
TEST_P(AV1HighbdTrans32x32HT, HighbdCoeffCheck) { RunBitexactCheck(); }
#endif // CONFIG_HIGHBITDEPTH
using std::tr1::make_tuple;
#if HAVE_SSE2 && !CONFIG_DAALA_DCT32
const Ht32x32Param kArrayHt32x32Param_sse2[] = {
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, DCT_DCT, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, ADST_DCT, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, DCT_ADST, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, ADST_ADST, AOM_BITS_8, 1024),
#if CONFIG_EXT_TX
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, FLIPADST_DCT, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, DCT_FLIPADST, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, FLIPADST_FLIPADST, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, ADST_FLIPADST, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, FLIPADST_ADST, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, IDTX, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, V_DCT, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, H_DCT, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, V_ADST, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, H_ADST, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, V_FLIPADST, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_sse2, &dummy_inv_txfm, H_FLIPADST, AOM_BITS_8, 1024)
#endif // CONFIG_EXT_TX
};
INSTANTIATE_TEST_CASE_P(SSE2, AV1Trans32x32HT,
::testing::ValuesIn(kArrayHt32x32Param_sse2));
#endif // HAVE_SSE2 && !CONFIG_DAALA_DCT32
#if HAVE_AVX2 && !CONFIG_DAALA_DCT32
const Ht32x32Param kArrayHt32x32Param_avx2[] = {
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, DCT_DCT, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, ADST_DCT, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, DCT_ADST, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, ADST_ADST, AOM_BITS_8, 1024),
#if CONFIG_EXT_TX
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, FLIPADST_DCT, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, DCT_FLIPADST, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, FLIPADST_FLIPADST, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, ADST_FLIPADST, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, FLIPADST_ADST, AOM_BITS_8,
1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, IDTX, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, V_DCT, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, H_DCT, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, V_ADST, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, H_ADST, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, V_FLIPADST, AOM_BITS_8, 1024),
make_tuple(&av1_fht32x32_avx2, &dummy_inv_txfm, H_FLIPADST, AOM_BITS_8, 1024)
#endif // CONFIG_EXT_TX
};
INSTANTIATE_TEST_CASE_P(AVX2, AV1Trans32x32HT,
::testing::ValuesIn(kArrayHt32x32Param_avx2));
#endif // HAVE_AVX2 && !CONFIG_DAALA_DCT32
} // namespace
|