summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/segmentation.c
blob: b61df43fa6e70ec0faebd0c63dcf9f0ccece90b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <limits.h>

#include "aom_mem/aom_mem.h"

#include "av1/common/pred_common.h"
#include "av1/common/tile_common.h"

#include "av1/encoder/cost.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/subexp.h"

void av1_enable_segmentation(struct segmentation *seg) {
  seg->enabled = 1;
  seg->update_map = 1;
  seg->update_data = 1;
}

void av1_disable_segmentation(struct segmentation *seg) {
  seg->enabled = 0;
  seg->update_map = 0;
  seg->update_data = 0;
}

void av1_set_segment_data(struct segmentation *seg, signed char *feature_data,
                          unsigned char abs_delta) {
  seg->abs_delta = abs_delta;

  memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data));
}
void av1_disable_segfeature(struct segmentation *seg, int segment_id,
                            SEG_LVL_FEATURES feature_id) {
  seg->feature_mask[segment_id] &= ~(1 << feature_id);
}

void av1_clear_segdata(struct segmentation *seg, int segment_id,
                       SEG_LVL_FEATURES feature_id) {
  seg->feature_data[segment_id][feature_id] = 0;
}

// Based on set of segment counts calculate a probability tree
static void calc_segtree_probs(unsigned *segcounts,
                               aom_prob *segment_tree_probs,
                               const aom_prob *cur_tree_probs,
                               const int probwt) {
  // Work out probabilities of each segment
  const unsigned cc[4] = { segcounts[0] + segcounts[1],
                           segcounts[2] + segcounts[3],
                           segcounts[4] + segcounts[5],
                           segcounts[6] + segcounts[7] };
  const unsigned ccc[2] = { cc[0] + cc[1], cc[2] + cc[3] };
  int i;

  segment_tree_probs[0] = get_binary_prob(ccc[0], ccc[1]);
  segment_tree_probs[1] = get_binary_prob(cc[0], cc[1]);
  segment_tree_probs[2] = get_binary_prob(cc[2], cc[3]);
  segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]);
  segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]);
  segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]);
  segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]);

  for (i = 0; i < 7; i++) {
    const unsigned *ct =
        i == 0 ? ccc : i < 3 ? cc + (i & 2) : segcounts + (i - 3) * 2;
    av1_prob_diff_update_savings_search(ct, cur_tree_probs[i],
                                        &segment_tree_probs[i],
                                        DIFF_UPDATE_PROB, probwt);
  }
}

// Based on set of segment counts and probabilities calculate a cost estimate
static int cost_segmap(unsigned *segcounts, aom_prob *probs) {
  const int c01 = segcounts[0] + segcounts[1];
  const int c23 = segcounts[2] + segcounts[3];
  const int c45 = segcounts[4] + segcounts[5];
  const int c67 = segcounts[6] + segcounts[7];
  const int c0123 = c01 + c23;
  const int c4567 = c45 + c67;

  // Cost the top node of the tree
  int cost = c0123 * av1_cost_zero(probs[0]) + c4567 * av1_cost_one(probs[0]);

  // Cost subsequent levels
  if (c0123 > 0) {
    cost += c01 * av1_cost_zero(probs[1]) + c23 * av1_cost_one(probs[1]);

    if (c01 > 0)
      cost += segcounts[0] * av1_cost_zero(probs[3]) +
              segcounts[1] * av1_cost_one(probs[3]);
    if (c23 > 0)
      cost += segcounts[2] * av1_cost_zero(probs[4]) +
              segcounts[3] * av1_cost_one(probs[4]);
  }

  if (c4567 > 0) {
    cost += c45 * av1_cost_zero(probs[2]) + c67 * av1_cost_one(probs[2]);

    if (c45 > 0)
      cost += segcounts[4] * av1_cost_zero(probs[5]) +
              segcounts[5] * av1_cost_one(probs[5]);
    if (c67 > 0)
      cost += segcounts[6] * av1_cost_zero(probs[6]) +
              segcounts[7] * av1_cost_one(probs[6]);
  }

  return cost;
}

static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd,
                       const TileInfo *tile, MODE_INFO **mi,
                       unsigned *no_pred_segcounts,
                       unsigned (*temporal_predictor_count)[2],
                       unsigned *t_unpred_seg_counts, int bw, int bh,
                       int mi_row, int mi_col) {
  int segment_id;

  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;

  xd->mi = mi;
  segment_id = xd->mi[0]->mbmi.segment_id;

  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw,
#if CONFIG_DEPENDENT_HORZTILES
                 cm->dependent_horz_tiles,
#endif  // CONFIG_DEPENDENT_HORZTILES
                 cm->mi_rows, cm->mi_cols);

  // Count the number of hits on each segment with no prediction
  no_pred_segcounts[segment_id]++;

  // Temporal prediction not allowed on key frames
  if (cm->frame_type != KEY_FRAME) {
    const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
    // Test to see if the segment id matches the predicted value.
    const int pred_segment_id =
        get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col);
    const int pred_flag = pred_segment_id == segment_id;
    const int pred_context = av1_get_pred_context_seg_id(xd);

    // Store the prediction status for this mb and update counts
    // as appropriate
    xd->mi[0]->mbmi.seg_id_predicted = pred_flag;
    temporal_predictor_count[pred_context][pred_flag]++;

    // Update the "unpredicted" segment count
    if (!pred_flag) t_unpred_seg_counts[segment_id]++;
  }
}

static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
                          const TileInfo *tile, MODE_INFO **mi,
                          unsigned *no_pred_segcounts,
                          unsigned (*temporal_predictor_count)[2],
                          unsigned *t_unpred_seg_counts, int mi_row, int mi_col,
                          BLOCK_SIZE bsize) {
  const int mis = cm->mi_stride;
  const int bs = mi_size_wide[bsize], hbs = bs / 2;
#if CONFIG_EXT_PARTITION_TYPES
  PARTITION_TYPE partition;
#else
  int bw, bh;
#endif  // CONFIG_EXT_PARTITION_TYPES

  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;

#if CONFIG_EXT_PARTITION_TYPES
  if (bsize == BLOCK_8X8)
    partition = PARTITION_NONE;
  else
    partition = get_partition(cm, mi_row, mi_col, bsize);
  switch (partition) {
    case PARTITION_NONE:
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
                 t_unpred_seg_counts, bs, bs, mi_row, mi_col);
      break;
    case PARTITION_HORZ:
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
                 t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
      count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
                 mi_row + hbs, mi_col);
      break;
    case PARTITION_VERT:
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
                 t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
      count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row,
                 mi_col + hbs);
      break;
    case PARTITION_HORZ_A:
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
                 t_unpred_seg_counts, hbs, hbs, mi_row, mi_col);
      count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
                 mi_row, mi_col + hbs);
      count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
                 mi_row + hbs, mi_col);
      break;
    case PARTITION_HORZ_B:
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
                 t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
      count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
                 mi_row + hbs, mi_col);
      count_segs(cm, xd, tile, mi + hbs + hbs * mis, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
                 mi_row + hbs, mi_col + hbs);
      break;
    case PARTITION_VERT_A:
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
                 t_unpred_seg_counts, hbs, hbs, mi_row, mi_col);
      count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
                 mi_row + hbs, mi_col);
      count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row,
                 mi_col + hbs);
      break;
    case PARTITION_VERT_B:
      count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
                 t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
      count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
                 mi_row, mi_col + hbs);
      count_segs(cm, xd, tile, mi + hbs + hbs * mis, no_pred_segcounts,
                 temporal_predictor_count, t_unpred_seg_counts, hbs, hbs,
                 mi_row + hbs, mi_col + hbs);
      break;
    case PARTITION_SPLIT: {
      const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
      int n;

      assert(num_8x8_blocks_wide_lookup[mi[0]->mbmi.sb_type] < bs &&
             num_8x8_blocks_high_lookup[mi[0]->mbmi.sb_type] < bs);

      for (n = 0; n < 4; n++) {
        const int mi_dc = hbs * (n & 1);
        const int mi_dr = hbs * (n >> 1);

        count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts,
                      temporal_predictor_count, t_unpred_seg_counts,
                      mi_row + mi_dr, mi_col + mi_dc, subsize);
      }
    } break;
    default: assert(0);
  }
#else
  bw = mi_size_wide[mi[0]->mbmi.sb_type];
  bh = mi_size_high[mi[0]->mbmi.sb_type];

  if (bw == bs && bh == bs) {
    count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
               t_unpred_seg_counts, bs, bs, mi_row, mi_col);
  } else if (bw == bs && bh < bs) {
    count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
               t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
    count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
               temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
               mi_row + hbs, mi_col);
  } else if (bw < bs && bh == bs) {
    count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
               t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
    count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
               temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row,
               mi_col + hbs);
  } else {
    const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
    int n;

    assert(bw < bs && bh < bs);

    for (n = 0; n < 4; n++) {
      const int mi_dc = hbs * (n & 1);
      const int mi_dr = hbs * (n >> 1);

      count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts,
                    temporal_predictor_count, t_unpred_seg_counts,
                    mi_row + mi_dr, mi_col + mi_dc, subsize);
    }
  }
#endif  // CONFIG_EXT_PARTITION_TYPES
}

void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) {
  struct segmentation *seg = &cm->seg;
  struct segmentation_probs *segp = &cm->fc->seg;

  int no_pred_cost;
  int t_pred_cost = INT_MAX;

  int tile_col, tile_row, mi_row, mi_col;
  const int probwt = cm->num_tg;

  unsigned(*temporal_predictor_count)[2] = cm->counts.seg.pred;
  unsigned *no_pred_segcounts = cm->counts.seg.tree_total;
  unsigned *t_unpred_seg_counts = cm->counts.seg.tree_mispred;

  aom_prob no_pred_tree[SEG_TREE_PROBS];
  aom_prob t_pred_tree[SEG_TREE_PROBS];
#if !CONFIG_NEW_MULTISYMBOL
  aom_prob t_nopred_prob[PREDICTION_PROBS];
#endif

  (void)xd;

  // We are about to recompute all the segment counts, so zero the accumulators.
  av1_zero(cm->counts.seg);

  // First of all generate stats regarding how well the last segment map
  // predicts this one
  for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
    TileInfo tile_info;
    av1_tile_set_row(&tile_info, cm, tile_row);
    for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) {
      MODE_INFO **mi_ptr;
      av1_tile_set_col(&tile_info, cm, tile_col);
#if CONFIG_DEPENDENT_HORZTILES
      av1_tile_set_tg_boundary(&tile_info, cm, tile_row, tile_col);
#endif
      mi_ptr = cm->mi_grid_visible + tile_info.mi_row_start * cm->mi_stride +
               tile_info.mi_col_start;
      for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
           mi_row += cm->mib_size, mi_ptr += cm->mib_size * cm->mi_stride) {
        MODE_INFO **mi = mi_ptr;
        for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
             mi_col += cm->mib_size, mi += cm->mib_size) {
          count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts,
                        temporal_predictor_count, t_unpred_seg_counts, mi_row,
                        mi_col, cm->sb_size);
        }
      }
    }
  }

  // Work out probability tree for coding segments without prediction
  // and the cost.
  calc_segtree_probs(no_pred_segcounts, no_pred_tree, segp->tree_probs, probwt);
  no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);

  // Key frames cannot use temporal prediction
  if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
    // Work out probability tree for coding those segments not
    // predicted using the temporal method and the cost.
    calc_segtree_probs(t_unpred_seg_counts, t_pred_tree, segp->tree_probs,
                       probwt);
    t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);
#if !CONFIG_NEW_MULTISYMBOL
    // Add in the cost of the signaling for each prediction context.
    int i;
    for (i = 0; i < PREDICTION_PROBS; i++) {
      const int count0 = temporal_predictor_count[i][0];
      const int count1 = temporal_predictor_count[i][1];

      t_nopred_prob[i] = get_binary_prob(count0, count1);
      av1_prob_diff_update_savings_search(
          temporal_predictor_count[i], segp->pred_probs[i], &t_nopred_prob[i],
          DIFF_UPDATE_PROB, probwt);

      // Add in the predictor signaling cost
      t_pred_cost += count0 * av1_cost_zero(t_nopred_prob[i]) +
                     count1 * av1_cost_one(t_nopred_prob[i]);
    }
#endif
  }

  // Now choose which coding method to use.
  if (t_pred_cost < no_pred_cost) {
    assert(!cm->error_resilient_mode);
    seg->temporal_update = 1;
  } else {
    seg->temporal_update = 0;
  }
}

void av1_reset_segment_features(AV1_COMMON *cm) {
  struct segmentation *seg = &cm->seg;

  // Set up default state for MB feature flags
  seg->enabled = 0;
  seg->update_map = 0;
  seg->update_data = 0;
  av1_clearall_segfeatures(seg);
}