1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/alloccommon.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/common/common.h"
#include "av1/common/entropymode.h"
#include "av1/common/quant_common.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/random.h"
#include "av1/encoder/ratectrl.h"
// Max rate target for 1080P and below encodes under normal circumstances
// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
#define MAX_MB_RATE 250
#define MAXRATE_1080P 2025000
#define DEFAULT_KF_BOOST 2000
#define DEFAULT_GF_BOOST 2000
#define MIN_BPB_FACTOR 0.005
#define MAX_BPB_FACTOR 50
#define FRAME_OVERHEAD_BITS 200
#define ASSIGN_MINQ_TABLE(bit_depth, name) \
do { \
switch (bit_depth) { \
case AOM_BITS_8: name = name##_8; break; \
case AOM_BITS_10: name = name##_10; break; \
case AOM_BITS_12: name = name##_12; break; \
default: \
assert(0 && \
"bit_depth should be AOM_BITS_8, AOM_BITS_10" \
" or AOM_BITS_12"); \
name = NULL; \
} \
} while (0)
// Tables relating active max Q to active min Q
static int kf_low_motion_minq_8[QINDEX_RANGE];
static int kf_high_motion_minq_8[QINDEX_RANGE];
static int arfgf_low_motion_minq_8[QINDEX_RANGE];
static int arfgf_high_motion_minq_8[QINDEX_RANGE];
static int inter_minq_8[QINDEX_RANGE];
static int rtc_minq_8[QINDEX_RANGE];
static int kf_low_motion_minq_10[QINDEX_RANGE];
static int kf_high_motion_minq_10[QINDEX_RANGE];
static int arfgf_low_motion_minq_10[QINDEX_RANGE];
static int arfgf_high_motion_minq_10[QINDEX_RANGE];
static int inter_minq_10[QINDEX_RANGE];
static int rtc_minq_10[QINDEX_RANGE];
static int kf_low_motion_minq_12[QINDEX_RANGE];
static int kf_high_motion_minq_12[QINDEX_RANGE];
static int arfgf_low_motion_minq_12[QINDEX_RANGE];
static int arfgf_high_motion_minq_12[QINDEX_RANGE];
static int inter_minq_12[QINDEX_RANGE];
static int rtc_minq_12[QINDEX_RANGE];
static int gf_high = 2000;
static int gf_low = 400;
static int kf_high = 5000;
static int kf_low = 400;
// How many times less pixels there are to encode given the current scaling.
// Temporary replacement for rcf_mult and rate_thresh_mult.
static double resize_rate_factor(const AV1_COMP *cpi, int width, int height) {
return (double)(cpi->oxcf.width * cpi->oxcf.height) / (width * height);
}
// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
static int get_minq_index(double maxq, double x3, double x2, double x1,
aom_bit_depth_t bit_depth) {
int i;
const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
// Special case handling to deal with the step from q2.0
// down to lossless mode represented by q 1.0.
if (minqtarget <= 2.0) return 0;
for (i = 0; i < QINDEX_RANGE; i++) {
if (minqtarget <= av1_convert_qindex_to_q(i, bit_depth)) return i;
}
return QINDEX_RANGE - 1;
}
static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
int *arfgf_high, int *inter, int *rtc,
aom_bit_depth_t bit_depth) {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
const double maxq = av1_convert_qindex_to_q(i, bit_depth);
kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
}
}
void av1_rc_init_minq_luts(void) {
init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
inter_minq_8, rtc_minq_8, AOM_BITS_8);
init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
inter_minq_10, rtc_minq_10, AOM_BITS_10);
init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
inter_minq_12, rtc_minq_12, AOM_BITS_12);
}
// These functions use formulaic calculations to make playing with the
// quantizer tables easier. If necessary they can be replaced by lookup
// tables if and when things settle down in the experimental bitstream
double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) {
// Convert the index to a real Q value (scaled down to match old Q values)
switch (bit_depth) {
case AOM_BITS_8: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 4.0;
case AOM_BITS_10: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 16.0;
case AOM_BITS_12: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 64.0;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1.0;
}
}
int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
double correction_factor, aom_bit_depth_t bit_depth) {
const double q = av1_convert_qindex_to_q(qindex, bit_depth);
int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
assert(correction_factor <= MAX_BPB_FACTOR &&
correction_factor >= MIN_BPB_FACTOR);
// q based adjustment to baseline enumerator
enumerator += (int)(enumerator * q) >> 12;
return (int)(enumerator * correction_factor / q);
}
int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
double correction_factor,
aom_bit_depth_t bit_depth) {
const int bpm =
(int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
return AOMMAX(FRAME_OVERHEAD_BITS,
(int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
}
int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target) {
const RATE_CONTROL *rc = &cpi->rc;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
const int min_frame_target =
AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
// Clip the frame target to the minimum setup value.
if (cpi->rc.is_src_frame_alt_ref) {
// If there is an active ARF at this location use the minimum
// bits on this frame even if it is a constructed arf.
// The active maximum quantizer insures that an appropriate
// number of bits will be spent if needed for constructed ARFs.
target = min_frame_target;
} else if (target < min_frame_target) {
target = min_frame_target;
}
// Clip the frame target to the maximum allowed value.
if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
if (oxcf->rc_max_inter_bitrate_pct) {
const int max_rate =
rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
target = AOMMIN(target, max_rate);
}
return target;
}
int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int target) {
const RATE_CONTROL *rc = &cpi->rc;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
if (oxcf->rc_max_intra_bitrate_pct) {
const int max_rate =
rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
target = AOMMIN(target, max_rate);
}
if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
return target;
}
// Update the buffer level: leaky bucket model.
static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) {
const AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
// Non-viewable frames are a special case and are treated as pure overhead.
// TODO(zoeliu): To further explore whether we should treat BWDREF_FRAME
// differently, since it is a no-show frame.
if (!cm->show_frame && !rc->is_bwd_ref_frame)
rc->bits_off_target -= encoded_frame_size;
else
rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
// Clip the buffer level to the maximum specified buffer size.
rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = rc->bits_off_target;
}
int av1_rc_get_default_min_gf_interval(int width, int height,
double framerate) {
// Assume we do not need any constraint lower than 4K 20 fps
static const double factor_safe = 3840 * 2160 * 20.0;
const double factor = width * height * framerate;
const int default_interval =
clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
if (factor <= factor_safe)
return default_interval;
else
return AOMMAX(default_interval,
(int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
// Note this logic makes:
// 4K24: 5
// 4K30: 6
// 4K60: 12
}
int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
interval += (interval & 0x01); // Round to even value
return AOMMAX(interval, min_gf_interval);
}
void av1_rc_init(const AV1EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
int i;
if (pass == 0 && oxcf->rc_mode == AOM_CBR) {
rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
} else {
rc->avg_frame_qindex[KEY_FRAME] =
(oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
rc->avg_frame_qindex[INTER_FRAME] =
(oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
}
rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
rc->buffer_level = rc->starting_buffer_level;
rc->bits_off_target = rc->starting_buffer_level;
rc->rolling_target_bits = rc->avg_frame_bandwidth;
rc->rolling_actual_bits = rc->avg_frame_bandwidth;
rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
rc->total_actual_bits = 0;
rc->total_target_bits = 0;
rc->total_target_vs_actual = 0;
rc->frames_since_key = 8; // Sensible default for first frame.
rc->this_key_frame_forced = 0;
rc->next_key_frame_forced = 0;
rc->source_alt_ref_pending = 0;
rc->source_alt_ref_active = 0;
rc->frames_till_gf_update_due = 0;
rc->ni_av_qi = oxcf->worst_allowed_q;
rc->ni_tot_qi = 0;
rc->ni_frames = 0;
rc->tot_q = 0.0;
rc->avg_q = av1_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
rc->rate_correction_factors[i] = 1.0;
}
rc->min_gf_interval = oxcf->min_gf_interval;
rc->max_gf_interval = oxcf->max_gf_interval;
if (rc->min_gf_interval == 0)
rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
oxcf->width, oxcf->height, oxcf->init_framerate);
if (rc->max_gf_interval == 0)
rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
oxcf->init_framerate, rc->min_gf_interval);
rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
}
int av1_rc_drop_frame(AV1_COMP *cpi) {
const AV1EncoderConfig *oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
if (!oxcf->drop_frames_water_mark) {
return 0;
} else {
if (rc->buffer_level < 0) {
// Always drop if buffer is below 0.
return 1;
} else {
// If buffer is below drop_mark, for now just drop every other frame
// (starting with the next frame) until it increases back over drop_mark.
int drop_mark =
(int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100);
if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) {
--rc->decimation_factor;
} else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) {
rc->decimation_factor = 1;
}
if (rc->decimation_factor > 0) {
if (rc->decimation_count > 0) {
--rc->decimation_count;
return 1;
} else {
rc->decimation_count = rc->decimation_factor;
return 0;
}
} else {
rc->decimation_count = 0;
return 0;
}
}
}
}
static double get_rate_correction_factor(const AV1_COMP *cpi, int width,
int height) {
const RATE_CONTROL *const rc = &cpi->rc;
double rcf;
if (cpi->common.frame_type == KEY_FRAME) {
rcf = rc->rate_correction_factors[KF_STD];
} else if (cpi->oxcf.pass == 2) {
RATE_FACTOR_LEVEL rf_lvl =
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
rcf = rc->rate_correction_factors[rf_lvl];
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!rc->is_src_frame_alt_ref &&
(cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
rcf = rc->rate_correction_factors[GF_ARF_STD];
else
rcf = rc->rate_correction_factors[INTER_NORMAL];
}
rcf *= resize_rate_factor(cpi, width, height);
return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
}
static void set_rate_correction_factor(AV1_COMP *cpi, double factor, int width,
int height) {
RATE_CONTROL *const rc = &cpi->rc;
// Normalize RCF to account for the size-dependent scaling factor.
factor /= resize_rate_factor(cpi, width, height);
factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
if (cpi->common.frame_type == KEY_FRAME) {
rc->rate_correction_factors[KF_STD] = factor;
} else if (cpi->oxcf.pass == 2) {
RATE_FACTOR_LEVEL rf_lvl =
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
rc->rate_correction_factors[rf_lvl] = factor;
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!rc->is_src_frame_alt_ref &&
(cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
rc->rate_correction_factors[GF_ARF_STD] = factor;
else
rc->rate_correction_factors[INTER_NORMAL] = factor;
}
}
void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int width,
int height) {
const AV1_COMMON *const cm = &cpi->common;
int correction_factor = 100;
double rate_correction_factor =
get_rate_correction_factor(cpi, width, height);
double adjustment_limit;
const int MBs = av1_get_MBs(width, height);
int projected_size_based_on_q = 0;
// Do not update the rate factors for arf overlay frames.
if (cpi->rc.is_src_frame_alt_ref) return;
// Clear down mmx registers to allow floating point in what follows
aom_clear_system_state();
// Work out how big we would have expected the frame to be at this Q given
// the current correction factor.
// Stay in double to avoid int overflow when values are large
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
projected_size_based_on_q =
av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
} else {
projected_size_based_on_q = av1_estimate_bits_at_q(
cpi->common.frame_type, cm->base_qindex, MBs, rate_correction_factor,
cm->seq_params.bit_depth);
}
// Work out a size correction factor.
if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
projected_size_based_on_q);
// More heavily damped adjustment used if we have been oscillating either side
// of target.
if (correction_factor > 0) {
adjustment_limit =
0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor)));
} else {
adjustment_limit = 0.75;
}
cpi->rc.q_2_frame = cpi->rc.q_1_frame;
cpi->rc.q_1_frame = cm->base_qindex;
cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
if (correction_factor > 110)
cpi->rc.rc_1_frame = -1;
else if (correction_factor < 90)
cpi->rc.rc_1_frame = 1;
else
cpi->rc.rc_1_frame = 0;
if (correction_factor > 102) {
// We are not already at the worst allowable quality
correction_factor =
(int)(100 + ((correction_factor - 100) * adjustment_limit));
rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
// Keep rate_correction_factor within limits
if (rate_correction_factor > MAX_BPB_FACTOR)
rate_correction_factor = MAX_BPB_FACTOR;
} else if (correction_factor < 99) {
// We are not already at the best allowable quality
correction_factor =
(int)(100 - ((100 - correction_factor) * adjustment_limit));
rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
// Keep rate_correction_factor within limits
if (rate_correction_factor < MIN_BPB_FACTOR)
rate_correction_factor = MIN_BPB_FACTOR;
}
set_rate_correction_factor(cpi, rate_correction_factor, width, height);
}
int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame,
int active_best_quality, int active_worst_quality,
int width, int height) {
const AV1_COMMON *const cm = &cpi->common;
int q = active_worst_quality;
int last_error = INT_MAX;
int i, target_bits_per_mb, bits_per_mb_at_this_q;
const int MBs = av1_get_MBs(width, height);
const double correction_factor =
get_rate_correction_factor(cpi, width, height);
// Calculate required scaling factor based on target frame size and size of
// frame produced using previous Q.
target_bits_per_mb =
(int)((uint64_t)(target_bits_per_frame) << BPER_MB_NORMBITS) / MBs;
i = active_best_quality;
do {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
bits_per_mb_at_this_q =
(int)av1_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
} else {
bits_per_mb_at_this_q = (int)av1_rc_bits_per_mb(
cm->frame_type, i, correction_factor, cm->seq_params.bit_depth);
}
if (bits_per_mb_at_this_q <= target_bits_per_mb) {
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
q = i;
else
q = i - 1;
break;
} else {
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
}
} while (++i <= active_worst_quality);
// In CBR mode, this makes sure q is between oscillating Qs to prevent
// resonance.
if (cpi->oxcf.rc_mode == AOM_CBR &&
(cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
q = clamp(q, AOMMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
AOMMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
}
return q;
}
static int get_active_quality(int q, int gfu_boost, int low, int high,
int *low_motion_minq, int *high_motion_minq) {
if (gfu_boost > high) {
return low_motion_minq[q];
} else if (gfu_boost < low) {
return high_motion_minq[q];
} else {
const int gap = high - low;
const int offset = high - gfu_boost;
const int qdiff = high_motion_minq[q] - low_motion_minq[q];
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
return low_motion_minq[q] + adjustment;
}
}
static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
aom_bit_depth_t bit_depth) {
int *kf_low_motion_minq;
int *kf_high_motion_minq;
ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
kf_low_motion_minq, kf_high_motion_minq);
}
static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
aom_bit_depth_t bit_depth) {
int *arfgf_low_motion_minq;
int *arfgf_high_motion_minq;
ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
arfgf_low_motion_minq, arfgf_high_motion_minq);
}
static int calc_active_worst_quality_one_pass_vbr(const AV1_COMP *cpi) {
const RATE_CONTROL *const rc = &cpi->rc;
const unsigned int curr_frame = cpi->common.current_video_frame;
int active_worst_quality;
if (cpi->common.frame_type == KEY_FRAME) {
active_worst_quality =
curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2;
} else {
if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame ||
cpi->refresh_alt_ref_frame)) {
active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
: rc->last_q[INTER_FRAME];
} else {
active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
: rc->last_q[INTER_FRAME] * 2;
}
}
return AOMMIN(active_worst_quality, rc->worst_quality);
}
// Adjust active_worst_quality level based on buffer level.
static int calc_active_worst_quality_one_pass_cbr(const AV1_COMP *cpi) {
// Adjust active_worst_quality: If buffer is above the optimal/target level,
// bring active_worst_quality down depending on fullness of buffer.
// If buffer is below the optimal level, let the active_worst_quality go from
// ambient Q (at buffer = optimal level) to worst_quality level
// (at buffer = critical level).
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *rc = &cpi->rc;
// Buffer level below which we push active_worst to worst_quality.
int64_t critical_level = rc->optimal_buffer_level >> 3;
int64_t buff_lvl_step = 0;
int adjustment = 0;
int active_worst_quality;
int ambient_qp;
if (cm->frame_type == KEY_FRAME) return rc->worst_quality;
// For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
// for the first few frames following key frame. These are both initialized
// to worst_quality and updated with (3/4, 1/4) average in postencode_update.
// So for first few frames following key, the qp of that key frame is weighted
// into the active_worst_quality setting.
ambient_qp = (cm->current_video_frame < 5)
? AOMMIN(rc->avg_frame_qindex[INTER_FRAME],
rc->avg_frame_qindex[KEY_FRAME])
: rc->avg_frame_qindex[INTER_FRAME];
active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4);
if (rc->buffer_level > rc->optimal_buffer_level) {
// Adjust down.
// Maximum limit for down adjustment, ~30%.
int max_adjustment_down = active_worst_quality / 3;
if (max_adjustment_down) {
buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
max_adjustment_down);
if (buff_lvl_step)
adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
buff_lvl_step);
active_worst_quality -= adjustment;
}
} else if (rc->buffer_level > critical_level) {
// Adjust up from ambient Q.
if (critical_level) {
buff_lvl_step = (rc->optimal_buffer_level - critical_level);
if (buff_lvl_step) {
adjustment = (int)((rc->worst_quality - ambient_qp) *
(rc->optimal_buffer_level - rc->buffer_level) /
buff_lvl_step);
}
active_worst_quality = ambient_qp + adjustment;
}
} else {
// Set to worst_quality if buffer is below critical level.
active_worst_quality = rc->worst_quality;
}
return active_worst_quality;
}
static int rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP *cpi, int width,
int height, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
int active_best_quality;
int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
int q;
int *rtc_minq;
const int bit_depth = cm->seq_params.bit_depth;
ASSIGN_MINQ_TABLE(bit_depth, rtc_minq);
if (frame_is_intra_only(cm)) {
active_best_quality = rc->best_quality;
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
if (rc->this_key_frame_forced) {
int qindex = rc->last_boosted_qindex;
double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
int delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
(last_boosted_q * 0.75), bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else if (cm->current_video_frame > 0) {
// not first frame of one pass and kf_boost is set
double q_adj_factor = 1.0;
double q_val;
active_best_quality =
get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
// Allow somewhat lower kf minq with small image formats.
if ((width * height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
active_best_quality +=
av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
}
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
if (rc->frames_since_key > 1 &&
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
q = rc->avg_frame_qindex[INTER_FRAME];
} else {
q = active_worst_quality;
}
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
} else {
// Use the lower of active_worst_quality and recent/average Q.
if (cm->current_video_frame > 1) {
if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
else
active_best_quality = rtc_minq[active_worst_quality];
} else {
if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
else
active_best_quality = rtc_minq[active_worst_quality];
}
}
// Clip the active best and worst quality values to limits
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
// Limit Q range for the adaptive loop.
if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
!(cm->current_video_frame == 0)) {
int qdelta = 0;
aom_clear_system_state();
qdelta = av1_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
active_worst_quality, 2.0, bit_depth);
*top_index = active_worst_quality + qdelta;
*top_index = AOMMAX(*top_index, *bottom_index);
}
// Special case code to try and match quality with forced key frames
if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
q = rc->last_boosted_qindex;
} else {
q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality, width, height);
if (q > *top_index) {
// Special case when we are targeting the max allowed rate
if (rc->this_frame_target >= rc->max_frame_bandwidth)
*top_index = q;
else
q = *top_index;
}
}
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
static int get_active_cq_level(const RATE_CONTROL *rc,
const AV1EncoderConfig *const oxcf) {
static const double cq_adjust_threshold = 0.1;
int active_cq_level = oxcf->cq_level;
if (oxcf->rc_mode == AOM_CQ && rc->total_target_bits > 0) {
const double x = (double)rc->total_actual_bits / rc->total_target_bits;
if (x < cq_adjust_threshold) {
active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
}
}
return active_cq_level;
}
static int rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP *cpi, int width,
int height, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int cq_level = get_active_cq_level(rc, oxcf);
int active_best_quality;
int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
int q;
int *inter_minq;
const int bit_depth = cm->seq_params.bit_depth;
ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
if (frame_is_intra_only(cm)) {
if (oxcf->rc_mode == AOM_Q) {
const int qindex = cq_level;
const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
const int delta_qindex =
av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else if (rc->this_key_frame_forced) {
const int qindex = rc->last_boosted_qindex;
const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
const int delta_qindex = av1_compute_qdelta(
rc, last_boosted_q, last_boosted_q * 0.75, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else { // not first frame of one pass and kf_boost is set
double q_adj_factor = 1.0;
active_best_quality =
get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
// Allow somewhat lower kf minq with small image formats.
if ((width * height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Convert the adjustment factor to a qindex delta on active_best_quality.
{
const double q_val =
av1_convert_qindex_to_q(active_best_quality, bit_depth);
active_best_quality +=
av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
}
}
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
q = (rc->frames_since_key > 1 &&
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
? rc->avg_frame_qindex[INTER_FRAME]
: rc->avg_frame_qindex[KEY_FRAME];
// For constrained quality dont allow Q less than the cq level
if (oxcf->rc_mode == AOM_CQ) {
if (q < cq_level) q = cq_level;
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
// Constrained quality use slightly lower active best.
active_best_quality = active_best_quality * 15 / 16;
} else if (oxcf->rc_mode == AOM_Q) {
const int qindex = cq_level;
const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
const int delta_qindex =
(cpi->refresh_alt_ref_frame)
? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth)
: av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else {
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
}
} else {
if (oxcf->rc_mode == AOM_Q) {
const int qindex = cq_level;
const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
0.70, 1.0, 0.85, 1.0 };
const int delta_qindex = av1_compute_qdelta(
rc, q_val,
q_val * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL],
bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else {
// Use the lower of active_worst_quality and recent/average Q.
active_best_quality = (cm->current_video_frame > 1)
? inter_minq[rc->avg_frame_qindex[INTER_FRAME]]
: inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
// For the constrained quality mode we don't want
// q to fall below the cq level.
if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
active_best_quality = cq_level;
}
}
}
// Clip the active best and worst quality values to limits
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
// Limit Q range for the adaptive loop.
{
int qdelta = 0;
aom_clear_system_state();
if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
!(cm->current_video_frame == 0)) {
qdelta = av1_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
active_worst_quality, 2.0, bit_depth);
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
qdelta = av1_compute_qdelta_by_rate(
&cpi->rc, cm->frame_type, active_worst_quality, 1.75, bit_depth);
}
*top_index = active_worst_quality + qdelta;
*top_index = AOMMAX(*top_index, *bottom_index);
}
if (oxcf->rc_mode == AOM_Q) {
q = active_best_quality;
// Special case code to try and match quality with forced key frames
} else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
q = rc->last_boosted_qindex;
} else {
q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality, width, height);
if (q > *top_index) {
// Special case when we are targeting the max allowed rate
if (rc->this_frame_target >= rc->max_frame_bandwidth)
*top_index = q;
else
q = *top_index;
}
}
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
int av1_frame_type_qdelta(const AV1_COMP *cpi, int rf_level, int q) {
static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = {
INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME
};
const AV1_COMMON *const cm = &cpi->common;
int qdelta = av1_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], q,
rate_factor_deltas[rf_level],
cm->seq_params.bit_depth);
return qdelta;
}
#define STATIC_MOTION_THRESH 95
static int rc_pick_q_and_bounds_two_pass(const AV1_COMP *cpi, int width,
int height, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const GF_GROUP *gf_group = &cpi->twopass.gf_group;
const int cq_level = get_active_cq_level(rc, oxcf);
int active_best_quality;
int active_worst_quality = cpi->twopass.active_worst_quality;
int q;
int *inter_minq;
const int bit_depth = cm->seq_params.bit_depth;
ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
#if CUSTOMIZED_GF
const int is_intrl_arf_boost =
gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE;
#else
const int is_intrl_arf_boost = cpi->refresh_alt2_ref_frame;
#endif // CUSTOMIZED_GF
if (frame_is_intra_only(cm)) {
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
if (rc->this_key_frame_forced) {
double last_boosted_q;
int delta_qindex;
int qindex;
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
qindex = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
active_best_quality = qindex;
last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
last_boosted_q * 1.25, bit_depth);
active_worst_quality =
AOMMIN(qindex + delta_qindex, active_worst_quality);
} else {
qindex = rc->last_boosted_qindex;
last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
last_boosted_q * 0.75, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
}
} else {
// Not forced keyframe.
double q_adj_factor = 1.0;
double q_val;
// Baseline value derived from cpi->active_worst_quality and kf boost.
active_best_quality =
get_kf_active_quality(rc, active_worst_quality, bit_depth);
// Allow somewhat lower kf minq with small image formats.
if ((width * height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Make a further adjustment based on the kf zero motion measure.
q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
active_best_quality +=
av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
}
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || is_intrl_arf_boost ||
cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
if (rc->frames_since_key > 1 &&
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
q = rc->avg_frame_qindex[INTER_FRAME];
} else {
q = active_worst_quality;
}
// For constrained quality dont allow Q less than the cq level
if (oxcf->rc_mode == AOM_CQ) {
if (q < cq_level) q = cq_level;
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
// Constrained quality use slightly lower active best.
active_best_quality = active_best_quality * 15 / 16;
} else if (oxcf->rc_mode == AOM_Q) {
if (!cpi->refresh_alt_ref_frame && !is_intrl_arf_boost) {
active_best_quality = cq_level;
} else {
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
#if USE_SYMM_MULTI_LAYER
if (cpi->new_bwdref_update_rule && is_intrl_arf_boost) {
int this_height = gf_group->pyramid_level[gf_group->index];
while (this_height < gf_group->pyramid_height) {
active_best_quality = (active_best_quality + cq_level + 1) / 2;
++this_height;
}
} else {
#endif
// Modify best quality for second level arfs. For mode AOM_Q this
// becomes the baseline frame q.
if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
active_best_quality = (active_best_quality + cq_level + 1) / 2;
#if USE_SYMM_MULTI_LAYER
}
#endif
}
} else {
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
#if USE_SYMM_MULTI_LAYER
if (cpi->new_bwdref_update_rule && is_intrl_arf_boost) {
int this_height = gf_group->pyramid_level[gf_group->index];
while (this_height < gf_group->pyramid_height) {
active_best_quality =
(active_best_quality + active_worst_quality + 1) / 2;
++this_height;
}
}
#endif
}
} else {
if (oxcf->rc_mode == AOM_Q) {
active_best_quality = cq_level;
} else {
active_best_quality = inter_minq[active_worst_quality];
// For the constrained quality mode we don't want
// q to fall below the cq level.
if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
active_best_quality = cq_level;
}
}
}
// Extension to max or min Q if undershoot or overshoot is outside
// the permitted range.
if ((cpi->oxcf.rc_mode != AOM_Q) &&
(cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) {
if (frame_is_intra_only(cm) ||
(!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || is_intrl_arf_boost ||
cpi->refresh_alt_ref_frame))) {
active_best_quality -=
(cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
active_worst_quality += (cpi->twopass.extend_maxq / 2);
} else {
active_best_quality -=
(cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
active_worst_quality += cpi->twopass.extend_maxq;
}
}
aom_clear_system_state();
// Static forced key frames Q restrictions dealt with elsewhere.
if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced ||
(cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
int qdelta = av1_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
active_worst_quality);
active_worst_quality =
AOMMAX(active_worst_quality + qdelta, active_best_quality);
}
// Modify active_best_quality for downscaled normal frames.
if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) {
int qdelta = av1_compute_qdelta_by_rate(
rc, cm->frame_type, active_best_quality, 2.0, bit_depth);
active_best_quality =
AOMMAX(active_best_quality + qdelta, rc->best_quality);
}
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
if (oxcf->rc_mode == AOM_Q) {
q = active_best_quality;
// Special case code to try and match quality with forced key frames.
} else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
// If static since last kf use better of last boosted and last kf q.
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
q = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
} else {
q = rc->last_boosted_qindex;
}
} else {
q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality, width, height);
if (q > active_worst_quality) {
// Special case when we are targeting the max allowed rate.
if (rc->this_frame_target >= rc->max_frame_bandwidth)
active_worst_quality = q;
else
q = active_worst_quality;
}
}
clamp(q, active_best_quality, active_worst_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
int av1_rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height,
int *bottom_index, int *top_index) {
int q;
if (cpi->oxcf.pass == 0) {
if (cpi->oxcf.rc_mode == AOM_CBR)
q = rc_pick_q_and_bounds_one_pass_cbr(cpi, width, height, bottom_index,
top_index);
else
q = rc_pick_q_and_bounds_one_pass_vbr(cpi, width, height, bottom_index,
top_index);
} else {
q = rc_pick_q_and_bounds_two_pass(cpi, width, height, bottom_index,
top_index);
}
return q;
}
void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target,
int *frame_under_shoot_limit,
int *frame_over_shoot_limit) {
if (cpi->oxcf.rc_mode == AOM_Q) {
*frame_under_shoot_limit = 0;
*frame_over_shoot_limit = INT_MAX;
} else {
// For very small rate targets where the fractional adjustment
// may be tiny make sure there is at least a minimum range.
const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
*frame_under_shoot_limit = AOMMAX(frame_target - tolerance - 200, 0);
*frame_over_shoot_limit =
AOMMIN(frame_target + tolerance + 200, cpi->rc.max_frame_bandwidth);
}
}
static void rc_set_frame_target(AV1_COMP *cpi, int target, int width,
int height) {
const AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
rc->this_frame_target = target;
// Modify frame size target when down-scaled.
if (av1_frame_scaled(cm))
rc->this_frame_target =
(int)(rc->this_frame_target * resize_rate_factor(cpi, width, height));
// Target rate per SB64 (including partial SB64s.
rc->sb64_target_rate =
(int)((int64_t)rc->this_frame_target * 64 * 64) / (width * height);
}
static void update_alt_ref_frame_stats(AV1_COMP *cpi) {
// this frame refreshes means next frames don't unless specified by user
RATE_CONTROL *const rc = &cpi->rc;
rc->frames_since_golden = 0;
// Mark the alt ref as done (setting to 0 means no further alt refs pending).
rc->source_alt_ref_pending = 0;
// Set the alternate reference frame active flag
rc->source_alt_ref_active = 1;
}
static void update_golden_frame_stats(AV1_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
#if CUSTOMIZED_GF
const TWO_PASS *const twopass = &cpi->twopass;
const GF_GROUP *const gf_group = &twopass->gf_group;
const int is_intrnl_arf =
cpi->oxcf.pass == 2
? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE
: cpi->refresh_alt2_ref_frame;
#else
const int is_intnl_arf = cpi->refresh_alt2_ref_frame;
#endif
// Update the Golden frame usage counts.
// NOTE(weitinglin): If we use show_existing_frame for an OVERLAY frame,
// only the virtual indices for the reference frame will be
// updated and cpi->refresh_golden_frame will still be zero.
if (cpi->refresh_golden_frame || rc->is_src_frame_alt_ref) {
// We will not use internal overlay frames to replace the golden frame
if (!rc->is_src_frame_ext_arf)
// this frame refreshes means next frames don't unless specified by user
rc->frames_since_golden = 0;
// If we are not using alt ref in the up and coming group clear the arf
// active flag. In multi arf group case, if the index is not 0 then
// we are overlaying a mid group arf so should not reset the flag.
if (cpi->oxcf.pass == 2) {
if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
rc->source_alt_ref_active = 0;
} else if (!rc->source_alt_ref_pending) {
rc->source_alt_ref_active = 0;
}
} else if (!cpi->refresh_alt_ref_frame && !is_intrnl_arf) {
rc->frames_since_golden++;
}
}
void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) {
const AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
#if CUSTOMIZED_GF
const TWO_PASS *const twopass = &cpi->twopass;
const GF_GROUP *const gf_group = &twopass->gf_group;
const int is_intrnl_arf =
cpi->oxcf.pass == 2
? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE
: cpi->refresh_alt2_ref_frame;
#else
const int is_intrnl_arf = cpi->refresh_alt2_ref_frame;
#endif
const int qindex = cm->base_qindex;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
av1_cyclic_refresh_postencode(cpi);
}
// Update rate control heuristics
rc->projected_frame_size = (int)(bytes_used << 3);
// Post encode loop adjustment of Q prediction.
av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
// Keep a record of last Q and ambient average Q.
if (cm->frame_type == KEY_FRAME) {
rc->last_q[KEY_FRAME] = qindex;
rc->avg_frame_qindex[KEY_FRAME] =
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
} else {
if (!rc->is_src_frame_alt_ref &&
!(cpi->refresh_golden_frame || is_intrnl_arf ||
cpi->refresh_alt_ref_frame)) {
rc->last_q[INTER_FRAME] = qindex;
rc->avg_frame_qindex[INTER_FRAME] =
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
rc->ni_frames++;
rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params.bit_depth);
rc->avg_q = rc->tot_q / rc->ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU
// frames).
rc->ni_tot_qi += qindex;
rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
}
}
// Keep record of last boosted (KF/GF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) ||
(!rc->constrained_gf_group &&
(cpi->refresh_alt_ref_frame || is_intrnl_arf ||
(cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
rc->last_boosted_qindex = qindex;
}
if (cm->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex;
update_buffer_level(cpi, rc->projected_frame_size);
// Rolling monitors of whether we are over or underspending used to help
// regulate min and Max Q in two pass.
if (av1_frame_scaled(cm))
rc->this_frame_target =
(int)(rc->this_frame_target /
resize_rate_factor(cpi, cm->width, cm->height));
if (cm->frame_type != KEY_FRAME) {
rc->rolling_target_bits = ROUND_POWER_OF_TWO(
rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
}
// Actual bits spent
rc->total_actual_bits += rc->projected_frame_size;
// TODO(zoeliu): To investigate whether we should treat BWDREF_FRAME
// differently here for rc->avg_frame_bandwidth.
rc->total_target_bits +=
(cm->show_frame || rc->is_bwd_ref_frame) ? rc->avg_frame_bandwidth : 0;
rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
(cm->frame_type != KEY_FRAME))
// Update the alternate reference frame stats as appropriate.
update_alt_ref_frame_stats(cpi);
else
// Update the Golden frame stats as appropriate.
update_golden_frame_stats(cpi);
if (cm->frame_type == KEY_FRAME) rc->frames_since_key = 0;
// TODO(zoeliu): To investigate whether we should treat BWDREF_FRAME
// differently here for rc->avg_frame_bandwidth.
if (cm->show_frame || rc->is_bwd_ref_frame) {
rc->frames_since_key++;
rc->frames_to_key--;
}
// if (cm->current_video_frame == 1 && cm->show_frame)
/*
rc->this_frame_target =
(int)(rc->this_frame_target / resize_rate_factor(cpi, cm->width,
cm->height));
*/
}
void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) {
// Update buffer level with zero size, update frame counters, and return.
update_buffer_level(cpi, 0);
cpi->rc.frames_since_key++;
cpi->rc.frames_to_key--;
cpi->rc.rc_2_frame = 0;
cpi->rc.rc_1_frame = 0;
}
// Use this macro to turn on/off use of alt-refs in one-pass mode.
#define USE_ALTREF_FOR_ONE_PASS 1
static int calc_pframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
static const int af_ratio = 10;
const RATE_CONTROL *const rc = &cpi->rc;
int target;
#if USE_ALTREF_FOR_ONE_PASS
target =
(!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))
? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
(rc->baseline_gf_interval + af_ratio - 1)
: (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
(rc->baseline_gf_interval + af_ratio - 1);
#else
target = rc->avg_frame_bandwidth;
#endif
return av1_rc_clamp_pframe_target_size(cpi, target);
}
static int calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
static const int kf_ratio = 25;
const RATE_CONTROL *rc = &cpi->rc;
const int target = rc->avg_frame_bandwidth * kf_ratio;
return av1_rc_clamp_iframe_target_size(cpi, target);
}
void av1_rc_get_one_pass_vbr_params(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int target;
int altref_enabled = is_altref_enabled(cpi);
int sframe_dist = cpi->oxcf.sframe_dist;
int sframe_mode = cpi->oxcf.sframe_mode;
int sframe_enabled = cpi->oxcf.sframe_enabled;
// TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
if (!cpi->refresh_alt_ref_frame &&
(cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
cm->frame_type = KEY_FRAME;
rc->this_key_frame_forced =
cm->current_video_frame != 0 && rc->frames_to_key == 0;
rc->frames_to_key = cpi->oxcf.key_freq;
rc->kf_boost = DEFAULT_KF_BOOST;
rc->source_alt_ref_active = 0;
} else {
cm->frame_type = INTER_FRAME;
if (sframe_enabled) {
if (altref_enabled) {
if (sframe_mode == 1) {
// sframe_mode == 1: insert sframe if it matches altref frame.
if (cm->current_video_frame % sframe_dist == 0 &&
cm->frame_type != KEY_FRAME && cm->current_video_frame != 0 &&
cpi->refresh_alt_ref_frame) {
cm->frame_type = S_FRAME;
}
} else {
// sframe_mode != 1: if sframe will be inserted at the next available
// altref frame
if (cm->current_video_frame % sframe_dist == 0 &&
cm->frame_type != KEY_FRAME && cm->current_video_frame != 0) {
rc->sframe_due = 1;
}
if (rc->sframe_due && cpi->refresh_alt_ref_frame) {
cm->frame_type = S_FRAME;
rc->sframe_due = 0;
}
}
} else {
if (cm->current_video_frame % sframe_dist == 0 &&
cm->frame_type != KEY_FRAME && cm->current_video_frame != 0) {
cm->frame_type = S_FRAME;
}
}
}
}
if (rc->frames_till_gf_update_due == 0) {
rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
// NOTE: frames_till_gf_update_due must be <= frames_to_key.
if (rc->frames_till_gf_update_due > rc->frames_to_key) {
rc->frames_till_gf_update_due = rc->frames_to_key;
rc->constrained_gf_group = 1;
} else {
rc->constrained_gf_group = 0;
}
cpi->refresh_golden_frame = 1;
rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
rc->gfu_boost = DEFAULT_GF_BOOST;
}
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
av1_cyclic_refresh_update_parameters(cpi);
if (cm->frame_type == KEY_FRAME)
target = calc_iframe_target_size_one_pass_vbr(cpi);
else
target = calc_pframe_target_size_one_pass_vbr(cpi);
rc_set_frame_target(cpi, target, cm->width, cm->height);
}
static int calc_pframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
const AV1EncoderConfig *oxcf = &cpi->oxcf;
const RATE_CONTROL *rc = &cpi->rc;
const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
int min_frame_target =
AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
int target;
if (oxcf->gf_cbr_boost_pct) {
const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
target = cpi->refresh_golden_frame
? (rc->avg_frame_bandwidth * rc->baseline_gf_interval *
af_ratio_pct) /
(rc->baseline_gf_interval * 100 + af_ratio_pct - 100)
: (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
(rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
} else {
target = rc->avg_frame_bandwidth;
}
if (diff > 0) {
// Lower the target bandwidth for this frame.
const int pct_low = (int)AOMMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
target -= (target * pct_low) / 200;
} else if (diff < 0) {
// Increase the target bandwidth for this frame.
const int pct_high =
(int)AOMMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
target += (target * pct_high) / 200;
}
if (oxcf->rc_max_inter_bitrate_pct) {
const int max_rate =
rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
target = AOMMIN(target, max_rate);
}
return AOMMAX(min_frame_target, target);
}
static int calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
const RATE_CONTROL *rc = &cpi->rc;
int target;
if (cpi->common.current_video_frame == 0) {
target = ((rc->starting_buffer_level / 2) > INT_MAX)
? INT_MAX
: (int)(rc->starting_buffer_level / 2);
} else {
int kf_boost = 32;
double framerate = cpi->framerate;
kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16));
if (rc->frames_since_key < framerate / 2) {
kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
}
target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
}
return av1_rc_clamp_iframe_target_size(cpi, target);
}
void av1_rc_get_one_pass_cbr_params(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int target;
// TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
if ((cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
cm->frame_type = KEY_FRAME;
rc->this_key_frame_forced =
cm->current_video_frame != 0 && rc->frames_to_key == 0;
rc->frames_to_key = cpi->oxcf.key_freq;
rc->kf_boost = DEFAULT_KF_BOOST;
rc->source_alt_ref_active = 0;
} else {
cm->frame_type = INTER_FRAME;
}
if (rc->frames_till_gf_update_due == 0) {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
av1_cyclic_refresh_set_golden_update(cpi);
else
rc->baseline_gf_interval =
(rc->min_gf_interval + rc->max_gf_interval) / 2;
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
// NOTE: frames_till_gf_update_due must be <= frames_to_key.
if (rc->frames_till_gf_update_due > rc->frames_to_key)
rc->frames_till_gf_update_due = rc->frames_to_key;
cpi->refresh_golden_frame = 1;
rc->gfu_boost = DEFAULT_GF_BOOST;
}
// Any update/change of global cyclic refresh parameters (amount/delta-qp)
// should be done here, before the frame qp is selected.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
av1_cyclic_refresh_update_parameters(cpi);
if (cm->frame_type == KEY_FRAME)
target = calc_iframe_target_size_one_pass_cbr(cpi);
else
target = calc_pframe_target_size_one_pass_cbr(cpi);
rc_set_frame_target(cpi, target, cm->width, cm->height);
// TODO(afergs): Decide whether to scale up, down, or not at all
}
int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
aom_bit_depth_t bit_depth) {
int start_index = rc->worst_quality;
int target_index = rc->worst_quality;
int i;
// Convert the average q value to an index.
for (i = rc->best_quality; i < rc->worst_quality; ++i) {
start_index = i;
if (av1_convert_qindex_to_q(i, bit_depth) >= qstart) break;
}
// Convert the q target to an index
for (i = rc->best_quality; i < rc->worst_quality; ++i) {
target_index = i;
if (av1_convert_qindex_to_q(i, bit_depth) >= qtarget) break;
}
return target_index - start_index;
}
int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
int qindex, double rate_target_ratio,
aom_bit_depth_t bit_depth) {
int target_index = rc->worst_quality;
int i;
// Look up the current projected bits per block for the base index
const int base_bits_per_mb =
av1_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
// Find the target bits per mb based on the base value and given ratio.
const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
// Convert the q target to an index
for (i = rc->best_quality; i < rc->worst_quality; ++i) {
if (av1_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
target_bits_per_mb) {
target_index = i;
break;
}
}
return target_index - qindex;
}
void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi,
RATE_CONTROL *const rc) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
// Special case code for 1 pass fixed Q mode tests
if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) {
rc->max_gf_interval = FIXED_GF_INTERVAL;
rc->min_gf_interval = FIXED_GF_INTERVAL;
rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
} else {
// Set Maximum gf/arf interval
rc->max_gf_interval = oxcf->max_gf_interval;
rc->min_gf_interval = oxcf->min_gf_interval;
if (rc->min_gf_interval == 0)
rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
oxcf->width, oxcf->height, cpi->framerate);
if (rc->max_gf_interval == 0)
rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
cpi->framerate, rc->min_gf_interval);
// Extended interval for genuinely static scenes
rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
if (is_altref_enabled(cpi)) {
if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
}
if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
rc->max_gf_interval = rc->static_scene_max_gf_interval;
#if FIX_GF_INTERVAL_LENGTH
rc->max_gf_interval = FIXED_GF_LENGTH + 1;
#endif
// Clamp min to max
rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval);
}
}
void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
int vbr_max_bits;
const int MBs = av1_get_MBs(width, height);
rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
rc->min_frame_bandwidth =
(int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
rc->min_frame_bandwidth =
AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
// A maximum bitrate for a frame is defined.
// The baseline for this aligns with HW implementations that
// can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
// per 16x16 MB (averaged over a frame). However this limit is extended if
// a very high rate is given on the command line or the the rate cannnot
// be acheived because of a user specificed max q (e.g. when the user
// specifies lossless encode.
vbr_max_bits =
(int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
100);
rc->max_frame_bandwidth =
AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
av1_rc_set_gf_interval_range(cpi, rc);
}
#define VBR_PCT_ADJUSTMENT_LIMIT 50
// For VBR...adjustment to the frame target based on error from previous frames
static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) {
RATE_CONTROL *const rc = &cpi->rc;
int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
int max_delta;
double position_factor = 1.0;
// How far through the clip are we.
// This number is used to damp the per frame rate correction.
// Range 0 - 1.0
if (cpi->twopass.total_stats.count != 0.) {
position_factor = sqrt((double)cpi->common.current_video_frame /
cpi->twopass.total_stats.count);
}
max_delta = (int)(position_factor *
((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
// vbr_bits_off_target > 0 means we have extra bits to spend
if (vbr_bits_off_target > 0) {
*this_frame_target += (vbr_bits_off_target > max_delta)
? max_delta
: (int)vbr_bits_off_target;
} else {
*this_frame_target -= (vbr_bits_off_target < -max_delta)
? max_delta
: (int)-vbr_bits_off_target;
}
// Fast redistribution of bits arising from massive local undershoot.
// Dont do it for kf,arf,gf or overlay frames.
if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
rc->vbr_bits_off_target_fast) {
int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target);
int fast_extra_bits;
fast_extra_bits = (int)AOMMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
fast_extra_bits = (int)AOMMIN(
fast_extra_bits,
AOMMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
*this_frame_target += (int)fast_extra_bits;
rc->vbr_bits_off_target_fast -= fast_extra_bits;
}
}
void av1_set_target_rate(AV1_COMP *cpi, int width, int height) {
RATE_CONTROL *const rc = &cpi->rc;
int target_rate = rc->base_frame_target;
// Correction to rate target based on prior over or under shoot.
if (cpi->oxcf.rc_mode == AOM_VBR || cpi->oxcf.rc_mode == AOM_CQ)
vbr_rate_correction(cpi, &target_rate);
rc_set_frame_target(cpi, target_rate, width, height);
}
|