summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/pickrst.c
blob: 28b693b085c79ae698b86878f76ce3d174213081 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>

#include "config/aom_scale_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/psnr.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"

#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/restoration.h"

#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/mathutils.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/pickrst.h"

// When set to RESTORE_WIENER or RESTORE_SGRPROJ only those are allowed.
// When set to RESTORE_TYPES we allow switchable.
static const RestorationType force_restore_type = RESTORE_TYPES;

// Number of Wiener iterations
#define NUM_WIENER_ITERS 5

// Penalty factor for use of dual sgr
#define DUAL_SGR_PENALTY_MULT 0.01

const int frame_level_restore_bits[RESTORE_TYPES] = { 2, 2, 2, 2 };

typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a,
                                      const YV12_BUFFER_CONFIG *b);
typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
                                           const YV12_BUFFER_CONFIG *b,
                                           int hstart, int width, int vstart,
                                           int height);

#define NUM_EXTRACTORS (3 * (1 + 1))

static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = {
  aom_get_y_sse_part,        aom_get_u_sse_part,
  aom_get_v_sse_part,        aom_highbd_get_y_sse_part,
  aom_highbd_get_u_sse_part, aom_highbd_get_v_sse_part,
};

static int64_t sse_restoration_unit(const RestorationTileLimits *limits,
                                    const YV12_BUFFER_CONFIG *src,
                                    const YV12_BUFFER_CONFIG *dst, int plane,
                                    int highbd) {
  return sse_part_extractors[3 * highbd + plane](
      src, dst, limits->h_start, limits->h_end - limits->h_start,
      limits->v_start, limits->v_end - limits->v_start);
}

typedef struct {
  // The best coefficients for Wiener or Sgrproj restoration
  WienerInfo wiener;
  SgrprojInfo sgrproj;

  // The sum of squared errors for this rtype.
  int64_t sse[RESTORE_SWITCHABLE_TYPES];

  // The rtype to use for this unit given a frame rtype as
  // index. Indices: WIENER, SGRPROJ, SWITCHABLE.
  RestorationType best_rtype[RESTORE_TYPES - 1];
} RestUnitSearchInfo;

typedef struct {
  const YV12_BUFFER_CONFIG *src;
  YV12_BUFFER_CONFIG *dst;

  const AV1_COMMON *cm;
  const MACROBLOCK *x;
  int plane;
  int plane_width;
  int plane_height;
  RestUnitSearchInfo *rusi;

  // Speed features
  const SPEED_FEATURES *sf;

  uint8_t *dgd_buffer;
  int dgd_stride;
  const uint8_t *src_buffer;
  int src_stride;

  // sse and bits are initialised by reset_rsc in search_rest_type
  int64_t sse;
  int64_t bits;
  int tile_y0, tile_stripe0;

  // sgrproj and wiener are initialised by rsc_on_tile when starting the first
  // tile in the frame.
  SgrprojInfo sgrproj;
  WienerInfo wiener;
  AV1PixelRect tile_rect;
} RestSearchCtxt;

static void rsc_on_tile(int tile_row, int tile_col, void *priv) {
  (void)tile_col;

  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
  set_default_sgrproj(&rsc->sgrproj);
  set_default_wiener(&rsc->wiener);

  rsc->tile_stripe0 =
      (tile_row == 0) ? 0 : rsc->cm->rst_end_stripe[tile_row - 1];
}

static void reset_rsc(RestSearchCtxt *rsc) {
  rsc->sse = 0;
  rsc->bits = 0;
}

static void init_rsc(const YV12_BUFFER_CONFIG *src, const AV1_COMMON *cm,
                     const MACROBLOCK *x, const SPEED_FEATURES *sf, int plane,
                     RestUnitSearchInfo *rusi, YV12_BUFFER_CONFIG *dst,
                     RestSearchCtxt *rsc) {
  rsc->src = src;
  rsc->dst = dst;
  rsc->cm = cm;
  rsc->x = x;
  rsc->plane = plane;
  rsc->rusi = rusi;
  rsc->sf = sf;

  const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
  const int is_uv = plane != AOM_PLANE_Y;
  rsc->plane_width = src->crop_widths[is_uv];
  rsc->plane_height = src->crop_heights[is_uv];
  rsc->src_buffer = src->buffers[plane];
  rsc->src_stride = src->strides[is_uv];
  rsc->dgd_buffer = dgd->buffers[plane];
  rsc->dgd_stride = dgd->strides[is_uv];
  rsc->tile_rect = av1_whole_frame_rect(cm, is_uv);
  assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]);
  assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]);
}

static int64_t try_restoration_unit(const RestSearchCtxt *rsc,
                                    const RestorationTileLimits *limits,
                                    const AV1PixelRect *tile_rect,
                                    const RestorationUnitInfo *rui) {
  const AV1_COMMON *const cm = rsc->cm;
  const int plane = rsc->plane;
  const int is_uv = plane > 0;
  const RestorationInfo *rsi = &cm->rst_info[plane];
  RestorationLineBuffers rlbs;
  const int bit_depth = cm->seq_params.bit_depth;
  const int highbd = cm->seq_params.use_highbitdepth;

  const YV12_BUFFER_CONFIG *fts = cm->frame_to_show;
  // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be
  // also used in encoder.
  const int optimized_lr = 0;

  av1_loop_restoration_filter_unit(
      limits, rui, &rsi->boundaries, &rlbs, tile_rect, rsc->tile_stripe0,
      is_uv && cm->seq_params.subsampling_x,
      is_uv && cm->seq_params.subsampling_y, highbd, bit_depth,
      fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane],
      rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr);

  return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd);
}

static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height,
                                    int src_stride, const uint8_t *dat8,
                                    int dat_stride, int use_highbitdepth,
                                    int32_t *flt0, int flt0_stride,
                                    int32_t *flt1, int flt1_stride, int *xqd,
                                    const sgr_params_type *params) {
  int i, j;
  int64_t err = 0;
  int xq[2];
  decode_xq(xqd, xq, params);
  if (!use_highbitdepth) {
    const uint8_t *src = src8;
    const uint8_t *dat = dat8;
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        const int32_t u =
            (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
        int32_t v = u << SGRPROJ_PRJ_BITS;
        if (params->r[0] > 0) v += xq[0] * (flt0[i * flt0_stride + j] - u);
        if (params->r[1] > 0) v += xq[1] * (flt1[i * flt1_stride + j] - u);
        const int32_t e =
            ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) -
            src[i * src_stride + j];
        err += e * e;
      }
    }
  } else {
    const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
    const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
    const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1);
    if (params->r[0] > 0 && params->r[1] > 0) {
      int xq0 = xq[0];
      int xq1 = xq[1];
      for (i = 0; i < height; ++i) {
        for (j = 0; j < width; ++j) {
          const int32_t d = dat[j];
          const int32_t s = src[j];
          const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
          int32_t v0 = flt0[j] - u;
          int32_t v1 = flt1[j] - u;
          int32_t v = half;
          v += xq0 * v0;
          v += xq1 * v1;
          const int32_t e =
              (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
          err += e * e;
        }
        dat += dat_stride;
        flt0 += flt0_stride;
        flt1 += flt1_stride;
        src += src_stride;
      }
    } else if (params->r[0] > 0 || params->r[1] > 0) {
      int exq;
      int32_t *flt;
      int flt_stride;
      if (params->r[0] > 0) {
        exq = xq[0];
        flt = flt0;
        flt_stride = flt0_stride;
      } else {
        exq = xq[1];
        flt = flt1;
        flt_stride = flt1_stride;
      }
      for (i = 0; i < height; ++i) {
        for (j = 0; j < width; ++j) {
          const int32_t d = dat[j];
          const int32_t s = src[j];
          const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
          int32_t v = half;
          v += exq * (flt[j] - u);
          const int32_t e =
              (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
          err += e * e;
        }
        dat += dat_stride;
        flt += flt_stride;
        src += src_stride;
      }
    } else {
      for (i = 0; i < height; ++i) {
        for (j = 0; j < width; ++j) {
          const int32_t d = dat[j];
          const int32_t s = src[j];
          const int32_t e = d - s;
          err += e * e;
        }
        dat += dat_stride;
        src += src_stride;
      }
    }
  }
  return err;
}

#define USE_SGRPROJ_REFINEMENT_SEARCH 1
static int64_t finer_search_pixel_proj_error(
    const uint8_t *src8, int width, int height, int src_stride,
    const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0,
    int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd,
    const sgr_params_type *params) {
  int64_t err = get_pixel_proj_error(
      src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0,
      flt0_stride, flt1, flt1_stride, xqd, params);
  (void)start_step;
#if USE_SGRPROJ_REFINEMENT_SEARCH
  int64_t err2;
  int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 };
  int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 };
  for (int s = start_step; s >= 1; s >>= 1) {
    for (int p = 0; p < 2; ++p) {
      if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) {
        continue;
      }
      int skip = 0;
      do {
        if (xqd[p] - s >= tap_min[p]) {
          xqd[p] -= s;
          err2 =
              get_pixel_proj_error(src8, width, height, src_stride, dat8,
                                   dat_stride, use_highbitdepth, flt0,
                                   flt0_stride, flt1, flt1_stride, xqd, params);
          if (err2 > err) {
            xqd[p] += s;
          } else {
            err = err2;
            skip = 1;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
      if (skip) break;
      do {
        if (xqd[p] + s <= tap_max[p]) {
          xqd[p] += s;
          err2 =
              get_pixel_proj_error(src8, width, height, src_stride, dat8,
                                   dat_stride, use_highbitdepth, flt0,
                                   flt0_stride, flt1, flt1_stride, xqd, params);
          if (err2 > err) {
            xqd[p] -= s;
          } else {
            err = err2;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
    }
  }
#endif  // USE_SGRPROJ_REFINEMENT_SEARCH
  return err;
}

static void get_proj_subspace(const uint8_t *src8, int width, int height,
                              int src_stride, const uint8_t *dat8,
                              int dat_stride, int use_highbitdepth,
                              int32_t *flt0, int flt0_stride, int32_t *flt1,
                              int flt1_stride, int *xq,
                              const sgr_params_type *params) {
  int i, j;
  double H[2][2] = { { 0, 0 }, { 0, 0 } };
  double C[2] = { 0, 0 };
  double Det;
  double x[2];
  const int size = width * height;

  aom_clear_system_state();

  // Default
  xq[0] = 0;
  xq[1] = 0;
  if (!use_highbitdepth) {
    const uint8_t *src = src8;
    const uint8_t *dat = dat8;
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
        const double s =
            (double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
        const double f1 =
            (params->r[0] > 0) ? (double)flt0[i * flt0_stride + j] - u : 0;
        const double f2 =
            (params->r[1] > 0) ? (double)flt1[i * flt1_stride + j] - u : 0;
        H[0][0] += f1 * f1;
        H[1][1] += f2 * f2;
        H[0][1] += f1 * f2;
        C[0] += f1 * s;
        C[1] += f2 * s;
      }
    }
  } else {
    const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
    const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
    for (i = 0; i < height; ++i) {
      for (j = 0; j < width; ++j) {
        const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
        const double s =
            (double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
        const double f1 =
            (params->r[0] > 0) ? (double)flt0[i * flt0_stride + j] - u : 0;
        const double f2 =
            (params->r[1] > 0) ? (double)flt1[i * flt1_stride + j] - u : 0;
        H[0][0] += f1 * f1;
        H[1][1] += f2 * f2;
        H[0][1] += f1 * f2;
        C[0] += f1 * s;
        C[1] += f2 * s;
      }
    }
  }
  H[0][0] /= size;
  H[0][1] /= size;
  H[1][1] /= size;
  H[1][0] = H[0][1];
  C[0] /= size;
  C[1] /= size;
  if (params->r[0] == 0) {
    // H matrix is now only the scalar H[1][1]
    // C vector is now only the scalar C[1]
    Det = H[1][1];
    if (Det < 1e-8) return;  // ill-posed, return default values
    x[0] = 0;
    x[1] = C[1] / Det;

    xq[0] = 0;
    xq[1] = (int)rint(x[1] * (1 << SGRPROJ_PRJ_BITS));
  } else if (params->r[1] == 0) {
    // H matrix is now only the scalar H[0][0]
    // C vector is now only the scalar C[0]
    Det = H[0][0];
    if (Det < 1e-8) return;  // ill-posed, return default values
    x[0] = C[0] / Det;
    x[1] = 0;

    xq[0] = (int)rint(x[0] * (1 << SGRPROJ_PRJ_BITS));
    xq[1] = 0;
  } else {
    Det = (H[0][0] * H[1][1] - H[0][1] * H[1][0]);
    if (Det < 1e-8) return;  // ill-posed, return default values
    x[0] = (H[1][1] * C[0] - H[0][1] * C[1]) / Det;
    x[1] = (H[0][0] * C[1] - H[1][0] * C[0]) / Det;

    xq[0] = (int)rint(x[0] * (1 << SGRPROJ_PRJ_BITS));
    xq[1] = (int)rint(x[1] * (1 << SGRPROJ_PRJ_BITS));
  }
}

void encode_xq(int *xq, int *xqd, const sgr_params_type *params) {
  if (params->r[0] == 0) {
    xqd[0] = 0;
    xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1,
                   SGRPROJ_PRJ_MAX1);
  } else if (params->r[1] == 0) {
    xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
    xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1,
                   SGRPROJ_PRJ_MAX1);
  } else {
    xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
    xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1,
                   SGRPROJ_PRJ_MAX1);
  }
}

// Apply the self-guided filter across an entire restoration unit.
static void apply_sgr(int sgr_params_idx, const uint8_t *dat8, int width,
                      int height, int dat_stride, int use_highbd, int bit_depth,
                      int pu_width, int pu_height, int32_t *flt0, int32_t *flt1,
                      int flt_stride) {
  for (int i = 0; i < height; i += pu_height) {
    const int h = AOMMIN(pu_height, height - i);
    int32_t *flt0_row = flt0 + i * flt_stride;
    int32_t *flt1_row = flt1 + i * flt_stride;
    const uint8_t *dat8_row = dat8 + i * dat_stride;

    // Iterate over the stripe in blocks of width pu_width
    for (int j = 0; j < width; j += pu_width) {
      const int w = AOMMIN(pu_width, width - j);
      av1_selfguided_restoration(dat8_row + j, w, h, dat_stride, flt0_row + j,
                                 flt1_row + j, flt_stride, sgr_params_idx,
                                 bit_depth, use_highbd);
    }
  }
}

static SgrprojInfo search_selfguided_restoration(
    const uint8_t *dat8, int width, int height, int dat_stride,
    const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth,
    int pu_width, int pu_height, int32_t *rstbuf) {
  int32_t *flt0 = rstbuf;
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
  int ep, bestep = 0;
  int64_t besterr = -1;
  int exqd[2], bestxqd[2] = { 0, 0 };
  int flt_stride = ((width + 7) & ~7) + 8;
  assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
         pu_width == RESTORATION_PROC_UNIT_SIZE);
  assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
         pu_height == RESTORATION_PROC_UNIT_SIZE);

  for (ep = 0; ep < SGRPROJ_PARAMS; ep++) {
    int exq[2];
    apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth,
              pu_width, pu_height, flt0, flt1, flt_stride);
    aom_clear_system_state();
    const sgr_params_type *const params = &sgr_params[ep];
    get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride,
                      use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq,
                      params);
    aom_clear_system_state();
    encode_xq(exq, exqd, params);
    int64_t err = finer_search_pixel_proj_error(
        src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth,
        flt0, flt_stride, flt1, flt_stride, 2, exqd, params);
    if (besterr == -1 || err < besterr) {
      bestep = ep;
      besterr = err;
      bestxqd[0] = exqd[0];
      bestxqd[1] = exqd[1];
    }
  }

  SgrprojInfo ret;
  ret.ep = bestep;
  ret.xqd[0] = bestxqd[0];
  ret.xqd[1] = bestxqd[1];
  return ret;
}

static int count_sgrproj_bits(SgrprojInfo *sgrproj_info,
                              SgrprojInfo *ref_sgrproj_info) {
  int bits = SGRPROJ_PARAMS_BITS;
  const sgr_params_type *params = &sgr_params[sgrproj_info->ep];
  if (params->r[0] > 0)
    bits += aom_count_primitive_refsubexpfin(
        SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
        ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
        sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
  if (params->r[1] > 0)
    bits += aom_count_primitive_refsubexpfin(
        SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
        ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
        sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
  return bits;
}

static void search_sgrproj(const RestorationTileLimits *limits,
                           const AV1PixelRect *tile, int rest_unit_idx,
                           void *priv, int32_t *tmpbuf,
                           RestorationLineBuffers *rlbs) {
  (void)rlbs;
  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
  RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];

  const MACROBLOCK *const x = rsc->x;
  const AV1_COMMON *const cm = rsc->cm;
  const int highbd = cm->seq_params.use_highbitdepth;
  const int bit_depth = cm->seq_params.bit_depth;

  uint8_t *dgd_start =
      rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start;
  const uint8_t *src_start =
      rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start;

  const int is_uv = rsc->plane > 0;
  const int ss_x = is_uv && cm->seq_params.subsampling_x;
  const int ss_y = is_uv && cm->seq_params.subsampling_y;
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
  const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;

  rusi->sgrproj = search_selfguided_restoration(
      dgd_start, limits->h_end - limits->h_start,
      limits->v_end - limits->v_start, rsc->dgd_stride, src_start,
      rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height,
      tmpbuf);

  RestorationUnitInfo rui;
  rui.restoration_type = RESTORE_SGRPROJ;
  rui.sgrproj_info = rusi->sgrproj;

  rusi->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, tile, &rui);

  const int64_t bits_none = x->sgrproj_restore_cost[0];
  const int64_t bits_sgr = x->sgrproj_restore_cost[1] +
                           (count_sgrproj_bits(&rusi->sgrproj, &rsc->sgrproj)
                            << AV1_PROB_COST_SHIFT);

  double cost_none =
      RDCOST_DBL(x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE]);
  double cost_sgr =
      RDCOST_DBL(x->rdmult, bits_sgr >> 4, rusi->sse[RESTORE_SGRPROJ]);
  if (rusi->sgrproj.ep < 10)
    cost_sgr *= (1 + DUAL_SGR_PENALTY_MULT * rsc->sf->dual_sgr_penalty_level);

  RestorationType rtype =
      (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE;
  rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype;

  rsc->sse += rusi->sse[rtype];
  rsc->bits += (cost_sgr < cost_none) ? bits_sgr : bits_none;
  if (cost_sgr < cost_none) rsc->sgrproj = rusi->sgrproj;
}

static double find_average(const uint8_t *src, int h_start, int h_end,
                           int v_start, int v_end, int stride) {
  uint64_t sum = 0;
  double avg = 0;
  int i, j;
  aom_clear_system_state();
  for (i = v_start; i < v_end; i++)
    for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
  avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
  return avg;
}

static void compute_stats(int wiener_win, const uint8_t *dgd,
                          const uint8_t *src, int h_start, int h_end,
                          int v_start, int v_end, int dgd_stride,
                          int src_stride, double *M, double *H) {
  int i, j, k, l;
  double Y[WIENER_WIN2];
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin = (wiener_win >> 1);
  const double avg =
      find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);

  memset(M, 0, sizeof(*M) * wiener_win2);
  memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
  for (i = v_start; i < v_end; i++) {
    for (j = h_start; j < h_end; j++) {
      const double X = (double)src[i * src_stride + j] - avg;
      int idx = 0;
      for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
        for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
          Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
          idx++;
        }
      }
      assert(idx == wiener_win2);
      for (k = 0; k < wiener_win2; ++k) {
        M[k] += Y[k] * X;
        H[k * wiener_win2 + k] += Y[k] * Y[k];
        for (l = k + 1; l < wiener_win2; ++l) {
          // H is a symmetric matrix, so we only need to fill out the upper
          // triangle here. We can copy it down to the lower triangle outside
          // the (i, j) loops.
          H[k * wiener_win2 + l] += Y[k] * Y[l];
        }
      }
    }
  }
  for (k = 0; k < wiener_win2; ++k) {
    for (l = k + 1; l < wiener_win2; ++l) {
      H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
    }
  }
}

static double find_average_highbd(const uint16_t *src, int h_start, int h_end,
                                  int v_start, int v_end, int stride) {
  uint64_t sum = 0;
  double avg = 0;
  int i, j;
  aom_clear_system_state();
  for (i = v_start; i < v_end; i++)
    for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
  avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
  return avg;
}

static AOM_FORCE_INLINE void compute_stats_highbd(
    int wiener_win, const uint8_t *dgd8, const uint8_t *src8, int h_start,
    int h_end, int v_start, int v_end, int dgd_stride, int src_stride,
    double *M, double *H) {
  int i, j, k, l;
  double Y[WIENER_WIN2];
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin = (wiener_win >> 1);
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
  const double avg =
      find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);

  memset(M, 0, sizeof(*M) * wiener_win2);
  memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
  for (i = v_start; i < v_end; i++) {
    for (j = h_start; j < h_end; j++) {
      const double X = (double)src[i * src_stride + j] - avg;
      int idx = 0;
      for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
        for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
          Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
          idx++;
        }
      }
      assert(idx == wiener_win2);
      for (k = 0; k < wiener_win2; ++k) {
        double Yk = Y[k];
        M[k] += Yk * X;
        double *H2 = &H[k * wiener_win2];
        H2[k] += Yk * Yk;
        for (l = k + 1; l < wiener_win2; ++l) {
          // H is a symmetric matrix, so we only need to fill out the upper
          // triangle here. We can copy it down to the lower triangle outside
          // the (i, j) loops.
          H2[l] += Yk * Y[l];
        }
      }
    }
  }
  for (k = 0; k < wiener_win2; ++k) {
    for (l = k + 1; l < wiener_win2; ++l) {
      H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
    }
  }
}

static INLINE int wrap_index(int i, int wiener_win) {
  const int wiener_halfwin1 = (wiener_win >> 1) + 1;
  return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i);
}

// Fix vector b, update vector a
static void update_a_sep_sym(int wiener_win, double **Mc, double **Hc,
                             double *a, double *b) {
  int i, j;
  double S[WIENER_WIN];
  double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin1 = (wiener_win >> 1) + 1;
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
  for (i = 0; i < wiener_win; i++) {
    for (j = 0; j < wiener_win; ++j) {
      const int jj = wrap_index(j, wiener_win);
      A[jj] += Mc[i][j] * b[i];
    }
  }
  for (i = 0; i < wiener_win; i++) {
    for (j = 0; j < wiener_win; j++) {
      int k, l;
      for (k = 0; k < wiener_win; ++k)
        for (l = 0; l < wiener_win; ++l) {
          const int kk = wrap_index(k, wiener_win);
          const int ll = wrap_index(l, wiener_win);
          B[ll * wiener_halfwin1 + kk] +=
              Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] * b[j];
        }
    }
  }
  // Normalization enforcement in the system of equations itself
  for (i = 0; i < wiener_halfwin1 - 1; ++i)
    A[i] -=
        A[wiener_halfwin1 - 1] * 2 +
        B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
        2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
  for (i = 0; i < wiener_halfwin1 - 1; ++i)
    for (j = 0; j < wiener_halfwin1 - 1; ++j)
      B[i * wiener_halfwin1 + j] -=
          2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
               B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
               2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
                     (wiener_halfwin1 - 1)]);
  if (linsolve(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
    S[wiener_halfwin1 - 1] = 1.0;
    for (i = wiener_halfwin1; i < wiener_win; ++i) {
      S[i] = S[wiener_win - 1 - i];
      S[wiener_halfwin1 - 1] -= 2 * S[i];
    }
    memcpy(a, S, wiener_win * sizeof(*a));
  }
}

// Fix vector a, update vector b
static void update_b_sep_sym(int wiener_win, double **Mc, double **Hc,
                             double *a, double *b) {
  int i, j;
  double S[WIENER_WIN];
  double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin1 = (wiener_win >> 1) + 1;
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
  for (i = 0; i < wiener_win; i++) {
    const int ii = wrap_index(i, wiener_win);
    for (j = 0; j < wiener_win; j++) A[ii] += Mc[i][j] * a[j];
  }

  for (i = 0; i < wiener_win; i++) {
    for (j = 0; j < wiener_win; j++) {
      const int ii = wrap_index(i, wiener_win);
      const int jj = wrap_index(j, wiener_win);
      int k, l;
      for (k = 0; k < wiener_win; ++k)
        for (l = 0; l < wiener_win; ++l)
          B[jj * wiener_halfwin1 + ii] +=
              Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] * a[l];
    }
  }
  // Normalization enforcement in the system of equations itself
  for (i = 0; i < wiener_halfwin1 - 1; ++i)
    A[i] -=
        A[wiener_halfwin1 - 1] * 2 +
        B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
        2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
  for (i = 0; i < wiener_halfwin1 - 1; ++i)
    for (j = 0; j < wiener_halfwin1 - 1; ++j)
      B[i * wiener_halfwin1 + j] -=
          2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
               B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
               2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
                     (wiener_halfwin1 - 1)]);
  if (linsolve(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
    S[wiener_halfwin1 - 1] = 1.0;
    for (i = wiener_halfwin1; i < wiener_win; ++i) {
      S[i] = S[wiener_win - 1 - i];
      S[wiener_halfwin1 - 1] -= 2 * S[i];
    }
    memcpy(b, S, wiener_win * sizeof(*b));
  }
}

static int wiener_decompose_sep_sym(int wiener_win, double *M, double *H,
                                    double *a, double *b) {
  static const int init_filt[WIENER_WIN] = {
    WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV,
    WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV,
    WIENER_FILT_TAP0_MIDV,
  };
  double *Hc[WIENER_WIN2];
  double *Mc[WIENER_WIN];
  int i, j, iter;
  const int plane_off = (WIENER_WIN - wiener_win) >> 1;
  const int wiener_win2 = wiener_win * wiener_win;
  for (i = 0; i < wiener_win; i++) {
    a[i] = b[i] = (double)init_filt[i + plane_off] / WIENER_FILT_STEP;
  }
  for (i = 0; i < wiener_win; i++) {
    Mc[i] = M + i * wiener_win;
    for (j = 0; j < wiener_win; j++) {
      Hc[i * wiener_win + j] =
          H + i * wiener_win * wiener_win2 + j * wiener_win;
    }
  }

  iter = 1;
  while (iter < NUM_WIENER_ITERS) {
    update_a_sep_sym(wiener_win, Mc, Hc, a, b);
    update_b_sep_sym(wiener_win, Mc, Hc, a, b);
    iter++;
  }
  return 1;
}

// Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares
// against identity filters; Final score is defined as the difference between
// the function values
static double compute_score(int wiener_win, double *M, double *H,
                            InterpKernel vfilt, InterpKernel hfilt) {
  double ab[WIENER_WIN * WIENER_WIN];
  int i, k, l;
  double P = 0, Q = 0;
  double iP = 0, iQ = 0;
  double Score, iScore;
  double a[WIENER_WIN], b[WIENER_WIN];
  const int plane_off = (WIENER_WIN - wiener_win) >> 1;
  const int wiener_win2 = wiener_win * wiener_win;

  aom_clear_system_state();

  a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = 1.0;
  for (i = 0; i < WIENER_HALFWIN; ++i) {
    a[i] = a[WIENER_WIN - i - 1] = (double)vfilt[i] / WIENER_FILT_STEP;
    b[i] = b[WIENER_WIN - i - 1] = (double)hfilt[i] / WIENER_FILT_STEP;
    a[WIENER_HALFWIN] -= 2 * a[i];
    b[WIENER_HALFWIN] -= 2 * b[i];
  }
  memset(ab, 0, sizeof(ab));
  for (k = 0; k < wiener_win; ++k) {
    for (l = 0; l < wiener_win; ++l)
      ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off];
  }
  for (k = 0; k < wiener_win2; ++k) {
    P += ab[k] * M[k];
    for (l = 0; l < wiener_win2; ++l)
      Q += ab[k] * H[k * wiener_win2 + l] * ab[l];
  }
  Score = Q - 2 * P;

  iP = M[wiener_win2 >> 1];
  iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)];
  iScore = iQ - 2 * iP;

  return Score - iScore;
}

static void quantize_sym_filter(int wiener_win, double *f, InterpKernel fi) {
  int i;
  const int wiener_halfwin = (wiener_win >> 1);
  for (i = 0; i < wiener_halfwin; ++i) {
    fi[i] = RINT(f[i] * WIENER_FILT_STEP);
  }
  // Specialize for 7-tap filter
  if (wiener_win == WIENER_WIN) {
    fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
    fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
    fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
  } else {
    fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
    fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
    fi[0] = 0;
  }
  // Satisfy filter constraints
  fi[WIENER_WIN - 1] = fi[0];
  fi[WIENER_WIN - 2] = fi[1];
  fi[WIENER_WIN - 3] = fi[2];
  // The central element has an implicit +WIENER_FILT_STEP
  fi[3] = -2 * (fi[0] + fi[1] + fi[2]);
}

static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info,
                             WienerInfo *ref_wiener_info) {
  int bits = 0;
  if (wiener_win == WIENER_WIN)
    bits += aom_count_primitive_refsubexpfin(
        WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
        WIENER_FILT_TAP0_SUBEXP_K,
        ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
        wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
  bits += aom_count_primitive_refsubexpfin(
      WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
      WIENER_FILT_TAP1_SUBEXP_K,
      ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
      wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
  bits += aom_count_primitive_refsubexpfin(
      WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
      WIENER_FILT_TAP2_SUBEXP_K,
      ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
      wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
  if (wiener_win == WIENER_WIN)
    bits += aom_count_primitive_refsubexpfin(
        WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
        WIENER_FILT_TAP0_SUBEXP_K,
        ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
        wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
  bits += aom_count_primitive_refsubexpfin(
      WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
      WIENER_FILT_TAP1_SUBEXP_K,
      ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
      wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
  bits += aom_count_primitive_refsubexpfin(
      WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
      WIENER_FILT_TAP2_SUBEXP_K,
      ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
      wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
  return bits;
}

#define USE_WIENER_REFINEMENT_SEARCH 1
static int64_t finer_tile_search_wiener(const RestSearchCtxt *rsc,
                                        const RestorationTileLimits *limits,
                                        const AV1PixelRect *tile,
                                        RestorationUnitInfo *rui,
                                        int wiener_win) {
  const int plane_off = (WIENER_WIN - wiener_win) >> 1;
  int64_t err = try_restoration_unit(rsc, limits, tile, rui);
#if USE_WIENER_REFINEMENT_SEARCH
  int64_t err2;
  int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV,
                    WIENER_FILT_TAP2_MINV };
  int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV,
                    WIENER_FILT_TAP2_MAXV };

  WienerInfo *plane_wiener = &rui->wiener_info;

  // printf("err  pre = %"PRId64"\n", err);
  const int start_step = 4;
  for (int s = start_step; s >= 1; s >>= 1) {
    for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
      int skip = 0;
      do {
        if (plane_wiener->hfilter[p] - s >= tap_min[p]) {
          plane_wiener->hfilter[p] -= s;
          plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
          plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
          err2 = try_restoration_unit(rsc, limits, tile, rui);
          if (err2 > err) {
            plane_wiener->hfilter[p] += s;
            plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
            plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
          } else {
            err = err2;
            skip = 1;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
      if (skip) break;
      do {
        if (plane_wiener->hfilter[p] + s <= tap_max[p]) {
          plane_wiener->hfilter[p] += s;
          plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
          plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
          err2 = try_restoration_unit(rsc, limits, tile, rui);
          if (err2 > err) {
            plane_wiener->hfilter[p] -= s;
            plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
            plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
          } else {
            err = err2;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
    }
    for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
      int skip = 0;
      do {
        if (plane_wiener->vfilter[p] - s >= tap_min[p]) {
          plane_wiener->vfilter[p] -= s;
          plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
          plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
          err2 = try_restoration_unit(rsc, limits, tile, rui);
          if (err2 > err) {
            plane_wiener->vfilter[p] += s;
            plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
            plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
          } else {
            err = err2;
            skip = 1;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
      if (skip) break;
      do {
        if (plane_wiener->vfilter[p] + s <= tap_max[p]) {
          plane_wiener->vfilter[p] += s;
          plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
          plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
          err2 = try_restoration_unit(rsc, limits, tile, rui);
          if (err2 > err) {
            plane_wiener->vfilter[p] -= s;
            plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
            plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
          } else {
            err = err2;
            // At the highest step size continue moving in the same direction
            if (s == start_step) continue;
          }
        }
        break;
      } while (1);
    }
  }
// printf("err post = %"PRId64"\n", err);
#endif  // USE_WIENER_REFINEMENT_SEARCH
  return err;
}

static void search_wiener(const RestorationTileLimits *limits,
                          const AV1PixelRect *tile_rect, int rest_unit_idx,
                          void *priv, int32_t *tmpbuf,
                          RestorationLineBuffers *rlbs) {
  (void)tmpbuf;
  (void)rlbs;
  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
  RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];

  const int wiener_win =
      (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;

  double M[WIENER_WIN2];
  double H[WIENER_WIN2 * WIENER_WIN2];
  double vfilterd[WIENER_WIN], hfilterd[WIENER_WIN];

  const AV1_COMMON *const cm = rsc->cm;
  if (cm->seq_params.use_highbitdepth) {
    compute_stats_highbd(wiener_win, rsc->dgd_buffer, rsc->src_buffer,
                         limits->h_start, limits->h_end, limits->v_start,
                         limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H);
  } else {
    compute_stats(wiener_win, rsc->dgd_buffer, rsc->src_buffer, limits->h_start,
                  limits->h_end, limits->v_start, limits->v_end,
                  rsc->dgd_stride, rsc->src_stride, M, H);
  }

  const MACROBLOCK *const x = rsc->x;
  const int64_t bits_none = x->wiener_restore_cost[0];

  if (!wiener_decompose_sep_sym(wiener_win, M, H, vfilterd, hfilterd)) {
    rsc->bits += bits_none;
    rsc->sse += rusi->sse[RESTORE_NONE];
    rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
    rusi->sse[RESTORE_WIENER] = INT64_MAX;
    return;
  }

  RestorationUnitInfo rui;
  memset(&rui, 0, sizeof(rui));
  rui.restoration_type = RESTORE_WIENER;
  quantize_sym_filter(wiener_win, vfilterd, rui.wiener_info.vfilter);
  quantize_sym_filter(wiener_win, hfilterd, rui.wiener_info.hfilter);

  // Filter score computes the value of the function x'*A*x - x'*b for the
  // learned filter and compares it against identity filer. If there is no
  // reduction in the function, the filter is reverted back to identity
  if (compute_score(wiener_win, M, H, rui.wiener_info.vfilter,
                    rui.wiener_info.hfilter) > 0) {
    rsc->bits += bits_none;
    rsc->sse += rusi->sse[RESTORE_NONE];
    rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
    rusi->sse[RESTORE_WIENER] = INT64_MAX;
    return;
  }

  aom_clear_system_state();

  rusi->sse[RESTORE_WIENER] =
      finer_tile_search_wiener(rsc, limits, tile_rect, &rui, wiener_win);
  rusi->wiener = rui.wiener_info;

  if (wiener_win != WIENER_WIN) {
    assert(rui.wiener_info.vfilter[0] == 0 &&
           rui.wiener_info.vfilter[WIENER_WIN - 1] == 0);
    assert(rui.wiener_info.hfilter[0] == 0 &&
           rui.wiener_info.hfilter[WIENER_WIN - 1] == 0);
  }

  const int64_t bits_wiener =
      x->wiener_restore_cost[1] +
      (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->wiener)
       << AV1_PROB_COST_SHIFT);

  double cost_none =
      RDCOST_DBL(x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE]);
  double cost_wiener =
      RDCOST_DBL(x->rdmult, bits_wiener >> 4, rusi->sse[RESTORE_WIENER]);

  RestorationType rtype =
      (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE;
  rusi->best_rtype[RESTORE_WIENER - 1] = rtype;

  rsc->sse += rusi->sse[rtype];
  rsc->bits += (cost_wiener < cost_none) ? bits_wiener : bits_none;
  if (cost_wiener < cost_none) rsc->wiener = rusi->wiener;
}

static void search_norestore(const RestorationTileLimits *limits,
                             const AV1PixelRect *tile_rect, int rest_unit_idx,
                             void *priv, int32_t *tmpbuf,
                             RestorationLineBuffers *rlbs) {
  (void)tile_rect;
  (void)tmpbuf;
  (void)rlbs;

  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
  RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];

  const int highbd = rsc->cm->seq_params.use_highbitdepth;
  rusi->sse[RESTORE_NONE] = sse_restoration_unit(
      limits, rsc->src, rsc->cm->frame_to_show, rsc->plane, highbd);

  rsc->sse += rusi->sse[RESTORE_NONE];
}

static void search_switchable(const RestorationTileLimits *limits,
                              const AV1PixelRect *tile_rect, int rest_unit_idx,
                              void *priv, int32_t *tmpbuf,
                              RestorationLineBuffers *rlbs) {
  (void)limits;
  (void)tile_rect;
  (void)tmpbuf;
  (void)rlbs;
  RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
  RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];

  const MACROBLOCK *const x = rsc->x;

  const int wiener_win =
      (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;

  double best_cost = 0;
  int64_t best_bits = 0;
  RestorationType best_rtype = RESTORE_NONE;

  for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) {
    // Check for the condition that wiener or sgrproj search could not
    // find a solution or the solution was worse than RESTORE_NONE.
    // In either case the best_rtype will be set as RESTORE_NONE. These
    // should be skipped from the test below.
    if (r > RESTORE_NONE) {
      if (rusi->best_rtype[r - 1] == RESTORE_NONE) continue;
    }

    const int64_t sse = rusi->sse[r];
    int64_t coeff_pcost = 0;
    switch (r) {
      case RESTORE_NONE: coeff_pcost = 0; break;
      case RESTORE_WIENER:
        coeff_pcost =
            count_wiener_bits(wiener_win, &rusi->wiener, &rsc->wiener);
        break;
      case RESTORE_SGRPROJ:
        coeff_pcost = count_sgrproj_bits(&rusi->sgrproj, &rsc->sgrproj);
        break;
      default: assert(0); break;
    }
    const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT;
    const int64_t bits = x->switchable_restore_cost[r] + coeff_bits;
    double cost = RDCOST_DBL(x->rdmult, bits >> 4, sse);
    if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10)
      cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->sf->dual_sgr_penalty_level);
    if (r == 0 || cost < best_cost) {
      best_cost = cost;
      best_bits = bits;
      best_rtype = r;
    }
  }

  rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype;

  rsc->sse += rusi->sse[best_rtype];
  rsc->bits += best_bits;
  if (best_rtype == RESTORE_WIENER) rsc->wiener = rusi->wiener;
  if (best_rtype == RESTORE_SGRPROJ) rsc->sgrproj = rusi->sgrproj;
}

static void copy_unit_info(RestorationType frame_rtype,
                           const RestUnitSearchInfo *rusi,
                           RestorationUnitInfo *rui) {
  assert(frame_rtype > 0);
  rui->restoration_type = rusi->best_rtype[frame_rtype - 1];
  if (rui->restoration_type == RESTORE_WIENER)
    rui->wiener_info = rusi->wiener;
  else
    rui->sgrproj_info = rusi->sgrproj;
}

static double search_rest_type(RestSearchCtxt *rsc, RestorationType rtype) {
  static const rest_unit_visitor_t funs[RESTORE_TYPES] = {
    search_norestore, search_wiener, search_sgrproj, search_switchable
  };

  reset_rsc(rsc);
  rsc_on_tile(LR_TILE_ROW, LR_TILE_COL, rsc);
  av1_foreach_rest_unit_in_plane(rsc->cm, rsc->plane, funs[rtype], rsc,
                                 &rsc->tile_rect, rsc->cm->rst_tmpbuf, NULL);
  return RDCOST_DBL(rsc->x->rdmult, rsc->bits >> 4, rsc->sse);
}

static int rest_tiles_in_plane(const AV1_COMMON *cm, int plane) {
  const RestorationInfo *rsi = &cm->rst_info[plane];
  return rsi->units_per_tile;
}

void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  assert(!cm->all_lossless);

  int ntiles[2];
  for (int is_uv = 0; is_uv < 2; ++is_uv)
    ntiles[is_uv] = rest_tiles_in_plane(cm, is_uv);

  assert(ntiles[1] <= ntiles[0]);
  RestUnitSearchInfo *rusi =
      (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * ntiles[0]);

  // If the restoration unit dimensions are not multiples of
  // rsi->restoration_unit_size then some elements of the rusi array may be
  // left uninitialised when we reach copy_unit_info(...). This is not a
  // problem, as these elements are ignored later, but in order to quiet
  // Valgrind's warnings we initialise the array below.
  memset(rusi, 0, sizeof(*rusi) * ntiles[0]);

  RestSearchCtxt rsc;
  const int plane_start = AOM_PLANE_Y;
  const int plane_end = num_planes > 1 ? AOM_PLANE_V : AOM_PLANE_Y;
  for (int plane = plane_start; plane <= plane_end; ++plane) {
    init_rsc(src, &cpi->common, &cpi->td.mb, &cpi->sf, plane, rusi,
             &cpi->trial_frame_rst, &rsc);

    const int plane_ntiles = ntiles[plane > 0];
    const RestorationType num_rtypes =
        (plane_ntiles > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;

    double best_cost = 0;
    RestorationType best_rtype = RESTORE_NONE;

    const int highbd = rsc.cm->seq_params.use_highbitdepth;
    extend_frame(rsc.dgd_buffer, rsc.plane_width, rsc.plane_height,
                 rsc.dgd_stride, RESTORATION_BORDER, RESTORATION_BORDER,
                 highbd);

    for (RestorationType r = 0; r < num_rtypes; ++r) {
      if ((force_restore_type != RESTORE_TYPES) && (r != RESTORE_NONE) &&
          (r != force_restore_type))
        continue;

      double cost = search_rest_type(&rsc, r);

      if (r == 0 || cost < best_cost) {
        best_cost = cost;
        best_rtype = r;
      }
    }

    cm->rst_info[plane].frame_restoration_type = best_rtype;
    if (force_restore_type != RESTORE_TYPES)
      assert(best_rtype == force_restore_type || best_rtype == RESTORE_NONE);

    if (best_rtype != RESTORE_NONE) {
      for (int u = 0; u < plane_ntiles; ++u) {
        copy_unit_info(best_rtype, &rusi[u], &cm->rst_info[plane].unit_info[u]);
      }
    }
  }

  aom_free(rusi);
}