1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <assert.h>
#include "av1/encoder/global_motion.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/corner_detect.h"
#include "av1/encoder/corner_match.h"
#include "av1/encoder/ransac.h"
#define MAX_CORNERS 4096
#define MIN_INLIER_PROB 0.1
#define MIN_TRANS_THRESH (1 * GM_TRANS_DECODE_FACTOR)
// Border over which to compute the global motion
#define ERRORADV_BORDER 0
#define ERRORADV_MAX_THRESH 0.995
#define ERRORADV_COST_PRODUCT_THRESH 26000
int is_enough_erroradvantage(double best_erroradvantage, int params_cost) {
return best_erroradvantage < ERRORADV_MAX_THRESH &&
best_erroradvantage * params_cost < ERRORADV_COST_PRODUCT_THRESH;
}
static void convert_to_params(const double *params, int32_t *model) {
int i;
int alpha_present = 0;
model[0] = (int32_t)floor(params[0] * (1 << GM_TRANS_PREC_BITS) + 0.5);
model[1] = (int32_t)floor(params[1] * (1 << GM_TRANS_PREC_BITS) + 0.5);
model[0] = (int32_t)clamp(model[0], GM_TRANS_MIN, GM_TRANS_MAX) *
GM_TRANS_DECODE_FACTOR;
model[1] = (int32_t)clamp(model[1], GM_TRANS_MIN, GM_TRANS_MAX) *
GM_TRANS_DECODE_FACTOR;
for (i = 2; i < 6; ++i) {
const int diag_value = ((i == 2 || i == 5) ? (1 << GM_ALPHA_PREC_BITS) : 0);
model[i] = (int32_t)floor(params[i] * (1 << GM_ALPHA_PREC_BITS) + 0.5);
model[i] =
(int32_t)clamp(model[i] - diag_value, GM_ALPHA_MIN, GM_ALPHA_MAX);
alpha_present |= (model[i] != 0);
model[i] = (model[i] + diag_value) * GM_ALPHA_DECODE_FACTOR;
}
for (; i < 8; ++i) {
model[i] = (int32_t)floor(params[i] * (1 << GM_ROW3HOMO_PREC_BITS) + 0.5);
model[i] = (int32_t)clamp(model[i], GM_ROW3HOMO_MIN, GM_ROW3HOMO_MAX) *
GM_ROW3HOMO_DECODE_FACTOR;
alpha_present |= (model[i] != 0);
}
if (!alpha_present) {
if (abs(model[0]) < MIN_TRANS_THRESH && abs(model[1]) < MIN_TRANS_THRESH) {
model[0] = 0;
model[1] = 0;
}
}
}
void convert_model_to_params(const double *params, WarpedMotionParams *model) {
convert_to_params(params, model->wmmat);
model->wmtype = get_gmtype(model);
}
// Adds some offset to a global motion parameter and handles
// all of the necessary precision shifts, clamping, and
// zero-centering.
static int32_t add_param_offset(int param_index, int32_t param_value,
int32_t offset) {
const int scale_vals[3] = { GM_TRANS_PREC_DIFF, GM_ALPHA_PREC_DIFF,
GM_ROW3HOMO_PREC_DIFF };
const int clamp_vals[3] = { GM_TRANS_MAX, GM_ALPHA_MAX, GM_ROW3HOMO_MAX };
// type of param: 0 - translation, 1 - affine, 2 - homography
const int param_type = (param_index < 2 ? 0 : (param_index < 6 ? 1 : 2));
const int is_one_centered = (param_index == 2 || param_index == 5);
// Make parameter zero-centered and offset the shift that was done to make
// it compatible with the warped model
param_value = (param_value - (is_one_centered << WARPEDMODEL_PREC_BITS)) >>
scale_vals[param_type];
// Add desired offset to the rescaled/zero-centered parameter
param_value += offset;
// Clamp the parameter so it does not overflow the number of bits allotted
// to it in the bitstream
param_value = (int32_t)clamp(param_value, -clamp_vals[param_type],
clamp_vals[param_type]);
// Rescale the parameter to WARPEDMODEL_PRECISION_BITS so it is compatible
// with the warped motion library
param_value *= (1 << scale_vals[param_type]);
// Undo the zero-centering step if necessary
return param_value + (is_one_centered << WARPEDMODEL_PREC_BITS);
}
static void force_wmtype(WarpedMotionParams *wm, TransformationType wmtype) {
switch (wmtype) {
case IDENTITY: wm->wmmat[0] = 0; wm->wmmat[1] = 0;
case TRANSLATION:
wm->wmmat[2] = 1 << WARPEDMODEL_PREC_BITS;
wm->wmmat[3] = 0;
case ROTZOOM: wm->wmmat[4] = -wm->wmmat[3]; wm->wmmat[5] = wm->wmmat[2];
case AFFINE: wm->wmmat[6] = wm->wmmat[7] = 0; break;
case HORTRAPEZOID: wm->wmmat[6] = wm->wmmat[4] = 0; break;
case VERTRAPEZOID: wm->wmmat[7] = wm->wmmat[3] = 0; break;
case HOMOGRAPHY: break;
default: assert(0);
}
wm->wmtype = wmtype;
}
double refine_integerized_param(WarpedMotionParams *wm,
TransformationType wmtype,
#if CONFIG_HIGHBITDEPTH
int use_hbd, int bd,
#endif // CONFIG_HIGHBITDEPTH
uint8_t *ref, int r_width, int r_height,
int r_stride, uint8_t *dst, int d_width,
int d_height, int d_stride, int n_refinements) {
static const int max_trans_model_params[TRANS_TYPES] = {
0, 2, 4, 6, 8, 8, 8
};
const int border = ERRORADV_BORDER;
int i = 0, p;
int n_params = max_trans_model_params[wmtype];
int32_t *param_mat = wm->wmmat;
double step_error;
int32_t step;
int32_t *param;
int32_t curr_param;
int32_t best_param;
double best_error;
force_wmtype(wm, wmtype);
best_error = av1_warp_erroradv(wm,
#if CONFIG_HIGHBITDEPTH
use_hbd, bd,
#endif // CONFIG_HIGHBITDEPTH
ref, r_width, r_height, r_stride,
dst + border * d_stride + border, border,
border, d_width - 2 * border,
d_height - 2 * border, d_stride, 0, 0, 16, 16);
step = 1 << (n_refinements + 1);
for (i = 0; i < n_refinements; i++, step >>= 1) {
for (p = 0; p < n_params; ++p) {
int step_dir = 0;
// Skip searches for parameters that are forced to be 0
if (wmtype == HORTRAPEZOID && (p == 4 || p == 6)) continue;
if (wmtype == VERTRAPEZOID && (p == 3 || p == 7)) continue;
param = param_mat + p;
curr_param = *param;
best_param = curr_param;
// look to the left
*param = add_param_offset(p, curr_param, -step);
step_error = av1_warp_erroradv(
wm,
#if CONFIG_HIGHBITDEPTH
use_hbd, bd,
#endif // CONFIG_HIGHBITDEPTH
ref, r_width, r_height, r_stride, dst + border * d_stride + border,
border, border, d_width - 2 * border, d_height - 2 * border, d_stride,
0, 0, 16, 16);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
step_dir = -1;
}
// look to the right
*param = add_param_offset(p, curr_param, step);
step_error = av1_warp_erroradv(
wm,
#if CONFIG_HIGHBITDEPTH
use_hbd, bd,
#endif // CONFIG_HIGHBITDEPTH
ref, r_width, r_height, r_stride, dst + border * d_stride + border,
border, border, d_width - 2 * border, d_height - 2 * border, d_stride,
0, 0, 16, 16);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
step_dir = 1;
}
*param = best_param;
// look to the direction chosen above repeatedly until error increases
// for the biggest step size
while (step_dir) {
*param = add_param_offset(p, best_param, step * step_dir);
step_error = av1_warp_erroradv(
wm,
#if CONFIG_HIGHBITDEPTH
use_hbd, bd,
#endif // CONFIG_HIGHBITDEPTH
ref, r_width, r_height, r_stride, dst + border * d_stride + border,
border, border, d_width - 2 * border, d_height - 2 * border,
d_stride, 0, 0, 16, 16);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
} else {
*param = best_param;
step_dir = 0;
}
}
}
}
force_wmtype(wm, wmtype);
wm->wmtype = get_gmtype(wm);
return best_error;
}
static INLINE RansacFunc get_ransac_type(TransformationType type) {
switch (type) {
case HOMOGRAPHY: return ransac_homography;
case HORTRAPEZOID: return ransac_hortrapezoid;
case VERTRAPEZOID: return ransac_vertrapezoid;
case AFFINE: return ransac_affine;
case ROTZOOM: return ransac_rotzoom;
case TRANSLATION: return ransac_translation;
default: assert(0); return NULL;
}
}
#if CONFIG_HIGHBITDEPTH
static unsigned char *downconvert_frame(YV12_BUFFER_CONFIG *frm,
int bit_depth) {
int i, j;
uint16_t *orig_buf = CONVERT_TO_SHORTPTR(frm->y_buffer);
uint8_t *buf = malloc(frm->y_height * frm->y_stride * sizeof(*buf));
for (i = 0; i < frm->y_height; ++i)
for (j = 0; j < frm->y_width; ++j)
buf[i * frm->y_stride + j] =
orig_buf[i * frm->y_stride + j] >> (bit_depth - 8);
return buf;
}
#endif
int compute_global_motion_feature_based(
TransformationType type, YV12_BUFFER_CONFIG *frm, YV12_BUFFER_CONFIG *ref,
#if CONFIG_HIGHBITDEPTH
int bit_depth,
#endif
int *num_inliers_by_motion, double *params_by_motion, int num_motions) {
int i;
int num_frm_corners, num_ref_corners;
int num_correspondences;
int *correspondences;
int frm_corners[2 * MAX_CORNERS], ref_corners[2 * MAX_CORNERS];
unsigned char *frm_buffer = frm->y_buffer;
unsigned char *ref_buffer = ref->y_buffer;
RansacFunc ransac = get_ransac_type(type);
#if CONFIG_HIGHBITDEPTH
if (frm->flags & YV12_FLAG_HIGHBITDEPTH) {
// The frame buffer is 16-bit, so we need to convert to 8 bits for the
// following code. We cache the result until the frame is released.
if (frm->y_buffer_8bit)
frm_buffer = frm->y_buffer_8bit;
else
frm_buffer = frm->y_buffer_8bit = downconvert_frame(frm, bit_depth);
}
if (ref->flags & YV12_FLAG_HIGHBITDEPTH) {
if (ref->y_buffer_8bit)
ref_buffer = ref->y_buffer_8bit;
else
ref_buffer = ref->y_buffer_8bit = downconvert_frame(ref, bit_depth);
}
#endif
// compute interest points in images using FAST features
num_frm_corners = fast_corner_detect(frm_buffer, frm->y_width, frm->y_height,
frm->y_stride, frm_corners, MAX_CORNERS);
num_ref_corners = fast_corner_detect(ref_buffer, ref->y_width, ref->y_height,
ref->y_stride, ref_corners, MAX_CORNERS);
// find correspondences between the two images
correspondences =
(int *)malloc(num_frm_corners * 4 * sizeof(*correspondences));
num_correspondences = determine_correspondence(
frm_buffer, (int *)frm_corners, num_frm_corners, ref_buffer,
(int *)ref_corners, num_ref_corners, frm->y_width, frm->y_height,
frm->y_stride, ref->y_stride, correspondences);
ransac(correspondences, num_correspondences, num_inliers_by_motion,
params_by_motion, num_motions);
free(correspondences);
// Set num_inliers = 0 for motions with too few inliers so they are ignored.
for (i = 0; i < num_motions; ++i) {
if (num_inliers_by_motion[i] < MIN_INLIER_PROB * num_correspondences) {
num_inliers_by_motion[i] = 0;
}
}
// Return true if any one of the motions has inliers.
for (i = 0; i < num_motions; ++i) {
if (num_inliers_by_motion[i] > 0) return 1;
}
return 0;
}
|