summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/blockiness.c
blob: 113ceb29d250b39864562d1616bb014154d5f83f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "av1/common/common.h"
#include "av1/common/filter.h"
#include "aom/aom_integer.h"
#include "aom_dsp/aom_convolve.h"
#include "aom_dsp/aom_filter.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"

static int horizontal_filter(const uint8_t *s) {
  return (s[1] - s[-2]) * 2 + (s[-1] - s[0]) * 6;
}

static int vertical_filter(const uint8_t *s, int p) {
  return (s[p] - s[-2 * p]) * 2 + (s[-p] - s[0]) * 6;
}

static int variance(int sum, int sum_squared, int size) {
  return sum_squared / size - (sum / size) * (sum / size);
}
// Calculate a blockiness level for a vertical block edge.
// This function returns a new blockiness metric that's defined as

//              p0 p1 p2 p3
//              q0 q1 q2 q3
// block edge ->
//              r0 r1 r2 r3
//              s0 s1 s2 s3

// blockiness =  p0*-2+q0*6+r0*-6+s0*2 +
//               p1*-2+q1*6+r1*-6+s1*2 +
//               p2*-2+q2*6+r2*-6+s2*2 +
//               p3*-2+q3*6+r3*-6+s3*2 ;

// reconstructed_blockiness = abs(blockiness from reconstructed buffer -
//                                blockiness from source buffer,0)
//
// I make the assumption that flat blocks are much more visible than high
// contrast blocks. As such, I scale the result of the blockiness calc
// by dividing the blockiness by the variance of the pixels on either side
// of the edge as follows:
// var_0 = (q0^2+q1^2+q2^2+q3^2) - ((q0 + q1 + q2 + q3) / 4 )^2
// var_1 = (r0^2+r1^2+r2^2+r3^2) - ((r0 + r1 + r2 + r3) / 4 )^2
// The returned blockiness is the scaled value
// Reconstructed blockiness / ( 1 + var_0 + var_1 ) ;
static int blockiness_vertical(const uint8_t *s, int sp, const uint8_t *r,
                               int rp, int size) {
  int s_blockiness = 0;
  int r_blockiness = 0;
  int sum_0 = 0;
  int sum_sq_0 = 0;
  int sum_1 = 0;
  int sum_sq_1 = 0;
  int i;
  int var_0;
  int var_1;
  for (i = 0; i < size; ++i, s += sp, r += rp) {
    s_blockiness += horizontal_filter(s);
    r_blockiness += horizontal_filter(r);
    sum_0 += s[0];
    sum_sq_0 += s[0] * s[0];
    sum_1 += s[-1];
    sum_sq_1 += s[-1] * s[-1];
  }
  var_0 = variance(sum_0, sum_sq_0, size);
  var_1 = variance(sum_1, sum_sq_1, size);
  r_blockiness = abs(r_blockiness);
  s_blockiness = abs(s_blockiness);

  if (r_blockiness > s_blockiness)
    return (r_blockiness - s_blockiness) / (1 + var_0 + var_1);
  else
    return 0;
}

// Calculate a blockiness level for a horizontal block edge
// same as above.
static int blockiness_horizontal(const uint8_t *s, int sp, const uint8_t *r,
                                 int rp, int size) {
  int s_blockiness = 0;
  int r_blockiness = 0;
  int sum_0 = 0;
  int sum_sq_0 = 0;
  int sum_1 = 0;
  int sum_sq_1 = 0;
  int i;
  int var_0;
  int var_1;
  for (i = 0; i < size; ++i, ++s, ++r) {
    s_blockiness += vertical_filter(s, sp);
    r_blockiness += vertical_filter(r, rp);
    sum_0 += s[0];
    sum_sq_0 += s[0] * s[0];
    sum_1 += s[-sp];
    sum_sq_1 += s[-sp] * s[-sp];
  }
  var_0 = variance(sum_0, sum_sq_0, size);
  var_1 = variance(sum_1, sum_sq_1, size);
  r_blockiness = abs(r_blockiness);
  s_blockiness = abs(s_blockiness);

  if (r_blockiness > s_blockiness)
    return (r_blockiness - s_blockiness) / (1 + var_0 + var_1);
  else
    return 0;
}

// This function returns the blockiness for the entire frame currently by
// looking at all borders in steps of 4.
double av1_get_blockiness(const unsigned char *img1, int img1_pitch,
                          const unsigned char *img2, int img2_pitch, int width,
                          int height) {
  double blockiness = 0;
  int i, j;
  aom_clear_system_state();
  for (i = 0; i < height;
       i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
    for (j = 0; j < width; j += 4) {
      if (i > 0 && i < height && j > 0 && j < width) {
        blockiness +=
            blockiness_vertical(img1 + j, img1_pitch, img2 + j, img2_pitch, 4);
        blockiness += blockiness_horizontal(img1 + j, img1_pitch, img2 + j,
                                            img2_pitch, 4);
      }
    }
  }
  blockiness /= width * height / 16;
  return blockiness;
}