summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/bgsprite.c
blob: 64deade0649688cdf5f67e9e451c52eb52507135 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
/*
 * Copyright (c) 2017, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#define _POSIX_C_SOURCE 200112L  // rand_r()
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

#include "av1/encoder/bgsprite.h"

#include "aom_mem/aom_mem.h"
#include "./aom_scale_rtcd.h"
#include "av1/common/mv.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/global_motion.h"
#include "av1/encoder/mathutils.h"
#include "av1/encoder/temporal_filter.h"

/* Blending Modes:
 * 0 = Median
 * 1 = Mean
 */
#define BGSPRITE_BLENDING_MODE 1

/* Interpolation for panorama alignment sampling:
 * 0 = Nearest neighbor
 * 1 = Bilinear
 */
#define BGSPRITE_INTERPOLATION 0

#define TRANSFORM_MAT_DIM 3

typedef struct {
#if CONFIG_HIGHBITDEPTH
  uint16_t y;
  uint16_t u;
  uint16_t v;
#else
  uint8_t y;
  uint8_t u;
  uint8_t v;
#endif  // CONFIG_HIGHBITDEPTH
} YuvPixel;

// Maps to convert from matrix form to param vector form.
static const int params_to_matrix_map[] = { 2, 3, 0, 4, 5, 1, 6, 7 };
static const int matrix_to_params_map[] = { 2, 5, 0, 1, 3, 4, 6, 7 };

// Convert the parameter array to a 3x3 matrix form.
static void params_to_matrix(const double *const params, double *target) {
  for (int i = 0; i < MAX_PARAMDIM - 1; i++) {
    assert(params_to_matrix_map[i] < MAX_PARAMDIM - 1);
    target[i] = params[params_to_matrix_map[i]];
  }
  target[8] = 1;
}

// Convert a 3x3 matrix to a parameter array form.
static void matrix_to_params(const double *const matrix, double *target) {
  for (int i = 0; i < MAX_PARAMDIM - 1; i++) {
    assert(matrix_to_params_map[i] < MAX_PARAMDIM - 1);
    target[i] = matrix[matrix_to_params_map[i]];
  }
}

// Do matrix multiplication on params.
static void multiply_params(double *const m1, double *const m2,
                            double *target) {
  double m1_matrix[MAX_PARAMDIM];
  double m2_matrix[MAX_PARAMDIM];
  double result[MAX_PARAMDIM];

  params_to_matrix(m1, m1_matrix);
  params_to_matrix(m2, m2_matrix);
  multiply_mat(m2_matrix, m1_matrix, result, TRANSFORM_MAT_DIM,
               TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM);
  matrix_to_params(result, target);
}

// Finds x and y limits of a single transformed image.
// Width and height are the size of the input video.
static void find_frame_limit(int width, int height,
                             const double *const transform, int *x_min,
                             int *x_max, int *y_min, int *y_max) {
  double transform_matrix[MAX_PARAMDIM];
  double xy_matrix[3] = { 0, 0, 1 };
  double uv_matrix[3] = { 0 };
// Macro used to update frame limits based on transformed coordinates.
#define UPDATELIMITS(u, v, x_min, x_max, y_min, y_max) \
  {                                                    \
    if ((int)ceil(u) > *x_max) {                       \
      *x_max = (int)ceil(u);                           \
    }                                                  \
    if ((int)floor(u) < *x_min) {                      \
      *x_min = (int)floor(u);                          \
    }                                                  \
    if ((int)ceil(v) > *y_max) {                       \
      *y_max = (int)ceil(v);                           \
    }                                                  \
    if ((int)floor(v) < *y_min) {                      \
      *y_min = (int)floor(v);                          \
    }                                                  \
  }

  params_to_matrix(transform, transform_matrix);
  xy_matrix[0] = 0;
  xy_matrix[1] = 0;
  multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
               TRANSFORM_MAT_DIM, 1);
  *x_max = (int)ceil(uv_matrix[0]);
  *x_min = (int)floor(uv_matrix[0]);
  *y_max = (int)ceil(uv_matrix[1]);
  *y_min = (int)floor(uv_matrix[1]);

  xy_matrix[0] = width;
  xy_matrix[1] = 0;
  multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
               TRANSFORM_MAT_DIM, 1);
  UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max);

  xy_matrix[0] = width;
  xy_matrix[1] = height;
  multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
               TRANSFORM_MAT_DIM, 1);
  UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max);

  xy_matrix[0] = 0;
  xy_matrix[1] = height;
  multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
               TRANSFORM_MAT_DIM, 1);
  UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max);

#undef UPDATELIMITS
}

// Finds x and y limits for arrays. Also finds the overall max and minimums
static void find_limits(int width, int height, const double **const params,
                        int num_frames, int *x_min, int *x_max, int *y_min,
                        int *y_max, int *pano_x_min, int *pano_x_max,
                        int *pano_y_min, int *pano_y_max) {
  *pano_x_max = INT_MIN;
  *pano_x_min = INT_MAX;
  *pano_y_max = INT_MIN;
  *pano_y_min = INT_MAX;
  for (int i = 0; i < num_frames; ++i) {
    find_frame_limit(width, height, (const double *const)params[i], &x_min[i],
                     &x_max[i], &y_min[i], &y_max[i]);
    if (x_max[i] > *pano_x_max) {
      *pano_x_max = x_max[i];
    }
    if (x_min[i] < *pano_x_min) {
      *pano_x_min = x_min[i];
    }
    if (y_max[i] > *pano_y_max) {
      *pano_y_max = y_max[i];
    }
    if (y_min[i] < *pano_y_min) {
      *pano_y_min = y_min[i];
    }
  }
}

// Inverts a 3x3 matrix that is in the parameter form.
static void invert_params(const double *const params, double *target) {
  double temp[MAX_PARAMDIM] = { 0 };
  params_to_matrix(params, temp);

  // Find determinant of matrix (expansion by minors).
  const double det = temp[0] * ((temp[4] * temp[8]) - (temp[5] * temp[7])) -
                     temp[1] * ((temp[3] * temp[8]) - (temp[5] * temp[6])) +
                     temp[2] * ((temp[3] * temp[7]) - (temp[4] * temp[6]));
  assert(det != 0);

  // inverse is transpose of cofactor * 1/det.
  double inverse[MAX_PARAMDIM] = { 0 };
  inverse[0] = (temp[4] * temp[8] - temp[7] * temp[5]) / det;
  inverse[1] = (temp[2] * temp[7] - temp[1] * temp[8]) / det;
  inverse[2] = (temp[1] * temp[5] - temp[2] * temp[4]) / det;
  inverse[3] = (temp[5] * temp[6] - temp[3] * temp[8]) / det;
  inverse[4] = (temp[0] * temp[8] - temp[2] * temp[6]) / det;
  inverse[5] = (temp[3] * temp[2] - temp[0] * temp[5]) / det;
  inverse[6] = (temp[3] * temp[7] - temp[6] * temp[4]) / det;
  inverse[7] = (temp[6] * temp[1] - temp[0] * temp[7]) / det;
  inverse[8] = (temp[0] * temp[4] - temp[3] * temp[1]) / det;

  matrix_to_params(inverse, target);
}

#if BGSPRITE_BLENDING_MODE == 0
// swaps two YuvPixels.
static void swap_yuv(YuvPixel *a, YuvPixel *b) {
  const YuvPixel temp = *b;
  *b = *a;
  *a = temp;
}

// Partitions array to find pivot index in qselect.
static int partition(YuvPixel arr[], int left, int right, int pivot_idx) {
  YuvPixel pivot = arr[pivot_idx];

  // Move pivot to the end.
  swap_yuv(&arr[pivot_idx], &arr[right]);

  int p_idx = left;
  for (int i = left; i < right; ++i) {
    if (arr[i].y <= pivot.y) {
      swap_yuv(&arr[i], &arr[p_idx]);
      p_idx++;
    }
  }

  swap_yuv(&arr[p_idx], &arr[right]);

  return p_idx;
}

// Returns the kth element in array, partially sorted in place (quickselect).
static YuvPixel qselect(YuvPixel arr[], int left, int right, int k) {
  if (left >= right) {
    return arr[left];
  }
  unsigned int seed = (int)time(NULL);
  int pivot_idx = left + rand_r(&seed) % (right - left + 1);
  pivot_idx = partition(arr, left, right, pivot_idx);

  if (k == pivot_idx) {
    return arr[k];
  } else if (k < pivot_idx) {
    return qselect(arr, left, pivot_idx - 1, k);
  } else {
    return qselect(arr, pivot_idx + 1, right, k);
  }
}
#endif  // BGSPRITE_BLENDING_MODE == 0

// Stitches images together to create ARF and stores it in 'panorama'.
static void stitch_images(YV12_BUFFER_CONFIG **const frames,
                          const int num_frames, const int center_idx,
                          const double **const params, const int *const x_min,
                          const int *const x_max, const int *const y_min,
                          const int *const y_max, int pano_x_min,
                          int pano_x_max, int pano_y_min, int pano_y_max,
                          YV12_BUFFER_CONFIG *panorama) {
  const int width = pano_x_max - pano_x_min + 1;
  const int height = pano_y_max - pano_y_min + 1;

  // Create temp_pano[y][x][num_frames] stack of pixel values
  YuvPixel ***temp_pano = aom_malloc(height * sizeof(*temp_pano));
  for (int i = 0; i < height; ++i) {
    temp_pano[i] = aom_malloc(width * sizeof(**temp_pano));
    for (int j = 0; j < width; ++j) {
      temp_pano[i][j] = aom_malloc(num_frames * sizeof(***temp_pano));
    }
  }
  // Create count[y][x] to count how many values in stack for median filtering
  int **count = aom_malloc(height * sizeof(*count));
  for (int i = 0; i < height; ++i) {
    count[i] = aom_calloc(width, sizeof(**count));  // counts initialized to 0
  }

  // Re-sample images onto panorama (pre-median filtering).
  const int x_offset = -pano_x_min;
  const int y_offset = -pano_y_min;
  const int frame_width = frames[0]->y_width;
  const int frame_height = frames[0]->y_height;
  for (int i = 0; i < num_frames; ++i) {
    // Find transforms from panorama coordinate system back to single image
    // coordinate system for sampling.
    int transformed_width = x_max[i] - x_min[i] + 1;
    int transformed_height = y_max[i] - y_min[i] + 1;

    double transform_matrix[MAX_PARAMDIM];
    double transform_params[MAX_PARAMDIM - 1];
    invert_params(params[i], transform_params);
    params_to_matrix(transform_params, transform_matrix);

#if CONFIG_HIGHBITDEPTH
    const uint16_t *y_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->y_buffer);
    const uint16_t *u_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->u_buffer);
    const uint16_t *v_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->v_buffer);
#endif  // CONFIG_HIGHBITDEPTH

    for (int y = 0; y < transformed_height; ++y) {
      for (int x = 0; x < transformed_width; ++x) {
        // Do transform.
        double xy_matrix[3] = { x + x_min[i], y + y_min[i], 1 };
        double uv_matrix[3] = { 0 };
        multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM,
                     TRANSFORM_MAT_DIM, 1);

        // Coordinates used for nearest neighbor interpolation.
        int image_x = (int)round(uv_matrix[0]);
        int image_y = (int)round(uv_matrix[1]);

        // Temporary values for bilinear interpolation
        double interpolated_yvalue = 0.0;
        double interpolated_uvalue = 0.0;
        double interpolated_vvalue = 0.0;
        double interpolated_fraction = 0.0;
        int interpolation_count = 0;

#if BGSPRITE_INTERPOLATION == 1
        // Coordintes used for bilinear interpolation.
        double x_base;
        double y_base;
        double x_decimal = modf(uv_matrix[0], &x_base);
        double y_decimal = modf(uv_matrix[1], &y_base);

        if ((x_decimal > 0.2 && x_decimal < 0.8) ||
            (y_decimal > 0.2 && y_decimal < 0.8)) {
          for (int u = 0; u < 2; ++u) {
            for (int v = 0; v < 2; ++v) {
              int interp_x = (int)x_base + u;
              int interp_y = (int)y_base + v;
              if (interp_x >= 0 && interp_x < frame_width && interp_y >= 0 &&
                  interp_y < frame_height) {
                interpolation_count++;

                interpolated_fraction +=
                    fabs(u - x_decimal) * fabs(v - y_decimal);
                int ychannel_idx = interp_y * frames[i]->y_stride + interp_x;
                int uvchannel_idx = (interp_y >> frames[i]->subsampling_y) *
                                        frames[i]->uv_stride +
                                    (interp_x >> frames[i]->subsampling_x);
#if CONFIG_HIGHBITDEPTH
                if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) {
                  interpolated_yvalue += (1 - fabs(u - x_decimal)) *
                                         (1 - fabs(v - y_decimal)) *
                                         y_buffer16[ychannel_idx];
                  interpolated_uvalue += (1 - fabs(u - x_decimal)) *
                                         (1 - fabs(v - y_decimal)) *
                                         u_buffer16[uvchannel_idx];
                  interpolated_vvalue += (1 - fabs(u - x_decimal)) *
                                         (1 - fabs(v - y_decimal)) *
                                         v_buffer16[uvchannel_idx];
                } else {
#endif  // CONFIG_HIGHBITDEPTH
                  interpolated_yvalue += (1 - fabs(u - x_decimal)) *
                                         (1 - fabs(v - y_decimal)) *
                                         frames[i]->y_buffer[ychannel_idx];
                  interpolated_uvalue += (1 - fabs(u - x_decimal)) *
                                         (1 - fabs(v - y_decimal)) *
                                         frames[i]->u_buffer[uvchannel_idx];
                  interpolated_vvalue += (1 - fabs(u - x_decimal)) *
                                         (1 - fabs(v - y_decimal)) *
                                         frames[i]->v_buffer[uvchannel_idx];
#if CONFIG_HIGHBITDEPTH
                }
#endif  // CONFIG_HIGHBITDEPTH
              }
            }
          }
        }
#endif  // BGSPRITE_INTERPOLATION == 1

        if (BGSPRITE_INTERPOLATION && interpolation_count > 2) {
          if (interpolation_count != 4) {
            interpolated_yvalue /= interpolated_fraction;
            interpolated_uvalue /= interpolated_fraction;
            interpolated_vvalue /= interpolated_fraction;
          }
          int pano_x = x + x_min[i] + x_offset;
          int pano_y = y + y_min[i] + y_offset;

#if CONFIG_HIGHBITDEPTH
          if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) {
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].y =
                (uint16_t)interpolated_yvalue;
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].u =
                (uint16_t)interpolated_uvalue;
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].v =
                (uint16_t)interpolated_vvalue;
          } else {
#endif  // CONFIG_HIGHBITDEPTH
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].y =
                (uint8_t)interpolated_yvalue;
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].u =
                (uint8_t)interpolated_uvalue;
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].v =
                (uint8_t)interpolated_vvalue;
#if CONFIG_HIGHBITDEPTH
          }
#endif  // CONFIG_HIGHBITDEPTH
          ++count[pano_y][pano_x];
        } else if (image_x >= 0 && image_x < frame_width && image_y >= 0 &&
                   image_y < frame_height) {
          // Place in panorama stack.
          int pano_x = x + x_min[i] + x_offset;
          int pano_y = y + y_min[i] + y_offset;

          int ychannel_idx = image_y * frames[i]->y_stride + image_x;
          int uvchannel_idx =
              (image_y >> frames[i]->subsampling_y) * frames[i]->uv_stride +
              (image_x >> frames[i]->subsampling_x);
#if CONFIG_HIGHBITDEPTH
          if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) {
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].y =
                y_buffer16[ychannel_idx];
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].u =
                u_buffer16[uvchannel_idx];
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].v =
                v_buffer16[uvchannel_idx];
          } else {
#endif  // CONFIG_HIGHBITDEPTH
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].y =
                frames[i]->y_buffer[ychannel_idx];
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].u =
                frames[i]->u_buffer[uvchannel_idx];
            temp_pano[pano_y][pano_x][count[pano_y][pano_x]].v =
                frames[i]->v_buffer[uvchannel_idx];
#if CONFIG_HIGHBITDEPTH
          }
#endif  // CONFIG_HIGHBITDEPTH
          ++count[pano_y][pano_x];
        }
      }
    }
  }

#if BGSPRITE_BLENDING_MODE == 1
  // Apply mean filtering and store result in temp_pano[y][x][0].
  for (int y = 0; y < height; ++y) {
    for (int x = 0; x < width; ++x) {
      if (count[y][x] == 0) {
        // Just make the pixel black.
        // TODO(toddnguyen): Color the pixel with nearest neighbor
      } else {
        // Find
        uint32_t y_sum = 0;
        uint32_t u_sum = 0;
        uint32_t v_sum = 0;
        for (int i = 0; i < count[y][x]; ++i) {
          y_sum += temp_pano[y][x][i].y;
          u_sum += temp_pano[y][x][i].u;
          v_sum += temp_pano[y][x][i].v;
        }

        const uint32_t unsigned_count = (uint32_t)count[y][x];

#if CONFIG_HIGHBITDEPTH
        if (panorama->flags & YV12_FLAG_HIGHBITDEPTH) {
          temp_pano[y][x][0].y = (uint16_t)OD_DIVU(y_sum, unsigned_count);
          temp_pano[y][x][0].u = (uint16_t)OD_DIVU(u_sum, unsigned_count);
          temp_pano[y][x][0].v = (uint16_t)OD_DIVU(v_sum, unsigned_count);
        } else {
#endif  // CONFIG_HIGHBITDEPTH
          temp_pano[y][x][0].y = (uint8_t)OD_DIVU(y_sum, unsigned_count);
          temp_pano[y][x][0].u = (uint8_t)OD_DIVU(u_sum, unsigned_count);
          temp_pano[y][x][0].v = (uint8_t)OD_DIVU(v_sum, unsigned_count);
#if CONFIG_HIGHBITDEPTH
        }
#endif  // CONFIG_HIGHBITDEPTH
      }
    }
  }
#else
  // Apply median filtering using quickselect.
  for (int y = 0; y < height; ++y) {
    for (int x = 0; x < width; ++x) {
      if (count[y][x] == 0) {
        // Just make the pixel black.
        // TODO(toddnguyen): Color the pixel with nearest neighbor
      } else {
        // Find
        const int median_idx = (int)floor(count[y][x] / 2);
        YuvPixel median =
            qselect(temp_pano[y][x], 0, count[y][x] - 1, median_idx);

        // Make the median value the 0th index for UV subsampling later
        temp_pano[y][x][0] = median;
        assert(median.y == temp_pano[y][x][0].y &&
               median.u == temp_pano[y][x][0].u &&
               median.v == temp_pano[y][x][0].v);
      }
    }
  }
#endif  // BGSPRITE_BLENDING_MODE == 1

  // NOTE(toddnguyen): Right now the ARF in the cpi struct is fixed size at
  // the same size as the frames. For now, we crop the generated panorama.
  // assert(panorama->y_width < width && panorama->y_height < height);
  const int crop_x_offset = x_min[center_idx] + x_offset;
  const int crop_y_offset = y_min[center_idx] + y_offset;

#if CONFIG_HIGHBITDEPTH
  if (panorama->flags & YV12_FLAG_HIGHBITDEPTH) {
    // Use median Y value.
    uint16_t *pano_y_buffer16 = CONVERT_TO_SHORTPTR(panorama->y_buffer);
    for (int y = 0; y < panorama->y_height; ++y) {
      for (int x = 0; x < panorama->y_width; ++x) {
        const int ychannel_idx = y * panorama->y_stride + x;
        if (count[y + crop_y_offset][x + crop_x_offset] > 0) {
          pano_y_buffer16[ychannel_idx] =
              temp_pano[y + crop_y_offset][x + crop_x_offset][0].y;
        } else {
          pano_y_buffer16[ychannel_idx] = 0;
        }
      }
    }

    // UV subsampling with median UV values
    uint16_t *pano_u_buffer16 = CONVERT_TO_SHORTPTR(panorama->u_buffer);
    uint16_t *pano_v_buffer16 = CONVERT_TO_SHORTPTR(panorama->v_buffer);

    for (int y = 0; y < panorama->uv_height; ++y) {
      for (int x = 0; x < panorama->uv_width; ++x) {
        uint32_t avg_count = 0;
        uint32_t u_sum = 0;
        uint32_t v_sum = 0;

        // Look at surrounding pixels for subsampling
        for (int s_x = 0; s_x < panorama->subsampling_x + 1; ++s_x) {
          for (int s_y = 0; s_y < panorama->subsampling_y + 1; ++s_y) {
            int y_sample = crop_y_offset + (y << panorama->subsampling_y) + s_y;
            int x_sample = crop_x_offset + (x << panorama->subsampling_x) + s_x;
            if (y_sample > 0 && y_sample < height && x_sample > 0 &&
                x_sample < width && count[y_sample][x_sample] > 0) {
              u_sum += temp_pano[y_sample][x_sample][0].u;
              v_sum += temp_pano[y_sample][x_sample][0].v;
              avg_count++;
            }
          }
        }

        const int uvchannel_idx = y * panorama->uv_stride + x;
        if (avg_count != 0) {
          pano_u_buffer16[uvchannel_idx] = (uint16_t)OD_DIVU(u_sum, avg_count);
          pano_v_buffer16[uvchannel_idx] = (uint16_t)OD_DIVU(v_sum, avg_count);
        } else {
          pano_u_buffer16[uvchannel_idx] = 0;
          pano_v_buffer16[uvchannel_idx] = 0;
        }
      }
    }
  } else {
#endif  // CONFIG_HIGHBITDEPTH
    // Use median Y value.
    for (int y = 0; y < panorama->y_height; ++y) {
      for (int x = 0; x < panorama->y_width; ++x) {
        const int ychannel_idx = y * panorama->y_stride + x;
        if (count[y + crop_y_offset][x + crop_x_offset] > 0) {
          panorama->y_buffer[ychannel_idx] =
              temp_pano[y + crop_y_offset][x + crop_x_offset][0].y;
        } else {
          panorama->y_buffer[ychannel_idx] = 0;
        }
      }
    }

    // UV subsampling with median UV values
    for (int y = 0; y < panorama->uv_height; ++y) {
      for (int x = 0; x < panorama->uv_width; ++x) {
        uint16_t avg_count = 0;
        uint16_t u_sum = 0;
        uint16_t v_sum = 0;

        // Look at surrounding pixels for subsampling
        for (int s_x = 0; s_x < panorama->subsampling_x + 1; ++s_x) {
          for (int s_y = 0; s_y < panorama->subsampling_y + 1; ++s_y) {
            int y_sample = crop_y_offset + (y << panorama->subsampling_y) + s_y;
            int x_sample = crop_x_offset + (x << panorama->subsampling_x) + s_x;
            if (y_sample > 0 && y_sample < height && x_sample > 0 &&
                x_sample < width && count[y_sample][x_sample] > 0) {
              u_sum += temp_pano[y_sample][x_sample][0].u;
              v_sum += temp_pano[y_sample][x_sample][0].v;
              avg_count++;
            }
          }
        }

        const int uvchannel_idx = y * panorama->uv_stride + x;
        if (avg_count != 0) {
          panorama->u_buffer[uvchannel_idx] =
              (uint8_t)OD_DIVU(u_sum, avg_count);
          panorama->v_buffer[uvchannel_idx] =
              (uint8_t)OD_DIVU(v_sum, avg_count);
        } else {
          panorama->u_buffer[uvchannel_idx] = 0;
          panorama->v_buffer[uvchannel_idx] = 0;
        }
      }
    }
#if CONFIG_HIGHBITDEPTH
  }
#endif  // CONFIG_HIGHBITDEPTH

  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
      aom_free(temp_pano[i][j]);
    }
    aom_free(temp_pano[i]);
    aom_free(count[i]);
  }
  aom_free(count);
  aom_free(temp_pano);
}

int av1_background_sprite(AV1_COMP *cpi, int distance) {
  YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
  static const double identity_params[MAX_PARAMDIM - 1] = {
    0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0
  };

  const int frames_after_arf =
      av1_lookahead_depth(cpi->lookahead) - distance - 1;
  int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1;
  int frames_bwd;

  // Define the forward and backwards filter limits for this arnr group.
  if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
  if (frames_fwd > distance) frames_fwd = distance;
  frames_bwd = frames_fwd;

#if CONFIG_EXT_REFS
  const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
  if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) {
    cpi->alt_ref_buffer = av1_lookahead_peek(cpi->lookahead, distance)->img;
    cpi->is_arf_filter_off[gf_group->arf_update_idx[gf_group->index]] = 1;
    frames_fwd = 0;
    frames_bwd = 0;
  } else {
    cpi->is_arf_filter_off[gf_group->arf_update_idx[gf_group->index]] = 0;
  }
#endif  // CONFIG_EXT_REFS

  const int start_frame = distance + frames_fwd;
  const int frames_to_stitch = frames_bwd + 1 + frames_fwd;

  // Get frames to be included in background sprite.
  for (int frame = 0; frame < frames_to_stitch; ++frame) {
    const int which_buffer = start_frame - frame;
    struct lookahead_entry *buf =
        av1_lookahead_peek(cpi->lookahead, which_buffer);
    frames[frames_to_stitch - 1 - frame] = &buf->img;
  }

  YV12_BUFFER_CONFIG temp_bg;
  memset(&temp_bg, 0, sizeof(temp_bg));
  aom_alloc_frame_buffer(&temp_bg, frames[0]->y_width, frames[0]->y_height,
                         frames[0]->subsampling_x, frames[0]->subsampling_y,
#if CONFIG_HIGHBITDEPTH
                         frames[0]->flags & YV12_FLAG_HIGHBITDEPTH,
#endif
                         frames[0]->border, 0);
  aom_yv12_copy_frame(frames[0], &temp_bg);
  temp_bg.bit_depth = frames[0]->bit_depth;

  // Allocate empty arrays for parameters between frames.
  double **params = aom_malloc(frames_to_stitch * sizeof(*params));
  for (int i = 0; i < frames_to_stitch; ++i) {
    params[i] = aom_malloc(sizeof(identity_params));
    memcpy(params[i], identity_params, sizeof(identity_params));
  }

  // Use global motion to find affine transformations between frames.
  // params[i] will have the transform from frame[i] to frame[i-1].
  // params[0] will have the identity matrix because it has no previous frame.
  TransformationType model = AFFINE;
  int inliers_by_motion[RANSAC_NUM_MOTIONS];
  for (int frame = 0; frame < frames_to_stitch - 1; ++frame) {
    const int global_motion_ret = compute_global_motion_feature_based(
        model, frames[frame + 1], frames[frame],
#if CONFIG_HIGHBITDEPTH
        cpi->common.bit_depth,
#endif  // CONFIG_HIGHBITDEPTH
        inliers_by_motion, params[frame + 1], RANSAC_NUM_MOTIONS);

    // Quit if global motion had an error.
    if (global_motion_ret == 0) {
      for (int i = 0; i < frames_to_stitch; ++i) {
        aom_free(params[i]);
      }
      aom_free(params);
      return 1;
    }
  }

  // Compound the transformation parameters.
  for (int i = 1; i < frames_to_stitch; ++i) {
    multiply_params(params[i - 1], params[i], params[i]);
  }

  // Compute frame limits for final stitched images.
  int pano_x_max = INT_MIN;
  int pano_x_min = INT_MAX;
  int pano_y_max = INT_MIN;
  int pano_y_min = INT_MAX;
  int *x_max = aom_malloc(frames_to_stitch * sizeof(*x_max));
  int *x_min = aom_malloc(frames_to_stitch * sizeof(*x_min));
  int *y_max = aom_malloc(frames_to_stitch * sizeof(*y_max));
  int *y_min = aom_malloc(frames_to_stitch * sizeof(*y_min));

  find_limits(cpi->initial_width, cpi->initial_height,
              (const double **const)params, frames_to_stitch, x_min, x_max,
              y_min, y_max, &pano_x_min, &pano_x_max, &pano_y_min, &pano_y_max);

  // Center panorama on the ARF.
  const int center_idx = frames_bwd;
  assert(center_idx >= 0 && center_idx < frames_to_stitch);

  // Recompute transformations to adjust to center image.
  // Invert center image's transform.
  double inverse[MAX_PARAMDIM - 1] = { 0 };
  invert_params(params[center_idx], inverse);

  // Multiply the inverse to all transformation parameters.
  for (int i = 0; i < frames_to_stitch; ++i) {
    multiply_params(inverse, params[i], params[i]);
  }

  // Recompute frame limits for new adjusted center.
  find_limits(cpi->initial_width, cpi->initial_height,
              (const double **const)params, frames_to_stitch, x_min, x_max,
              y_min, y_max, &pano_x_min, &pano_x_max, &pano_y_min, &pano_y_max);

  // Stitch Images.
  stitch_images(frames, frames_to_stitch, center_idx,
                (const double **const)params, x_min, x_max, y_min, y_max,
                pano_x_min, pano_x_max, pano_y_min, pano_y_max, &temp_bg);

  // Apply temporal filter.
  av1_temporal_filter(cpi, &temp_bg, distance);

  // Free memory.
  aom_free_frame_buffer(&temp_bg);
  for (int i = 0; i < frames_to_stitch; ++i) {
    aom_free(params[i]);
  }
  aom_free(params);
  aom_free(x_max);
  aom_free(x_min);
  aom_free(y_max);
  aom_free(y_min);

  return 0;
}