1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./aom_config.h"
#if !CONFIG_PVQ
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#endif // !CONFIG_PVQ
#include "av1/common/blockd.h"
#define ACCT_STR __func__
#if !CONFIG_PVQ || CONFIG_VAR_TX
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/idct.h"
#include "av1/decoder/detokenize.h"
#define EOB_CONTEXT_NODE 0
#define ZERO_CONTEXT_NODE 1
#define ONE_CONTEXT_NODE 2
#define LOW_VAL_CONTEXT_NODE 0
#define TWO_CONTEXT_NODE 1
#define THREE_CONTEXT_NODE 2
#define HIGH_LOW_CONTEXT_NODE 3
#define CAT_ONE_CONTEXT_NODE 4
#define CAT_THREEFOUR_CONTEXT_NODE 5
#define CAT_THREE_CONTEXT_NODE 6
#define CAT_FIVE_CONTEXT_NODE 7
#define INCREMENT_COUNT(token) \
do { \
if (counts) ++coef_counts[band][ctx][token]; \
} while (0)
#if CONFIG_NEW_MULTISYMBOL
#define READ_COEFF(prob_name, cdf_name, num, r) read_coeff(cdf_name, num, r);
static INLINE int read_coeff(const aom_cdf_prob *const *cdf, int n,
aom_reader *r) {
int val = 0;
int i = 0;
int count = 0;
while (count < n) {
const int size = AOMMIN(n - count, 4);
val |= aom_read_cdf(r, cdf[i++], 1 << size, ACCT_STR) << count;
count += size;
}
return val;
}
#else
#define READ_COEFF(prob_name, cdf_name, num, r) read_coeff(prob_name, num, r);
static INLINE int read_coeff(const aom_prob *probs, int n, aom_reader *r) {
int i, val = 0;
for (i = 0; i < n; ++i) val = (val << 1) | aom_read(r, probs[i], ACCT_STR);
return val;
}
#endif
static int token_to_value(aom_reader *const r, int token, TX_SIZE tx_size,
int bit_depth) {
#if !CONFIG_HIGHBITDEPTH
assert(bit_depth == 8);
#endif // !CONFIG_HIGHBITDEPTH
switch (token) {
case ZERO_TOKEN:
case ONE_TOKEN:
case TWO_TOKEN:
case THREE_TOKEN:
case FOUR_TOKEN: return token;
case CATEGORY1_TOKEN:
return CAT1_MIN_VAL + READ_COEFF(av1_cat1_prob, av1_cat1_cdf, 1, r);
case CATEGORY2_TOKEN:
return CAT2_MIN_VAL + READ_COEFF(av1_cat2_prob, av1_cat2_cdf, 2, r);
case CATEGORY3_TOKEN:
return CAT3_MIN_VAL + READ_COEFF(av1_cat3_prob, av1_cat3_cdf, 3, r);
case CATEGORY4_TOKEN:
return CAT4_MIN_VAL + READ_COEFF(av1_cat4_prob, av1_cat4_cdf, 4, r);
case CATEGORY5_TOKEN:
return CAT5_MIN_VAL + READ_COEFF(av1_cat5_prob, av1_cat5_cdf, 5, r);
case CATEGORY6_TOKEN: {
const int skip_bits = (int)sizeof(av1_cat6_prob) -
av1_get_cat6_extrabits_size(tx_size, bit_depth);
return CAT6_MIN_VAL + READ_COEFF(av1_cat6_prob + skip_bits, av1_cat6_cdf,
18 - skip_bits, r);
}
default:
assert(0); // Invalid token.
return -1;
}
}
static int decode_coefs(MACROBLOCKD *xd, PLANE_TYPE type, tran_low_t *dqcoeff,
TX_SIZE tx_size, TX_TYPE tx_type, const int16_t *dq,
#if CONFIG_NEW_QUANT
dequant_val_type_nuq *dq_val,
#endif // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
const qm_val_t *iqm[2][TX_SIZES_ALL],
#endif // CONFIG_AOM_QM
int ctx, const int16_t *scan, const int16_t *nb,
int16_t *max_scan_line, aom_reader *r) {
FRAME_COUNTS *counts = xd->counts;
#if CONFIG_EC_ADAPT
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#else
FRAME_CONTEXT *const ec_ctx = xd->fc;
#endif
const int max_eob = tx_size_2d[tx_size];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
#if CONFIG_AOM_QM
const qm_val_t *iqmatrix = iqm[!ref][tx_size];
#endif // CONFIG_AOM_QM
int band, c = 0;
const int tx_size_ctx = txsize_sqr_map[tx_size];
aom_cdf_prob(*coef_head_cdfs)[COEFF_CONTEXTS][CDF_SIZE(ENTROPY_TOKENS)] =
ec_ctx->coef_head_cdfs[tx_size_ctx][type][ref];
aom_cdf_prob(*coef_tail_cdfs)[COEFF_CONTEXTS][CDF_SIZE(ENTROPY_TOKENS)] =
ec_ctx->coef_tail_cdfs[tx_size_ctx][type][ref];
int val = 0;
#if !CONFIG_EC_ADAPT
unsigned int *blockz_count;
unsigned int(*coef_counts)[COEFF_CONTEXTS][UNCONSTRAINED_NODES + 1] = NULL;
unsigned int(*eob_branch_count)[COEFF_CONTEXTS] = NULL;
#endif
uint8_t token_cache[MAX_TX_SQUARE];
const uint8_t *band_translate = get_band_translate(tx_size);
int dq_shift;
int v, token;
int16_t dqv = dq[0];
#if CONFIG_NEW_QUANT
const tran_low_t *dqv_val = &dq_val[0][0];
#endif // CONFIG_NEW_QUANT
(void)tx_type;
if (counts) {
#if !CONFIG_EC_ADAPT
coef_counts = counts->coef[tx_size_ctx][type][ref];
eob_branch_count = counts->eob_branch[tx_size_ctx][type][ref];
blockz_count = counts->blockz_count[tx_size_ctx][type][ref][ctx];
#endif
}
dq_shift = av1_get_tx_scale(tx_size);
band = *band_translate++;
int more_data = 1;
while (more_data) {
int comb_token;
int last_pos = (c + 1 == max_eob);
int first_pos = (c == 0);
#if CONFIG_NEW_QUANT
dqv_val = &dq_val[band][0];
#endif // CONFIG_NEW_QUANT
comb_token = last_pos ? 2 * aom_read_bit(r, ACCT_STR) + 2
: aom_read_symbol(r, coef_head_cdfs[band][ctx],
HEAD_TOKENS + first_pos, ACCT_STR) +
!first_pos;
if (first_pos) {
#if !CONFIG_EC_ADAPT
if (counts) ++blockz_count[comb_token != 0];
#endif
if (comb_token == 0) return 0;
}
token = comb_token >> 1;
while (!token) {
*max_scan_line = AOMMAX(*max_scan_line, scan[c]);
token_cache[scan[c]] = 0;
#if !CONFIG_EC_ADAPT
if (counts && !last_pos) {
++coef_counts[band][ctx][ZERO_TOKEN];
}
#endif
++c;
dqv = dq[1];
ctx = get_coef_context(nb, token_cache, c);
band = *band_translate++;
last_pos = (c + 1 == max_eob);
comb_token = last_pos ? 2 * aom_read_bit(r, ACCT_STR) + 2
: aom_read_symbol(r, coef_head_cdfs[band][ctx],
HEAD_TOKENS, ACCT_STR) +
1;
token = comb_token >> 1;
}
more_data = comb_token & 1;
#if !CONFIG_EC_ADAPT
if (counts && !last_pos) {
++coef_counts[band][ctx][token];
++eob_branch_count[band][ctx];
if (!more_data) ++coef_counts[band][ctx][EOB_MODEL_TOKEN];
}
#endif
if (token > ONE_TOKEN)
token +=
aom_read_symbol(r, coef_tail_cdfs[band][ctx], TAIL_TOKENS, ACCT_STR);
#if CONFIG_NEW_QUANT
dqv_val = &dq_val[band][0];
#endif // CONFIG_NEW_QUANT
*max_scan_line = AOMMAX(*max_scan_line, scan[c]);
token_cache[scan[c]] = av1_pt_energy_class[token];
val = token_to_value(r, token, tx_size, xd->bd);
#if CONFIG_NEW_QUANT
v = av1_dequant_abscoeff_nuq(val, dqv, dqv_val);
v = dq_shift ? ROUND_POWER_OF_TWO(v, dq_shift) : v;
#else
#if CONFIG_AOM_QM
dqv = ((iqmatrix[scan[c]] * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
#endif
v = (val * dqv) >> dq_shift;
#endif
v = aom_read_bit(r, ACCT_STR) ? -v : v;
#if CONFIG_COEFFICIENT_RANGE_CHECKING
check_range(v, xd->bd);
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
dqcoeff[scan[c]] = v;
++c;
more_data &= (c < max_eob);
if (!more_data) break;
dqv = dq[1];
ctx = get_coef_context(nb, token_cache, c);
band = *band_translate++;
}
return c;
}
#endif // !CONFIG_PVQ
#if CONFIG_PALETTE
void av1_decode_palette_tokens(MACROBLOCKD *const xd, int plane,
aom_reader *r) {
const MODE_INFO *const mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
uint8_t color_order[PALETTE_MAX_SIZE];
const int n = mbmi->palette_mode_info.palette_size[plane];
int i, j;
uint8_t *const color_map = xd->plane[plane].color_index_map;
const aom_prob(
*const prob)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS - 1] =
plane ? av1_default_palette_uv_color_index_prob
: av1_default_palette_y_color_index_prob;
int plane_block_width, plane_block_height, rows, cols;
av1_get_block_dimensions(mbmi->sb_type, plane, xd, &plane_block_width,
&plane_block_height, &rows, &cols);
assert(plane == 0 || plane == 1);
#if CONFIG_PALETTE_THROUGHPUT
// Run wavefront on the palette map index decoding.
for (i = 1; i < rows + cols - 1; ++i) {
for (j = AOMMIN(i, cols - 1); j >= AOMMAX(0, i - rows + 1); --j) {
const int color_ctx = av1_get_palette_color_index_context(
color_map, plane_block_width, (i - j), j, n, color_order, NULL);
const int color_idx =
aom_read_tree(r, av1_palette_color_index_tree[n - 2],
prob[n - 2][color_ctx], ACCT_STR);
assert(color_idx >= 0 && color_idx < n);
color_map[(i - j) * plane_block_width + j] = color_order[color_idx];
}
}
// Copy last column to extra columns.
if (cols < plane_block_width) {
for (i = 0; i < plane_block_height; ++i) {
memset(color_map + i * plane_block_width + cols,
color_map[i * plane_block_width + cols - 1],
(plane_block_width - cols));
}
}
#else
for (i = 0; i < rows; ++i) {
for (j = (i == 0 ? 1 : 0); j < cols; ++j) {
const int color_ctx = av1_get_palette_color_index_context(
color_map, plane_block_width, i, j, n, color_order, NULL);
const int color_idx =
aom_read_tree(r, av1_palette_color_index_tree[n - PALETTE_MIN_SIZE],
prob[n - PALETTE_MIN_SIZE][color_ctx], ACCT_STR);
assert(color_idx >= 0 && color_idx < n);
color_map[i * plane_block_width + j] = color_order[color_idx];
}
memset(color_map + i * plane_block_width + cols,
color_map[i * plane_block_width + cols - 1],
(plane_block_width - cols)); // Copy last column to extra columns.
}
#endif // CONFIG_PALETTE_THROUGHPUT
// Copy last row to extra rows.
for (i = rows; i < plane_block_height; ++i) {
memcpy(color_map + i * plane_block_width,
color_map + (rows - 1) * plane_block_width, plane_block_width);
}
}
#endif // CONFIG_PALETTE
#if !CONFIG_PVQ || CONFIG_VAR_TX
int av1_decode_block_tokens(AV1_COMMON *cm, MACROBLOCKD *const xd, int plane,
const SCAN_ORDER *sc, int x, int y, TX_SIZE tx_size,
TX_TYPE tx_type, int16_t *max_scan_line,
aom_reader *r, int seg_id) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int16_t *const dequant = pd->seg_dequant[seg_id];
const int ctx =
get_entropy_context(tx_size, pd->above_context + x, pd->left_context + y);
#if CONFIG_NEW_QUANT
const int ref = is_inter_block(&xd->mi[0]->mbmi);
int dq =
get_dq_profile_from_ctx(xd->qindex[seg_id], ctx, ref, pd->plane_type);
#endif // CONFIG_NEW_QUANT
const int eob =
decode_coefs(xd, pd->plane_type, pd->dqcoeff, tx_size, tx_type, dequant,
#if CONFIG_NEW_QUANT
pd->seg_dequant_nuq[seg_id][dq],
#endif // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
pd->seg_iqmatrix[seg_id],
#endif // CONFIG_AOM_QM
ctx, sc->scan, sc->neighbors, max_scan_line, r);
av1_set_contexts(xd, pd, plane, tx_size, eob > 0, x, y);
#if CONFIG_ADAPT_SCAN
if (xd->counts)
av1_update_scan_count_facade(cm, xd->counts, tx_size, tx_type, pd->dqcoeff,
eob);
#else
(void)cm;
#endif
return eob;
}
#endif // !CONFIG_PVQ
|