summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/tile_common.c
blob: 3bff53c2257d5e1419207ac0b441935ad7336639 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/tile_common.h"
#include "av1/common/onyxc_int.h"
#include "aom_dsp/aom_dsp_common.h"

void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) {
  tile->mi_row_start = row * cm->tile_height;
  tile->mi_row_end = AOMMIN(tile->mi_row_start + cm->tile_height, cm->mi_rows);
}

void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) {
  tile->mi_col_start = col * cm->tile_width;
  tile->mi_col_end = AOMMIN(tile->mi_col_start + cm->tile_width, cm->mi_cols);
}

#if CONFIG_DEPENDENT_HORZTILES
void av1_tile_set_tg_boundary(TileInfo *tile, const AV1_COMMON *const cm,
                              int row, int col) {
  if (row < cm->tile_rows - 1) {
    tile->tg_horz_boundary =
        col >= cm->tile_group_start_col[row][col]
            ? (row == cm->tile_group_start_row[row][col] ? 1 : 0)
            : (row == cm->tile_group_start_row[row + 1][col] ? 1 : 0);
  } else {
    assert(col >= cm->tile_group_start_col[row][col]);
    tile->tg_horz_boundary =
        (row == cm->tile_group_start_row[row][col] ? 1 : 0);
  }
}
#endif
void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) {
  av1_tile_set_row(tile, cm, row);
  av1_tile_set_col(tile, cm, col);
#if CONFIG_DEPENDENT_HORZTILES
  av1_tile_set_tg_boundary(tile, cm, row, col);
#endif
}

#if CONFIG_EXT_PARTITION
#define MIN_TILE_WIDTH_MAX_SB 2
#define MAX_TILE_WIDTH_MAX_SB 32
#else
#define MIN_TILE_WIDTH_MAX_SB 4
#define MAX_TILE_WIDTH_MAX_SB 64
#endif  // CONFIG_EXT_PARTITION

static int get_min_log2_tile_cols(int max_sb_cols) {
  int min_log2 = 0;
  while ((MAX_TILE_WIDTH_MAX_SB << min_log2) < max_sb_cols) ++min_log2;
  return min_log2;
}

static int get_max_log2_tile_cols(int max_sb_cols) {
  int max_log2 = 1;
  while ((max_sb_cols >> max_log2) >= MIN_TILE_WIDTH_MAX_SB) ++max_log2;
  return max_log2 - 1;
}

void av1_get_tile_n_bits(int mi_cols, int *min_log2_tile_cols,
                         int *max_log2_tile_cols) {
  const int max_sb_cols =
      ALIGN_POWER_OF_TWO(mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2;
  *min_log2_tile_cols = get_min_log2_tile_cols(max_sb_cols);
  *max_log2_tile_cols = get_max_log2_tile_cols(max_sb_cols);
  assert(*min_log2_tile_cols <= *max_log2_tile_cols);
}

void av1_setup_frame_boundary_info(const AV1_COMMON *const cm) {
  MODE_INFO *mi = cm->mi;
  int col;
  for (col = 0; col < cm->mi_cols; ++col) {
    mi->mbmi.boundary_info |= FRAME_ABOVE_BOUNDARY | TILE_ABOVE_BOUNDARY;
    mi += 1;
  }

  mi = cm->mi;
  int row;
  for (row = 0; row < cm->mi_rows; ++row) {
    mi->mbmi.boundary_info |= FRAME_LEFT_BOUNDARY | TILE_LEFT_BOUNDARY;
    mi += cm->mi_stride;
  }

  mi = cm->mi + (cm->mi_rows - 1) * cm->mi_stride;
  for (col = 0; col < cm->mi_cols; ++col) {
    mi->mbmi.boundary_info |= FRAME_BOTTOM_BOUNDARY | TILE_BOTTOM_BOUNDARY;
    mi += 1;
  }

  mi = cm->mi + cm->mi_cols - 1;
  for (row = 0; row < cm->mi_rows; ++row) {
    mi->mbmi.boundary_info |= FRAME_RIGHT_BOUNDARY | TILE_RIGHT_BOUNDARY;
    mi += cm->mi_stride;
  }
}

void av1_setup_across_tile_boundary_info(const AV1_COMMON *const cm,
                                         const TileInfo *const tile_info) {
  int lpf_across_tiles_enabled = 1;
#if CONFIG_LOOPFILTERING_ACROSS_TILES
  lpf_across_tiles_enabled = cm->loop_filter_across_tiles_enabled;
#endif
  if ((cm->tile_cols * cm->tile_rows > 1) && (!lpf_across_tiles_enabled)) {
    const int mi_row = tile_info->mi_row_start;
    const int mi_col = tile_info->mi_col_start;
    MODE_INFO *const mi_start = cm->mi + mi_row * cm->mi_stride + mi_col;
    MODE_INFO *mi = 0;
    const int row_diff = tile_info->mi_row_end - tile_info->mi_row_start;
    const int col_diff = tile_info->mi_col_end - tile_info->mi_col_start;
    int row, col;

#if CONFIG_DEPENDENT_HORZTILES
    if (!cm->dependent_horz_tiles || tile_info->tg_horz_boundary)
#endif  // CONFIG_DEPENDENT_HORZTILES
    {
      mi = mi_start;
      for (col = 0; col < col_diff; ++col) {
        mi->mbmi.boundary_info |= TILE_ABOVE_BOUNDARY;
        mi += 1;
      }
    }

    mi = mi_start;
    for (row = 0; row < row_diff; ++row) {
      mi->mbmi.boundary_info |= TILE_LEFT_BOUNDARY;
      mi += cm->mi_stride;
    }

    mi = mi_start + (row_diff - 1) * cm->mi_stride;
    for (col = 0; col < col_diff; ++col) {
      mi->mbmi.boundary_info |= TILE_BOTTOM_BOUNDARY;
      mi += 1;
    }

    mi = mi_start + col_diff - 1;
    for (row = 0; row < row_diff; ++row) {
      mi->mbmi.boundary_info |= TILE_RIGHT_BOUNDARY;
      mi += cm->mi_stride;
    }
  }
}

#if CONFIG_LOOPFILTERING_ACROSS_TILES
int av1_disable_loopfilter_on_tile_boundary(const struct AV1Common *cm) {
  return (!cm->loop_filter_across_tiles_enabled &&
          (cm->tile_cols * cm->tile_rows > 1));
}
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES