summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/scale.c
blob: 76beaa2bdbf15b3e598396dcadd46874ec802a3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "./aom_dsp_rtcd.h"
#include "av1/common/filter.h"
#include "av1/common/scale.h"
#include "aom_dsp/aom_filter.h"

static INLINE int scaled_x(int val, const struct scale_factors *sf) {
  return (int)((int64_t)val * sf->x_scale_fp >> REF_SCALE_SHIFT);
}

static INLINE int scaled_y(int val, const struct scale_factors *sf) {
  return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT);
}

static int unscaled_value(int val, const struct scale_factors *sf) {
  (void)sf;
  return val;
}

static int get_fixed_point_scale_factor(int other_size, int this_size) {
  // Calculate scaling factor once for each reference frame
  // and use fixed point scaling factors in decoding and encoding routines.
  // Hardware implementations can calculate scale factor in device driver
  // and use multiplication and shifting on hardware instead of division.
  return (other_size << REF_SCALE_SHIFT) / this_size;
}

MV32 av1_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) {
  const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK;
  const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK;
  const MV32 res = { scaled_y(mv->row, sf) + y_off_q4,
                     scaled_x(mv->col, sf) + x_off_q4 };
  return res;
}

#if CONFIG_HIGHBITDEPTH
void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w,
                                       int other_h, int this_w, int this_h,
                                       int use_highbd) {
#else
void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w,
                                       int other_h, int this_w, int this_h) {
#endif
  if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) {
    sf->x_scale_fp = REF_INVALID_SCALE;
    sf->y_scale_fp = REF_INVALID_SCALE;
    return;
  }

  sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
  sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
  sf->x_step_q4 = scaled_x(16, sf);
  sf->y_step_q4 = scaled_y(16, sf);

  if (av1_is_scaled(sf)) {
    sf->scale_value_x = scaled_x;
    sf->scale_value_y = scaled_y;
  } else {
    sf->scale_value_x = unscaled_value;
    sf->scale_value_y = unscaled_value;
  }

  // TODO(agrange): Investigate the best choice of functions to use here
  // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
  // to do at full-pel offsets. The current selection, where the filter is
  // applied in one direction only, and not at all for 0,0, seems to give the
  // best quality, but it may be worth trying an additional mode that does
  // do the filtering on full-pel.
  if (sf->x_step_q4 == 16) {
    if (sf->y_step_q4 == 16) {
      // No scaling in either direction.
      sf->predict[0][0][0] = aom_convolve_copy;
      sf->predict[0][0][1] = aom_convolve_avg;
      sf->predict[0][1][0] = aom_convolve8_vert;
      sf->predict[0][1][1] = aom_convolve8_avg_vert;
      sf->predict[1][0][0] = aom_convolve8_horiz;
      sf->predict[1][0][1] = aom_convolve8_avg_horiz;
    } else {
      // No scaling in x direction. Must always scale in the y direction.
      sf->predict[0][0][0] = aom_convolve8_vert;
      sf->predict[0][0][1] = aom_convolve8_avg_vert;
      sf->predict[0][1][0] = aom_convolve8_vert;
      sf->predict[0][1][1] = aom_convolve8_avg_vert;
      sf->predict[1][0][0] = aom_convolve8;
      sf->predict[1][0][1] = aom_convolve8_avg;
    }
  } else {
    if (sf->y_step_q4 == 16) {
      // No scaling in the y direction. Must always scale in the x direction.
      sf->predict[0][0][0] = aom_convolve8_horiz;
      sf->predict[0][0][1] = aom_convolve8_avg_horiz;
      sf->predict[0][1][0] = aom_convolve8;
      sf->predict[0][1][1] = aom_convolve8_avg;
      sf->predict[1][0][0] = aom_convolve8_horiz;
      sf->predict[1][0][1] = aom_convolve8_avg_horiz;
    } else {
      // Must always scale in both directions.
      sf->predict[0][0][0] = aom_convolve8;
      sf->predict[0][0][1] = aom_convolve8_avg;
      sf->predict[0][1][0] = aom_convolve8;
      sf->predict[0][1][1] = aom_convolve8_avg;
      sf->predict[1][0][0] = aom_convolve8;
      sf->predict[1][0][1] = aom_convolve8_avg;
    }
  }
  // 2D subpel motion always gets filtered in both directions
  sf->predict[1][1][0] = aom_convolve8;
  sf->predict[1][1][1] = aom_convolve8_avg;

#if CONFIG_HIGHBITDEPTH
  if (use_highbd) {
    if (sf->x_step_q4 == 16) {
      if (sf->y_step_q4 == 16) {
        // No scaling in either direction.
        sf->highbd_predict[0][0][0] = aom_highbd_convolve_copy;
        sf->highbd_predict[0][0][1] = aom_highbd_convolve_avg;
        sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert;
        sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert;
        sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz;
        sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz;
      } else {
        // No scaling in x direction. Must always scale in the y direction.
        sf->highbd_predict[0][0][0] = aom_highbd_convolve8_vert;
        sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_vert;
        sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert;
        sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert;
        sf->highbd_predict[1][0][0] = aom_highbd_convolve8;
        sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg;
      }
    } else {
      if (sf->y_step_q4 == 16) {
        // No scaling in the y direction. Must always scale in the x direction.
        sf->highbd_predict[0][0][0] = aom_highbd_convolve8_horiz;
        sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_horiz;
        sf->highbd_predict[0][1][0] = aom_highbd_convolve8;
        sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg;
        sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz;
        sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz;
      } else {
        // Must always scale in both directions.
        sf->highbd_predict[0][0][0] = aom_highbd_convolve8;
        sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg;
        sf->highbd_predict[0][1][0] = aom_highbd_convolve8;
        sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg;
        sf->highbd_predict[1][0][0] = aom_highbd_convolve8;
        sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg;
      }
    }
    // 2D subpel motion always gets filtered in both directions.
    sf->highbd_predict[1][1][0] = aom_highbd_convolve8;
    sf->highbd_predict[1][1][1] = aom_highbd_convolve8_avg;
  }
#endif  // CONFIG_HIGHBITDEPTH
}