1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*
*/
#include <math.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/resize.h"
#include "av1/common/restoration.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
// The 's' values are calculated based on original 'r' and 'e' values in the
// spec using GenSgrprojVtable().
// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
const sgr_params_type sgr_params[SGRPROJ_PARAMS] = {
{ { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
{ { 2, 1 }, { 93, 1618 } }, { { 2, 1 }, { 80, 1438 } },
{ { 2, 1 }, { 70, 1295 } }, { { 2, 1 }, { 58, 1177 } },
{ { 2, 1 }, { 47, 1079 } }, { { 2, 1 }, { 37, 996 } },
{ { 2, 1 }, { 30, 925 } }, { { 2, 1 }, { 25, 863 } },
{ { 0, 1 }, { -1, 2589 } }, { { 0, 1 }, { -1, 1618 } },
{ { 0, 1 }, { -1, 1177 } }, { { 0, 1 }, { -1, 925 } },
{ { 2, 0 }, { 56, -1 } }, { { 2, 0 }, { 22, -1 } },
};
AV1PixelRect av1_whole_frame_rect(const AV1_COMMON *cm, int is_uv) {
AV1PixelRect rect;
int ss_x = is_uv && cm->seq_params.subsampling_x;
int ss_y = is_uv && cm->seq_params.subsampling_y;
rect.top = 0;
rect.bottom = ROUND_POWER_OF_TWO(cm->height, ss_y);
rect.left = 0;
rect.right = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
return rect;
}
// Count horizontal or vertical units per tile (use a width or height for
// tile_size, respectively). We basically want to divide the tile size by the
// size of a restoration unit. Rather than rounding up unconditionally as you
// might expect, we round to nearest, which models the way a right or bottom
// restoration unit can extend to up to 150% its normal width or height. The
// max with 1 is to deal with tiles that are smaller than half of a restoration
// unit.
int av1_lr_count_units_in_tile(int unit_size, int tile_size) {
return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
}
void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
int is_uv) {
// We need to allocate enough space for restoration units to cover the
// largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
// top-left and we can use av1_get_tile_rect(). With CONFIG_MAX_TILE, we have
// to do the computation ourselves, iterating over the tiles and keeping
// track of the largest width and height, then upscaling.
const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
const int max_tile_w = tile_rect.right - tile_rect.left;
const int max_tile_h = tile_rect.bottom - tile_rect.top;
// To calculate hpertile and vpertile (horizontal and vertical units per
// tile), we basically want to divide the largest tile width or height by the
// size of a restoration unit. Rather than rounding up unconditionally as you
// might expect, we round to nearest, which models the way a right or bottom
// restoration unit can extend to up to 150% its normal width or height. The
// max with 1 is to deal with tiles that are smaller than half of a
// restoration unit.
const int unit_size = rsi->restoration_unit_size;
const int hpertile = av1_lr_count_units_in_tile(unit_size, max_tile_w);
const int vpertile = av1_lr_count_units_in_tile(unit_size, max_tile_h);
rsi->units_per_tile = hpertile * vpertile;
rsi->horz_units_per_tile = hpertile;
rsi->vert_units_per_tile = vpertile;
const int ntiles = 1;
const int nunits = ntiles * rsi->units_per_tile;
aom_free(rsi->unit_info);
CHECK_MEM_ERROR(cm, rsi->unit_info,
(RestorationUnitInfo *)aom_memalign(
16, sizeof(*rsi->unit_info) * nunits));
}
void av1_free_restoration_struct(RestorationInfo *rst_info) {
aom_free(rst_info->unit_info);
rst_info->unit_info = NULL;
}
#if 0
// Pair of values for each sgrproj parameter:
// Index 0 corresponds to r[0], e[0]
// Index 1 corresponds to r[1], e[1]
int sgrproj_mtable[SGRPROJ_PARAMS][2];
static void GenSgrprojVtable() {
for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
const sgr_params_type *const params = &sgr_params[i];
for (int j = 0; j < 2; ++j) {
const int e = params->e[j];
const int r = params->r[j];
if (r == 0) { // filter is disabled
sgrproj_mtable[i][j] = -1; // mark invalid
} else { // filter is enabled
const int n = (2 * r + 1) * (2 * r + 1);
const int n2e = n * n * e;
assert(n2e != 0);
sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
}
}
}
}
#endif
void av1_loop_restoration_precal() {
#if 0
GenSgrprojVtable();
#endif
}
static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
int border_horz, int border_vert) {
uint8_t *data_p;
int i;
for (i = 0; i < height; ++i) {
data_p = data + i * stride;
memset(data_p - border_horz, data_p[0], border_horz);
memset(data_p + width, data_p[width - 1], border_horz);
}
data_p = data - border_horz;
for (i = -border_vert; i < 0; ++i) {
memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
}
for (i = height; i < height + border_vert; ++i) {
memcpy(data_p + i * stride, data_p + (height - 1) * stride,
width + 2 * border_horz);
}
}
static void extend_frame_highbd(uint16_t *data, int width, int height,
int stride, int border_horz, int border_vert) {
uint16_t *data_p;
int i, j;
for (i = 0; i < height; ++i) {
data_p = data + i * stride;
for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
}
data_p = data - border_horz;
for (i = -border_vert; i < 0; ++i) {
memcpy(data_p + i * stride, data_p,
(width + 2 * border_horz) * sizeof(uint16_t));
}
for (i = height; i < height + border_vert; ++i) {
memcpy(data_p + i * stride, data_p + (height - 1) * stride,
(width + 2 * border_horz) * sizeof(uint16_t));
}
}
void extend_frame(uint8_t *data, int width, int height, int stride,
int border_horz, int border_vert, int highbd) {
if (highbd)
extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
border_horz, border_vert);
else
extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
}
static void copy_tile_lowbd(int width, int height, const uint8_t *src,
int src_stride, uint8_t *dst, int dst_stride) {
for (int i = 0; i < height; ++i)
memcpy(dst + i * dst_stride, src + i * src_stride, width);
}
static void copy_tile_highbd(int width, int height, const uint16_t *src,
int src_stride, uint16_t *dst, int dst_stride) {
for (int i = 0; i < height; ++i)
memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
}
static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int highbd) {
if (highbd)
copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
CONVERT_TO_SHORTPTR(dst), dst_stride);
else
copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
}
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
// With striped loop restoration, the filtering for each 64-pixel stripe gets
// most of its input from the output of CDEF (stored in data8), but we need to
// fill out a border of 3 pixels above/below the stripe according to the
// following
// rules:
//
// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
// This extension is done by a call to extend_frame() at the start of the loop
// restoration process, so the value of copy_above/copy_below doesn't strictly
// matter.
// However, by setting *copy_above = *copy_below = 1 whenever loop filtering
// across tiles is disabled, we can allow
// {setup,restore}_processing_stripe_boundary to assume that the top/bottom
// data has always been copied, simplifying the behaviour at the left and
// right edges of tiles.
//
// * If we're at a tile boundary and loop filtering across tiles is enabled,
// then there is a logical stripe which is 64 pixels high, but which is split
// into an 8px high and a 56px high stripe so that the processing (and
// coefficient set usage) can be aligned to tiles.
// In this case, we use the 3 rows of CDEF output across the boundary for
// context; this corresponds to leaving the frame buffer as-is.
//
// * If we're at a tile boundary and loop filtering across tiles is disabled,
// then we take the outermost row of CDEF pixels *within the current tile*
// and copy it three times. Thus we behave exactly as if the tile were a full
// frame.
//
// * Otherwise, we're at a stripe boundary within a tile. In that case, we
// take 2 rows of deblocked pixels and extend them to 3 rows of context.
//
// The distinction between the latter two cases is handled by the
// av1_loop_restoration_save_boundary_lines() function, so here we just need
// to decide if we're overwriting the above/below boundary pixels or not.
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
const AV1PixelRect *tile_rect, int ss_y,
int *copy_above, int *copy_below) {
*copy_above = 1;
*copy_below = 1;
const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
const int this_stripe_height =
full_stripe_height - (first_stripe_in_tile ? runit_offset : 0);
const int last_stripe_in_tile =
(limits->v_start + this_stripe_height >= tile_rect->bottom);
if (first_stripe_in_tile) *copy_above = 0;
if (last_stripe_in_tile) *copy_below = 0;
}
// Overwrite the border pixels around a processing stripe so that the conditions
// listed above get_stripe_boundary_info() are preserved.
// We save the pixels which get overwritten into a temporary buffer, so that
// they can be restored by restore_processing_stripe_boundary() after we've
// processed the stripe.
//
// limits gives the rectangular limits of the remaining stripes for the current
// restoration unit. rsb is the stored stripe boundaries (taken from either
// deblock or CDEF output as necessary).
//
// tile_rect is the limits of the current tile and tile_stripe0 is the index of
// the first stripe in this tile (needed to convert the tile-relative stripe
// index we get from limits into something we can look up in rsb).
static void setup_processing_stripe_boundary(
const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
// Offsets within the line buffers. The buffer logically starts at column
// -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
// has column x0 in the buffer.
const int buf_stride = rsb->stripe_boundary_stride;
const int buf_x0_off = limits->h_start;
const int line_width =
(limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
const int line_size = line_width << use_highbd;
const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
// Replace RESTORATION_BORDER pixels above the top of the stripe
// We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
// to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
// duplicating the topmost of the 2 lines (see the AOMMAX call when
// calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
//
// Special case: If we're at the top of a tile, which isn't on the topmost
// tile row, and we're allowed to loop filter across tiles, then we have a
// logical 64-pixel-high stripe which has been split into an 8-pixel high
// stripe and a 56-pixel high stripe (the current one). So, in this case,
// we want to leave the boundary alone!
if (!opt) {
if (copy_above) {
uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
for (int i = -RESTORATION_BORDER; i < 0; ++i) {
const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
const int buf_off = buf_x0_off + buf_row * buf_stride;
const uint8_t *buf =
rsb->stripe_boundary_above + (buf_off << use_highbd);
uint8_t *dst8 = data8_tl + i * data_stride;
// Save old pixels, then replace with data from stripe_boundary_above
memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
REAL_PTR(use_highbd, dst8), line_size);
memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
}
}
// Replace RESTORATION_BORDER pixels below the bottom of the stripe.
// The second buffer row is repeated, so src_row gets the values 0, 1, 1
// for i = 0, 1, 2.
if (copy_below) {
const int stripe_end = limits->v_start + h;
uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
for (int i = 0; i < RESTORATION_BORDER; ++i) {
const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
const int buf_off = buf_x0_off + buf_row * buf_stride;
const uint8_t *src =
rsb->stripe_boundary_below + (buf_off << use_highbd);
uint8_t *dst8 = data8_bl + i * data_stride;
// Save old pixels, then replace with data from stripe_boundary_below
memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
}
}
} else {
if (copy_above) {
uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
// Only save and overwrite i=-RESTORATION_BORDER line.
uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
// Save old pixels, then replace with data from stripe_boundary_above
memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
memcpy(REAL_PTR(use_highbd, dst8),
REAL_PTR(use_highbd,
data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
line_size);
}
if (copy_below) {
const int stripe_end = limits->v_start + h;
uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
// Only save and overwrite i=2 line.
uint8_t *dst8 = data8_bl + 2 * data_stride;
// Save old pixels, then replace with data from stripe_boundary_below
memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
memcpy(REAL_PTR(use_highbd, dst8),
REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
}
}
}
// This function restores the boundary lines modified by
// setup_processing_stripe_boundary.
//
// Note: We need to be careful when handling the corners of the processing
// unit, because (eg.) the top-left corner is considered to be part of
// both the left and top borders. This means that, depending on the
// loop_filter_across_tiles_enabled flag, the corner pixels might get
// overwritten twice, once as part of the "top" border and once as part
// of the "left" border (or similar for other corners).
//
// Everything works out fine as long as we make sure to reverse the order
// when restoring, ie. we need to restore the left/right borders followed
// by the top/bottom borders.
static void restore_processing_stripe_boundary(
const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
int copy_below, int opt) {
const int line_width =
(limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
const int line_size = line_width << use_highbd;
const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
if (!opt) {
if (copy_above) {
uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
for (int i = -RESTORATION_BORDER; i < 0; ++i) {
uint8_t *dst8 = data8_tl + i * data_stride;
memcpy(REAL_PTR(use_highbd, dst8),
rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
}
}
if (copy_below) {
const int stripe_bottom = limits->v_start + h;
uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
for (int i = 0; i < RESTORATION_BORDER; ++i) {
if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
uint8_t *dst8 = data8_bl + i * data_stride;
memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
}
}
} else {
if (copy_above) {
uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
// Only restore i=-RESTORATION_BORDER line.
uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
}
if (copy_below) {
const int stripe_bottom = limits->v_start + h;
uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
// Only restore i=2 line.
if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
uint8_t *dst8 = data8_bl + 2 * data_stride;
memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
}
}
}
}
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
int stripe_width, int stripe_height,
int procunit_width, const uint8_t *src,
int src_stride, uint8_t *dst, int dst_stride,
int32_t *tmpbuf, int bit_depth) {
(void)tmpbuf;
(void)bit_depth;
assert(bit_depth == 8);
const ConvolveParams conv_params = get_conv_params_wiener(8);
for (int j = 0; j < stripe_width; j += procunit_width) {
int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
const uint8_t *src_p = src + j;
uint8_t *dst_p = dst + j;
av1_wiener_convolve_add_src(
src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
}
}
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
over the input. The window is of size (2r + 1)x(2r + 1), and we
specialize to r = 1, 2, 3. A default function is used for r > 3.
Each loop follows the same format: We keep a window's worth of input
in individual variables and select data out of that as appropriate.
*/
static void boxsum1(int32_t *src, int width, int height, int src_stride,
int sqr, int32_t *dst, int dst_stride) {
int i, j, a, b, c;
assert(width > 2 * SGRPROJ_BORDER_HORZ);
assert(height > 2 * SGRPROJ_BORDER_VERT);
// Vertical sum over 3-pixel regions, from src into dst.
if (!sqr) {
for (j = 0; j < width; ++j) {
a = src[j];
b = src[src_stride + j];
c = src[2 * src_stride + j];
dst[j] = a + b;
for (i = 1; i < height - 2; ++i) {
// Loop invariant: At the start of each iteration,
// a = src[(i - 1) * src_stride + j]
// b = src[(i ) * src_stride + j]
// c = src[(i + 1) * src_stride + j]
dst[i * dst_stride + j] = a + b + c;
a = b;
b = c;
c = src[(i + 2) * src_stride + j];
}
dst[i * dst_stride + j] = a + b + c;
dst[(i + 1) * dst_stride + j] = b + c;
}
} else {
for (j = 0; j < width; ++j) {
a = src[j] * src[j];
b = src[src_stride + j] * src[src_stride + j];
c = src[2 * src_stride + j] * src[2 * src_stride + j];
dst[j] = a + b;
for (i = 1; i < height - 2; ++i) {
dst[i * dst_stride + j] = a + b + c;
a = b;
b = c;
c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
}
dst[i * dst_stride + j] = a + b + c;
dst[(i + 1) * dst_stride + j] = b + c;
}
}
// Horizontal sum over 3-pixel regions of dst
for (i = 0; i < height; ++i) {
a = dst[i * dst_stride];
b = dst[i * dst_stride + 1];
c = dst[i * dst_stride + 2];
dst[i * dst_stride] = a + b;
for (j = 1; j < width - 2; ++j) {
// Loop invariant: At the start of each iteration,
// a = src[i * src_stride + (j - 1)]
// b = src[i * src_stride + (j )]
// c = src[i * src_stride + (j + 1)]
dst[i * dst_stride + j] = a + b + c;
a = b;
b = c;
c = dst[i * dst_stride + (j + 2)];
}
dst[i * dst_stride + j] = a + b + c;
dst[i * dst_stride + (j + 1)] = b + c;
}
}
static void boxsum2(int32_t *src, int width, int height, int src_stride,
int sqr, int32_t *dst, int dst_stride) {
int i, j, a, b, c, d, e;
assert(width > 2 * SGRPROJ_BORDER_HORZ);
assert(height > 2 * SGRPROJ_BORDER_VERT);
// Vertical sum over 5-pixel regions, from src into dst.
if (!sqr) {
for (j = 0; j < width; ++j) {
a = src[j];
b = src[src_stride + j];
c = src[2 * src_stride + j];
d = src[3 * src_stride + j];
e = src[4 * src_stride + j];
dst[j] = a + b + c;
dst[dst_stride + j] = a + b + c + d;
for (i = 2; i < height - 3; ++i) {
// Loop invariant: At the start of each iteration,
// a = src[(i - 2) * src_stride + j]
// b = src[(i - 1) * src_stride + j]
// c = src[(i ) * src_stride + j]
// d = src[(i + 1) * src_stride + j]
// e = src[(i + 2) * src_stride + j]
dst[i * dst_stride + j] = a + b + c + d + e;
a = b;
b = c;
c = d;
d = e;
e = src[(i + 3) * src_stride + j];
}
dst[i * dst_stride + j] = a + b + c + d + e;
dst[(i + 1) * dst_stride + j] = b + c + d + e;
dst[(i + 2) * dst_stride + j] = c + d + e;
}
} else {
for (j = 0; j < width; ++j) {
a = src[j] * src[j];
b = src[src_stride + j] * src[src_stride + j];
c = src[2 * src_stride + j] * src[2 * src_stride + j];
d = src[3 * src_stride + j] * src[3 * src_stride + j];
e = src[4 * src_stride + j] * src[4 * src_stride + j];
dst[j] = a + b + c;
dst[dst_stride + j] = a + b + c + d;
for (i = 2; i < height - 3; ++i) {
dst[i * dst_stride + j] = a + b + c + d + e;
a = b;
b = c;
c = d;
d = e;
e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
}
dst[i * dst_stride + j] = a + b + c + d + e;
dst[(i + 1) * dst_stride + j] = b + c + d + e;
dst[(i + 2) * dst_stride + j] = c + d + e;
}
}
// Horizontal sum over 5-pixel regions of dst
for (i = 0; i < height; ++i) {
a = dst[i * dst_stride];
b = dst[i * dst_stride + 1];
c = dst[i * dst_stride + 2];
d = dst[i * dst_stride + 3];
e = dst[i * dst_stride + 4];
dst[i * dst_stride] = a + b + c;
dst[i * dst_stride + 1] = a + b + c + d;
for (j = 2; j < width - 3; ++j) {
// Loop invariant: At the start of each iteration,
// a = src[i * src_stride + (j - 2)]
// b = src[i * src_stride + (j - 1)]
// c = src[i * src_stride + (j )]
// d = src[i * src_stride + (j + 1)]
// e = src[i * src_stride + (j + 2)]
dst[i * dst_stride + j] = a + b + c + d + e;
a = b;
b = c;
c = d;
d = e;
e = dst[i * dst_stride + (j + 3)];
}
dst[i * dst_stride + j] = a + b + c + d + e;
dst[i * dst_stride + (j + 1)] = b + c + d + e;
dst[i * dst_stride + (j + 2)] = c + d + e;
}
}
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
int sqr, int32_t *dst, int dst_stride) {
if (r == 1)
boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
else if (r == 2)
boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
else
assert(0 && "Invalid value of r in self-guided filter");
}
void decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
if (params->r[0] == 0) {
xq[0] = 0;
xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
} else if (params->r[1] == 0) {
xq[0] = xqd[0];
xq[1] = 0;
} else {
xq[0] = xqd[0];
xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
}
}
const int32_t x_by_xplus1[256] = {
// Special case: Map 0 -> 1 (corresponding to a value of 1/256)
// instead of 0. See comments in selfguided_restoration_internal() for why
1, 128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
256,
};
const int32_t one_by_x[MAX_NELEM] = {
4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
293, 273, 256, 241, 228, 216, 205, 195, 186, 178, 171, 164,
};
static void selfguided_restoration_fast_internal(
int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
const sgr_params_type *const params = &sgr_params[sgr_params_idx];
const int r = params->r[radius_idx];
const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
// Adjusting the stride of A and B here appears to avoid bad cache effects,
// leading to a significant speed improvement.
// We also align the stride to a multiple of 16 bytes, for consistency
// with the SIMD version of this function.
int buf_stride = ((width_ext + 3) & ~3) + 16;
int32_t A_[RESTORATION_PROC_UNIT_PELS];
int32_t B_[RESTORATION_PROC_UNIT_PELS];
int32_t *A = A_;
int32_t *B = B_;
int i, j;
assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
"Need SGRPROJ_BORDER_* >= r+1");
boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
// Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
// for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
for (i = -1; i < height + 1; i += 2) {
for (j = -1; j < width + 1; ++j) {
const int k = i * buf_stride + j;
const int n = (2 * r + 1) * (2 * r + 1);
// a < 2^16 * n < 2^22 regardless of bit depth
uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
// b < 2^8 * n < 2^14 regardless of bit depth
uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
// Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
// and p itself satisfies p < 2^14 * n^2 < 2^26.
// This bound on p is due to:
// https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
//
// Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
// This is an artefact of rounding, and can only happen if all pixels
// are (almost) identical, so in this case we saturate to p=0.
uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
const uint32_t s = params->s[radius_idx];
// p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
// as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
// (this holds even after accounting for the rounding in s)
const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
// Note: We have to be quite careful about the value of A[k].
// This is used as a blend factor between individual pixel values and the
// local mean. So it logically has a range of [0, 256], including both
// endpoints.
//
// This is a pain for hardware, as we'd like something which can be stored
// in exactly 8 bits.
// Further, in the calculation of B[k] below, if z == 0 and r == 2,
// then A[k] "should be" 0. But then we can end up setting B[k] to a value
// slightly above 2^(8 + bit depth), due to rounding in the value of
// one_by_x[25-1].
//
// Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
// This fixes the above issues (256 - A[k] fits in a uint8, and we can't
// overflow), without significantly affecting the final result: z == 0
// implies that the image is essentially "flat", so the local mean and
// individual pixel values are very similar.
//
// Note that saturating on the other side, ie. requring A[k] <= 255,
// would be a bad idea, as that corresponds to the case where the image
// is very variable, when we want to preserve the local pixel value as
// much as possible.
A[k] = x_by_xplus1[AOMMIN(z, 255)]; // in range [1, 256]
// SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
// one_by_x[n - 1] = round(2^12 / n)
// => the product here is < 2^(20 + bit_depth) <= 2^32,
// and B[k] is set to a value < 2^(8 + bit depth)
// This holds even with the rounding in one_by_x and in the overall
// result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
(uint32_t)B[k] *
(uint32_t)one_by_x[n - 1],
SGRPROJ_RECIP_BITS);
}
}
// Use the A[] and B[] arrays to calculate the filtered image
assert(r == 2);
for (i = 0; i < height; ++i) {
if (!(i & 1)) { // even row
for (j = 0; j < width; ++j) {
const int k = i * buf_stride + j;
const int l = i * dgd_stride + j;
const int m = i * dst_stride + j;
const int nb = 5;
const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
(A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
5;
const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
(B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
5;
const int32_t v = a * dgd[l] + b;
dst[m] =
ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
} else { // odd row
for (j = 0; j < width; ++j) {
const int k = i * buf_stride + j;
const int l = i * dgd_stride + j;
const int m = i * dst_stride + j;
const int nb = 4;
const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
const int32_t v = a * dgd[l] + b;
dst[m] =
ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
}
}
}
static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
int dgd_stride, int32_t *dst,
int dst_stride, int bit_depth,
int sgr_params_idx,
int radius_idx) {
const sgr_params_type *const params = &sgr_params[sgr_params_idx];
const int r = params->r[radius_idx];
const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
// Adjusting the stride of A and B here appears to avoid bad cache effects,
// leading to a significant speed improvement.
// We also align the stride to a multiple of 16 bytes, for consistency
// with the SIMD version of this function.
int buf_stride = ((width_ext + 3) & ~3) + 16;
int32_t A_[RESTORATION_PROC_UNIT_PELS];
int32_t B_[RESTORATION_PROC_UNIT_PELS];
int32_t *A = A_;
int32_t *B = B_;
int i, j;
assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
"Need SGRPROJ_BORDER_* >= r+1");
boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
// Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
// for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
for (i = -1; i < height + 1; ++i) {
for (j = -1; j < width + 1; ++j) {
const int k = i * buf_stride + j;
const int n = (2 * r + 1) * (2 * r + 1);
// a < 2^16 * n < 2^22 regardless of bit depth
uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
// b < 2^8 * n < 2^14 regardless of bit depth
uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
// Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
// and p itself satisfies p < 2^14 * n^2 < 2^26.
// This bound on p is due to:
// https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
//
// Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
// This is an artefact of rounding, and can only happen if all pixels
// are (almost) identical, so in this case we saturate to p=0.
uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
const uint32_t s = params->s[radius_idx];
// p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
// as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
// (this holds even after accounting for the rounding in s)
const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
// Note: We have to be quite careful about the value of A[k].
// This is used as a blend factor between individual pixel values and the
// local mean. So it logically has a range of [0, 256], including both
// endpoints.
//
// This is a pain for hardware, as we'd like something which can be stored
// in exactly 8 bits.
// Further, in the calculation of B[k] below, if z == 0 and r == 2,
// then A[k] "should be" 0. But then we can end up setting B[k] to a value
// slightly above 2^(8 + bit depth), due to rounding in the value of
// one_by_x[25-1].
//
// Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
// This fixes the above issues (256 - A[k] fits in a uint8, and we can't
// overflow), without significantly affecting the final result: z == 0
// implies that the image is essentially "flat", so the local mean and
// individual pixel values are very similar.
//
// Note that saturating on the other side, ie. requring A[k] <= 255,
// would be a bad idea, as that corresponds to the case where the image
// is very variable, when we want to preserve the local pixel value as
// much as possible.
A[k] = x_by_xplus1[AOMMIN(z, 255)]; // in range [1, 256]
// SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
// one_by_x[n - 1] = round(2^12 / n)
// => the product here is < 2^(20 + bit_depth) <= 2^32,
// and B[k] is set to a value < 2^(8 + bit depth)
// This holds even with the rounding in one_by_x and in the overall
// result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
(uint32_t)B[k] *
(uint32_t)one_by_x[n - 1],
SGRPROJ_RECIP_BITS);
}
}
// Use the A[] and B[] arrays to calculate the filtered image
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int k = i * buf_stride + j;
const int l = i * dgd_stride + j;
const int m = i * dst_stride + j;
const int nb = 5;
const int32_t a =
(A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
4 +
(A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
3;
const int32_t b =
(B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
4 +
(B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
3;
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
}
}
void av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
int dgd_stride, int32_t *flt0, int32_t *flt1,
int flt_stride, int sgr_params_idx,
int bit_depth, int highbd) {
int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
int32_t *dgd32 =
dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
if (highbd) {
const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
}
}
} else {
for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
}
}
}
const sgr_params_type *const params = &sgr_params[sgr_params_idx];
// If params->r == 0 we skip the corresponding filter. We only allow one of
// the radii to be 0, as having both equal to 0 would be equivalent to
// skipping SGR entirely.
assert(!(params->r[0] == 0 && params->r[1] == 0));
if (params->r[0] > 0)
selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
flt0, flt_stride, bit_depth,
sgr_params_idx, 0);
if (params->r[1] > 0)
selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
flt_stride, bit_depth, sgr_params_idx, 1);
}
void apply_selfguided_restoration_c(const uint8_t *dat8, int width, int height,
int stride, int eps, const int *xqd,
uint8_t *dst8, int dst_stride,
int32_t *tmpbuf, int bit_depth,
int highbd) {
int32_t *flt0 = tmpbuf;
int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
assert(width * height <= RESTORATION_UNITPELS_MAX);
av1_selfguided_restoration_c(dat8, width, height, stride, flt0, flt1, width,
eps, bit_depth, highbd);
const sgr_params_type *const params = &sgr_params[eps];
int xq[2];
decode_xq(xqd, xq, params);
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int k = i * width + j;
uint8_t *dst8ij = dst8 + i * dst_stride + j;
const uint8_t *dat8ij = dat8 + i * stride + j;
const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
int32_t v = u << SGRPROJ_PRJ_BITS;
// If params->r == 0 then we skipped the filtering in
// av1_selfguided_restoration_c, i.e. flt[k] == u
if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
const int16_t w =
(int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
const uint16_t out = clip_pixel_highbd(w, bit_depth);
if (highbd)
*CONVERT_TO_SHORTPTR(dst8ij) = out;
else
*dst8ij = (uint8_t)out;
}
}
}
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
int stripe_width, int stripe_height,
int procunit_width, const uint8_t *src,
int src_stride, uint8_t *dst, int dst_stride,
int32_t *tmpbuf, int bit_depth) {
(void)bit_depth;
assert(bit_depth == 8);
for (int j = 0; j < stripe_width; j += procunit_width) {
int w = AOMMIN(procunit_width, stripe_width - j);
apply_selfguided_restoration(src + j, w, stripe_height, src_stride,
rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
dst + j, dst_stride, tmpbuf, bit_depth, 0);
}
}
static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui,
int stripe_width, int stripe_height,
int procunit_width, const uint8_t *src8,
int src_stride, uint8_t *dst8,
int dst_stride, int32_t *tmpbuf,
int bit_depth) {
(void)tmpbuf;
const ConvolveParams conv_params = get_conv_params_wiener(bit_depth);
for (int j = 0; j < stripe_width; j += procunit_width) {
int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
const uint8_t *src8_p = src8 + j;
uint8_t *dst8_p = dst8 + j;
av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
rui->wiener_info.hfilter, 16,
rui->wiener_info.vfilter, 16, w,
stripe_height, &conv_params, bit_depth);
}
}
static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui,
int stripe_width, int stripe_height,
int procunit_width,
const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride,
int32_t *tmpbuf, int bit_depth) {
for (int j = 0; j < stripe_width; j += procunit_width) {
int w = AOMMIN(procunit_width, stripe_width - j);
apply_selfguided_restoration(src8 + j, w, stripe_height, src_stride,
rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
dst8 + j, dst_stride, tmpbuf, bit_depth, 1);
}
}
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
int stripe_width, int stripe_height,
int procunit_width, const uint8_t *src,
int src_stride, uint8_t *dst, int dst_stride,
int32_t *tmpbuf, int bit_depth);
#define NUM_STRIPE_FILTERS 4
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
sgrproj_filter_stripe_highbd
};
// Filter one restoration unit
void av1_loop_restoration_filter_unit(
const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
const AV1PixelRect *tile_rect, int tile_stripe0, int ss_x, int ss_y,
int highbd, int bit_depth, uint8_t *data8, int stride, uint8_t *dst8,
int dst_stride, int32_t *tmpbuf, int optimized_lr) {
RestorationType unit_rtype = rui->restoration_type;
int unit_h = limits->v_end - limits->v_start;
int unit_w = limits->h_end - limits->h_start;
uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start;
uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->h_start;
if (unit_rtype == RESTORE_NONE) {
copy_tile(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride, highbd);
return;
}
const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
assert(filter_idx < NUM_STRIPE_FILTERS);
const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
// Convolve the whole tile one stripe at a time
RestorationTileLimits remaining_stripes = *limits;
int i = 0;
while (i < unit_h) {
int copy_above, copy_below;
remaining_stripes.v_start = limits->v_start + i;
get_stripe_boundary_info(&remaining_stripes, tile_rect, ss_y, ©_above,
©_below);
const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
// Work out where this stripe's boundaries are within
// rsb->stripe_boundary_{above,below}
const int tile_stripe =
(remaining_stripes.v_start - tile_rect->top + runit_offset) /
full_stripe_height;
const int frame_stripe = tile_stripe0 + tile_stripe;
const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
// Calculate this stripe's height, based on two rules:
// * The topmost stripe in each tile is 8 luma pixels shorter than usual.
// * We can't extend past the end of the current restoration unit
const int nominal_stripe_height =
full_stripe_height - ((tile_stripe == 0) ? runit_offset : 0);
const int h = AOMMIN(nominal_stripe_height,
remaining_stripes.v_end - remaining_stripes.v_start);
setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
h, data8, stride, rlbs, copy_above,
copy_below, optimized_lr);
stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth);
restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
data8, stride, copy_above, copy_below,
optimized_lr);
i += h;
}
}
static void filter_frame_on_tile(int tile_row, int tile_col, void *priv,
AV1_COMMON *cm) {
(void)tile_col;
FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
ctxt->tile_stripe0 = (tile_row == 0) ? 0 : cm->rst_end_stripe[tile_row - 1];
}
static void filter_frame_on_unit(const RestorationTileLimits *limits,
const AV1PixelRect *tile_rect,
int rest_unit_idx, void *priv, int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
const RestorationInfo *rsi = ctxt->rsi;
av1_loop_restoration_filter_unit(
limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs, tile_rect,
ctxt->tile_stripe0, ctxt->ss_x, ctxt->ss_y, ctxt->highbd, ctxt->bit_depth,
ctxt->data8, ctxt->data_stride, ctxt->dst8, ctxt->dst_stride, tmpbuf,
rsi->optimized_lr);
}
void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
YV12_BUFFER_CONFIG *frame,
AV1_COMMON *cm, int optimized_lr,
int num_planes) {
const SequenceHeader *const seq_params = &cm->seq_params;
const int bit_depth = seq_params->bit_depth;
const int highbd = seq_params->use_highbitdepth;
lr_ctxt->dst = &cm->rst_frame;
const int frame_width = frame->crop_widths[0];
const int frame_height = frame->crop_heights[0];
if (aom_realloc_frame_buffer(
lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
seq_params->subsampling_y, highbd, AOM_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL) < 0)
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate restoration dst buffer");
lr_ctxt->on_rest_unit = filter_frame_on_unit;
lr_ctxt->frame = frame;
for (int plane = 0; plane < num_planes; ++plane) {
RestorationInfo *rsi = &cm->rst_info[plane];
RestorationType rtype = rsi->frame_restoration_type;
rsi->optimized_lr = optimized_lr;
if (rtype == RESTORE_NONE) {
continue;
}
const int is_uv = plane > 0;
const int plane_width = frame->crop_widths[is_uv];
const int plane_height = frame->crop_heights[is_uv];
FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
extend_frame(frame->buffers[plane], plane_width, plane_height,
frame->strides[is_uv], RESTORATION_BORDER, RESTORATION_BORDER,
highbd);
lr_plane_ctxt->rsi = rsi;
lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
lr_plane_ctxt->highbd = highbd;
lr_plane_ctxt->bit_depth = bit_depth;
lr_plane_ctxt->data8 = frame->buffers[plane];
lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
lr_plane_ctxt->data_stride = frame->strides[is_uv];
lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
lr_plane_ctxt->tile_rect = av1_whole_frame_rect(cm, is_uv);
filter_frame_on_tile(LR_TILE_ROW, LR_TILE_COL, lr_plane_ctxt, cm);
}
}
void av1_loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
AV1_COMMON *cm, int num_planes) {
typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
int vstart, int vend);
static const copy_fun copy_funs[3] = {
aom_yv12_partial_copy_y, aom_yv12_partial_copy_u, aom_yv12_partial_copy_v
};
for (int plane = 0; plane < num_planes; ++plane) {
if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
AV1PixelRect tile_rect = loop_rest_ctxt->ctxt[plane].tile_rect;
copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, tile_rect.left,
tile_rect.right, tile_rect.top, tile_rect.bottom);
}
}
static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
int num_planes) {
FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
for (int plane = 0; plane < num_planes; ++plane) {
if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
continue;
}
av1_foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit,
&ctxt[plane], &ctxt[plane].tile_rect,
cm->rst_tmpbuf, cm->rlbs);
}
}
void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
AV1_COMMON *cm, int optimized_lr,
void *lr_ctxt) {
assert(!cm->all_lossless);
const int num_planes = av1_num_planes(cm);
AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
optimized_lr, num_planes);
foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
av1_loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
}
void av1_foreach_rest_unit_in_row(
RestorationTileLimits *limits, const AV1PixelRect *tile_rect,
rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
int unit_idx0, int hunits_per_tile, int vunits_per_tile, int plane,
void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs,
sync_read_fn_t on_sync_read, sync_write_fn_t on_sync_write,
struct AV1LrSyncData *const lr_sync) {
const int tile_w = tile_rect->right - tile_rect->left;
const int ext_size = unit_size * 3 / 2;
int x0 = 0, j = 0;
while (x0 < tile_w) {
int remaining_w = tile_w - x0;
int w = (remaining_w < ext_size) ? remaining_w : unit_size;
limits->h_start = tile_rect->left + x0;
limits->h_end = tile_rect->left + x0 + w;
assert(limits->h_end <= tile_rect->right);
const int unit_idx = unit_idx0 + row_number * hunits_per_tile + j;
// No sync for even numbered rows
// For odd numbered rows, Loop Restoration of current block requires the LR
// of top-right and bottom-right blocks to be completed
// top-right sync
on_sync_read(lr_sync, row_number, j, plane);
if ((row_number + 1) < vunits_per_tile)
// bottom-right sync
on_sync_read(lr_sync, row_number + 2, j, plane);
on_rest_unit(limits, tile_rect, unit_idx, priv, tmpbuf, rlbs);
on_sync_write(lr_sync, row_number, j, hunits_per_tile, plane);
x0 += w;
++j;
}
}
void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
(void)lr_sync;
(void)r;
(void)c;
(void)plane;
}
void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
const int sb_cols, int plane) {
(void)lr_sync;
(void)r;
(void)c;
(void)sb_cols;
(void)plane;
}
static void foreach_rest_unit_in_tile(
const AV1PixelRect *tile_rect, int tile_row, int tile_col, int tile_cols,
int hunits_per_tile, int vunits_per_tile, int units_per_tile, int unit_size,
int ss_y, int plane, rest_unit_visitor_t on_rest_unit, void *priv,
int32_t *tmpbuf, RestorationLineBuffers *rlbs) {
const int tile_h = tile_rect->bottom - tile_rect->top;
const int ext_size = unit_size * 3 / 2;
const int tile_idx = tile_col + tile_row * tile_cols;
const int unit_idx0 = tile_idx * units_per_tile;
int y0 = 0, i = 0;
while (y0 < tile_h) {
int remaining_h = tile_h - y0;
int h = (remaining_h < ext_size) ? remaining_h : unit_size;
RestorationTileLimits limits;
limits.v_start = tile_rect->top + y0;
limits.v_end = tile_rect->top + y0 + h;
assert(limits.v_end <= tile_rect->bottom);
// Offset the tile upwards to align with the restoration processing stripe
const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
limits.v_start = AOMMAX(tile_rect->top, limits.v_start - voffset);
if (limits.v_end < tile_rect->bottom) limits.v_end -= voffset;
av1_foreach_rest_unit_in_row(
&limits, tile_rect, on_rest_unit, i, unit_size, unit_idx0,
hunits_per_tile, vunits_per_tile, plane, priv, tmpbuf, rlbs,
av1_lr_sync_read_dummy, av1_lr_sync_write_dummy, NULL);
y0 += h;
++i;
}
}
void av1_foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
rest_unit_visitor_t on_rest_unit,
void *priv, AV1PixelRect *tile_rect,
int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
const int is_uv = plane > 0;
const int ss_y = is_uv && cm->seq_params.subsampling_y;
const RestorationInfo *rsi = &cm->rst_info[plane];
foreach_rest_unit_in_tile(tile_rect, LR_TILE_ROW, LR_TILE_COL, LR_TILE_COLS,
rsi->horz_units_per_tile, rsi->vert_units_per_tile,
rsi->units_per_tile, rsi->restoration_unit_size,
ss_y, plane, on_rest_unit, priv, tmpbuf, rlbs);
}
int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int *rcol0, int *rcol1, int *rrow0,
int *rrow1) {
assert(rcol0 && rcol1 && rrow0 && rrow1);
if (bsize != cm->seq_params.sb_size) return 0;
if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) return 0;
assert(!cm->all_lossless);
const int is_uv = plane > 0;
const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
const int tile_w = tile_rect.right - tile_rect.left;
const int tile_h = tile_rect.bottom - tile_rect.top;
const int mi_top = 0;
const int mi_left = 0;
// Compute the mi-unit corners of the superblock relative to the top-left of
// the tile
const int mi_rel_row0 = mi_row - mi_top;
const int mi_rel_col0 = mi_col - mi_left;
const int mi_rel_row1 = mi_rel_row0 + mi_size_high[bsize];
const int mi_rel_col1 = mi_rel_col0 + mi_size_wide[bsize];
const RestorationInfo *rsi = &cm->rst_info[plane];
const int size = rsi->restoration_unit_size;
// Calculate the number of restoration units in this tile (which might be
// strictly less than rsi->horz_units_per_tile and rsi->vert_units_per_tile)
const int horz_units = av1_lr_count_units_in_tile(size, tile_w);
const int vert_units = av1_lr_count_units_in_tile(size, tile_h);
// The size of an MI-unit on this plane of the image
const int ss_x = is_uv && cm->seq_params.subsampling_x;
const int ss_y = is_uv && cm->seq_params.subsampling_y;
const int mi_size_x = MI_SIZE >> ss_x;
const int mi_size_y = MI_SIZE >> ss_y;
// Write m for the relative mi column or row, D for the superres denominator
// and N for the superres numerator. If u is the upscaled pixel offset then
// we can write the downscaled pixel offset in two ways as:
//
// MI_SIZE * m = N / D u
//
// from which we get u = D * MI_SIZE * m / N
const int mi_to_num_x = av1_superres_scaled(cm)
? mi_size_x * cm->superres_scale_denominator
: mi_size_x;
const int mi_to_num_y = mi_size_y;
const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
const int denom_y = size;
const int rnd_x = denom_x - 1;
const int rnd_y = denom_y - 1;
// rcol0/rrow0 should be the first column/row of restoration units (relative
// to the top-left of the tile) that doesn't start left/below of
// mi_col/mi_row. For this calculation, we need to round up the division (if
// the sb starts at runit column 10.1, the first matching runit has column
// index 11)
*rcol0 = (mi_rel_col0 * mi_to_num_x + rnd_x) / denom_x;
*rrow0 = (mi_rel_row0 * mi_to_num_y + rnd_y) / denom_y;
// rel_col1/rel_row1 is the equivalent calculation, but for the superblock
// below-right. If we're at the bottom or right of the tile, this restoration
// unit might not exist, in which case we'll clamp accordingly.
*rcol1 = AOMMIN((mi_rel_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
*rrow1 = AOMMIN((mi_rel_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
return *rcol0 < *rcol1 && *rrow0 < *rrow1;
}
// Extend to left and right
static void extend_lines(uint8_t *buf, int width, int height, int stride,
int extend, int use_highbitdepth) {
for (int i = 0; i < height; ++i) {
if (use_highbitdepth) {
uint16_t *buf16 = (uint16_t *)buf;
aom_memset16(buf16 - extend, buf16[0], extend);
aom_memset16(buf16 + width, buf16[width - 1], extend);
} else {
memset(buf - extend, buf[0], extend);
memset(buf + width, buf[width - 1], extend);
}
buf += stride;
}
}
static void save_deblock_boundary_lines(
const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
int stripe, int use_highbd, int is_above,
RestorationStripeBoundaries *boundaries) {
const int is_uv = plane > 0;
const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
const int src_stride = frame->strides[is_uv] << use_highbd;
const uint8_t *src_rows = src_buf + row * src_stride;
uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
: boundaries->stripe_boundary_below;
uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
// There is a rare case in which a processing stripe can end 1px above the
// crop border. In this case, we do want to use deblocked pixels from below
// the stripe (hence why we ended up in this function), but instead of
// fetching 2 "below" rows we need to fetch one and duplicate it.
// This is equivalent to clamping the sample locations against the crop border
const int lines_to_save =
AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
assert(lines_to_save == 1 || lines_to_save == 2);
int upscaled_width;
int line_bytes;
if (av1_superres_scaled(cm)) {
const int ss_x = is_uv && cm->seq_params.subsampling_x;
upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
line_bytes = upscaled_width << use_highbd;
if (use_highbd)
av1_upscale_normative_rows(
cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
plane, lines_to_save);
else
av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
boundaries->stripe_boundary_stride, plane,
lines_to_save);
} else {
upscaled_width = frame->crop_widths[is_uv];
line_bytes = upscaled_width << use_highbd;
for (int i = 0; i < lines_to_save; i++) {
memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
line_bytes);
}
}
// If we only saved one line, then copy it into the second line buffer
if (lines_to_save == 1)
memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
RESTORATION_EXTRA_HORZ, use_highbd);
}
static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
const AV1_COMMON *cm, int plane, int row,
int stripe, int use_highbd, int is_above,
RestorationStripeBoundaries *boundaries) {
const int is_uv = plane > 0;
const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
const int src_stride = frame->strides[is_uv] << use_highbd;
const uint8_t *src_rows = src_buf + row * src_stride;
uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
: boundaries->stripe_boundary_below;
uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
const int src_width = frame->crop_widths[is_uv];
// At the point where this function is called, we've already applied
// superres. So we don't need to extend the lines here, we can just
// pull directly from the topmost row of the upscaled frame.
const int ss_x = is_uv && cm->seq_params.subsampling_x;
const int upscaled_width = av1_superres_scaled(cm)
? (cm->superres_upscaled_width + ss_x) >> ss_x
: src_width;
const int line_bytes = upscaled_width << use_highbd;
for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
// Copy the line at 'row' into both context lines. This is because
// we want to (effectively) extend the outermost row of CDEF data
// from this tile to produce a border, rather than using deblocked
// pixels from the tile above/below.
memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
}
extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
RESTORATION_EXTRA_HORZ, use_highbd);
}
static void save_tile_row_boundary_lines(const YV12_BUFFER_CONFIG *frame,
int use_highbd, int plane,
AV1_COMMON *cm, int after_cdef) {
const int is_uv = plane > 0;
const int ss_y = is_uv && cm->seq_params.subsampling_y;
const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
// Get the tile rectangle, with height rounded up to the next multiple of 8
// luma pixels (only relevant for the bottom tile of the frame)
const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
const int stripe0 = 0;
RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
int tile_stripe;
for (tile_stripe = 0;; ++tile_stripe) {
const int rel_y0 = AOMMAX(0, tile_stripe * stripe_height - stripe_off);
const int y0 = tile_rect.top + rel_y0;
if (y0 >= tile_rect.bottom) break;
const int rel_y1 = (tile_stripe + 1) * stripe_height - stripe_off;
const int y1 = AOMMIN(tile_rect.top + rel_y1, tile_rect.bottom);
const int frame_stripe = stripe0 + tile_stripe;
// In this case, we should only use CDEF pixels at the top
// and bottom of the frame as a whole; internal tile boundaries
// can use deblocked pixels from adjacent tiles for context.
const int use_deblock_above = (frame_stripe > 0);
const int use_deblock_below = (y1 < plane_height);
if (!after_cdef) {
// Save deblocked context where needed.
if (use_deblock_above) {
save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
frame_stripe, use_highbd, 1, boundaries);
}
if (use_deblock_below) {
save_deblock_boundary_lines(frame, cm, plane, y1, frame_stripe,
use_highbd, 0, boundaries);
}
} else {
// Save CDEF context where needed. Note that we need to save the CDEF
// context for a particular boundary iff we *didn't* save deblocked
// context for that boundary.
//
// In addition, we need to save copies of the outermost line within
// the tile, rather than using data from outside the tile.
if (!use_deblock_above) {
save_cdef_boundary_lines(frame, cm, plane, y0, frame_stripe, use_highbd,
1, boundaries);
}
if (!use_deblock_below) {
save_cdef_boundary_lines(frame, cm, plane, y1 - 1, frame_stripe,
use_highbd, 0, boundaries);
}
}
}
}
// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
// lines to be used as boundary in the loop restoration process. The
// lines are saved in rst_internal.stripe_boundary_lines
void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
AV1_COMMON *cm, int after_cdef) {
const int num_planes = av1_num_planes(cm);
const int use_highbd = cm->seq_params.use_highbitdepth;
for (int p = 0; p < num_planes; ++p) {
save_tile_row_boundary_lines(frame, use_highbd, p, cm, after_cdef);
}
}
|