summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/reconinter.h
blob: 10933a751c04af66f3c2f44d033a560e4c1bf7bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#ifndef AV1_COMMON_RECONINTER_H_
#define AV1_COMMON_RECONINTER_H_

#include "av1/common/filter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/convolve.h"
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#include "av1/common/warped_motion.h"
#endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#include "aom/aom_integer.h"

#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
#define WARP_WM_NEIGHBORS_WITH_OBMC 0
#endif  // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION

#if CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION
#define WARP_GM_NEIGHBORS_WITH_OBMC 0
#endif  // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION

#ifdef __cplusplus
extern "C" {
#endif

static INLINE void inter_predictor(const uint8_t *src, int src_stride,
                                   uint8_t *dst, int dst_stride,
                                   const int subpel_x, const int subpel_y,
                                   const struct scale_factors *sf, int w, int h,
                                   ConvolveParams *conv_params,
#if CONFIG_DUAL_FILTER
                                   const InterpFilter *interp_filter,
#else
                                   const InterpFilter interp_filter,
#endif
                                   int xs, int ys) {
#if CONFIG_DUAL_FILTER
  InterpFilter filter_x = av1_get_plane_interp_filter(
      interp_filter[1 + 2 * conv_params->ref], conv_params->plane);
  InterpFilter filter_y = av1_get_plane_interp_filter(
      interp_filter[0 + 2 * conv_params->ref], conv_params->plane);
  InterpFilterParams interp_filter_params_x =
      av1_get_interp_filter_params(filter_x);
  InterpFilterParams interp_filter_params_y =
      av1_get_interp_filter_params(filter_y);
#else
  InterpFilterParams interp_filter_params =
      av1_get_interp_filter_params(interp_filter);
#endif

  assert(sf);
#if CONFIG_DUAL_FILTER
  if (interp_filter_params_x.taps == SUBPEL_TAPS &&
      interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2 &&
      conv_params->round == CONVOLVE_OPT_ROUND && xs == 16 && ys == 16) {
    const int16_t *kernel_x =
        av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x);
    const int16_t *kernel_y =
        av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y);
#else
  if (interp_filter_params.taps == SUBPEL_TAPS && w > 2 && h > 2 &&
      conv_params->round == CONVOLVE_OPT_ROUND && xs == 16 && ys == 16) {
    const int16_t *kernel_x =
        av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x);
    const int16_t *kernel_y =
        av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y);
#endif
    sf->predict[subpel_x != 0][subpel_y != 0][conv_params->ref](
        src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h);
  } else {
// ref_idx > 0 means this is the second reference frame
// first reference frame's prediction result is already in dst
// therefore we need to average the first and second results
#if CONFIG_CONVOLVE_ROUND
    if (conv_params->round == CONVOLVE_OPT_NO_ROUND && xs == 16 && ys == 16)
      av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
#if CONFIG_DUAL_FILTER
                             interp_filter,
#else
                             &interp_filter,
#endif
                             subpel_x, xs, subpel_y, ys, conv_params);
    else
#endif
    {
      if (xs == 16 && ys == 16) {
        av1_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter,
                     subpel_x, xs, subpel_y, ys, conv_params);
      } else {
        // If xs == 16 || ys == 16 scaling is happening and the SSE2
        // instructions don't support scaling; use the C versions to be safe.
        av1_convolve_c(src, src_stride, dst, dst_stride, w, h, interp_filter,
                       subpel_x, xs, subpel_y, ys, conv_params);
      }
    }
  }
}

#if CONFIG_HIGHBITDEPTH
static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride,
                                          uint8_t *dst, int dst_stride,
                                          const int subpel_x,
                                          const int subpel_y,
                                          const struct scale_factors *sf, int w,
                                          int h, int ref,
#if CONFIG_DUAL_FILTER
                                          const InterpFilter *interp_filter,
#else
                                          const InterpFilter interp_filter,
#endif
                                          int xs, int ys, int bd) {
#if CONFIG_DUAL_FILTER
  InterpFilterParams interp_filter_params_x =
      av1_get_interp_filter_params(interp_filter[1 + 2 * ref]);
  InterpFilterParams interp_filter_params_y =
      av1_get_interp_filter_params(interp_filter[0 + 2 * ref]);
#else
  InterpFilterParams interp_filter_params =
      av1_get_interp_filter_params(interp_filter);
#endif

#if CONFIG_DUAL_FILTER
  if (interp_filter_params_x.taps == SUBPEL_TAPS &&
      interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) {
    const int16_t *kernel_x =
        av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x);
    const int16_t *kernel_y =
        av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y);
#else
  if (interp_filter_params.taps == SUBPEL_TAPS && w > 2 && h > 2) {
    const int16_t *kernel_x =
        av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x);
    const int16_t *kernel_y =
        av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y);
#endif  // CONFIG_DUAL_FILTER
    sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref](
        src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h, bd);
  } else {
    // ref > 0 means this is the second reference frame
    // first reference frame's prediction result is already in dst
    // therefore we need to average the first and second results
    int avg = ref > 0;
    av1_highbd_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter,
                        subpel_x, xs, subpel_y, ys, avg, bd);
  }
}
#endif  // CONFIG_HIGHBITDEPTH

#if CONFIG_EXT_INTER
// Set to (1 << 5) if the 32-ary codebooks are used for any bock size
#define MAX_WEDGE_TYPES (1 << 4)

#define MAX_WEDGE_SIZE_LOG2 5  // 32x32
#define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2)
#define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE)

#define WEDGE_WEIGHT_BITS 6

#define WEDGE_NONE -1

// Angles are with respect to horizontal anti-clockwise
typedef enum {
  WEDGE_HORIZONTAL = 0,
  WEDGE_VERTICAL = 1,
  WEDGE_OBLIQUE27 = 2,
  WEDGE_OBLIQUE63 = 3,
  WEDGE_OBLIQUE117 = 4,
  WEDGE_OBLIQUE153 = 5,
  WEDGE_DIRECTIONS
} WedgeDirectionType;

// 3-tuple: {direction, x_offset, y_offset}
typedef struct {
  WedgeDirectionType direction;
  int x_offset;
  int y_offset;
} wedge_code_type;

typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES];

typedef struct {
  int bits;
  const wedge_code_type *codebook;
  uint8_t *signflip;
  int smoother;
  wedge_masks_type *masks;
} wedge_params_type;

extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES];

static INLINE int is_interinter_compound_used(COMPOUND_TYPE type,
                                              BLOCK_SIZE sb_type) {
  (void)sb_type;
  switch (type) {
    case COMPOUND_AVERAGE: return 1;
#if CONFIG_WEDGE
    case COMPOUND_WEDGE: return wedge_params_lookup[sb_type].bits > 0;
#endif  // CONFIG_WEDGE
#if CONFIG_COMPOUND_SEGMENT
    case COMPOUND_SEG: return sb_type >= BLOCK_8X8;
#endif  // CONFIG_COMPOUND_SEGMENT
    default: assert(0); return 0;
  }
}

static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) {
  COMPOUND_TYPE comp_type;
  for (comp_type = 0; comp_type < COMPOUND_TYPES; comp_type++) {
    if (is_masked_compound_type(comp_type) &&
        is_interinter_compound_used(comp_type, sb_type))
      return 1;
  }
  return 0;
}

static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) {
  return wedge_params_lookup[sb_type].bits;
}

static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) {
  const int wbits = wedge_params_lookup[sb_type].bits;
  return (wbits > 0) ? wbits + 1 : 0;
}

static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) {
  (void)sb_type;
  return wedge_params_lookup[sb_type].bits > 0;
}

static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) {
  return wedge_params_lookup[sb_type].bits;
}

#if CONFIG_COMPOUND_SEGMENT
void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type,
                             const uint8_t *src0, int src0_stride,
                             const uint8_t *src1, int src1_stride,
                             BLOCK_SIZE sb_type, int h, int w);
#if CONFIG_HIGHBITDEPTH
void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type,
                                    const uint8_t *src0, int src0_stride,
                                    const uint8_t *src1, int src1_stride,
                                    BLOCK_SIZE sb_type, int h, int w, int bd);
#endif  // CONFIG_HIGHBITDEPTH
#endif  // CONFIG_COMPOUND_SEGMENT
#endif  // CONFIG_EXT_INTER

void build_inter_predictors(MACROBLOCKD *xd, int plane,
#if CONFIG_MOTION_VAR
                            int mi_col_offset, int mi_row_offset,
#endif  // CONFIG_MOTION_VAR
                            int block, int bw, int bh, int x, int y, int w,
                            int h,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
                            int wedge_offset_x, int wedge_offset_y,
#endif  // CONFIG_SUPERTX && CONFIG_EXT_INTER
                            int mi_x, int mi_y);

#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
// This function will determine whether or not to create a warped
// prediction and return the appropriate motion model depending
// on the configuration. Behavior will change with different
// combinations of GLOBAL_MOTION, WARPED_MOTION and MOTION_VAR.
static INLINE int allow_warp(const MODE_INFO *const mi,
                             const WarpTypesAllowed *const warp_types,
#if CONFIG_GLOBAL_MOTION
                             const WarpedMotionParams *const gm_params,
#endif  // CONFIG_GLOBAL_MOTION
#if CONFIG_MOTION_VAR
                             int mi_col_offset, int mi_row_offset,
#endif  // CONFIG_MOTION_VAR
                             WarpedMotionParams *final_warp_params) {
  const MB_MODE_INFO *const mbmi = &mi->mbmi;
  set_default_warp_params(final_warp_params);

// Only global motion configured
#if CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
  (void)mbmi;
  if (warp_types->global_warp_allowed) {
    memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
    return 1;
  }
#endif  // CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR

// Only warped motion configured
#if CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR
  if (warp_types->local_warp_allowed) {
    memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params));
    return 1;
  }
#endif  // CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR

// Warped and global motion configured
#if CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
  // When both are enabled, warped will take priority. The global parameters
  // will only be used to compute projection samples to find the warped model.
  // Note that, if SEPARATE_GLOBAL_MOTION is enabled and a block chooses
  // global, it will not be possible to select WARPED_CAUSAL.
  if (warp_types->local_warp_allowed) {
    memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params));
    return 1;
  } else if (warp_types->global_warp_allowed) {
    memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
    return 1;
  }
#endif  // CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR

// Motion var and global motion configured
#if CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION
  // We warp if either case is true:
  //   1.) We are predicting a block which uses global motion
  //   2.) We are predicting a neighboring block of a block using OBMC,
  //       the neighboring block uses global motion, and we have enabled
  //       WARP_GM_NEIGHBORS_WITH_OBMC
  const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0);
  (void)mbmi;
  if (warp_types->global_warp_allowed &&
      (WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) {
    memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
    return 1;
  }
#endif  // CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION

// Motion var and warped motion configured
#if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION
  // We warp if either case is true:
  //   1.) We are predicting a block with motion mode WARPED_CAUSAL
  //   2.) We are predicting a neighboring block of a block using OBMC,
  //       the neighboring block has mode WARPED_CAUSAL, and we have enabled
  //       WARP_WM_NEIGHBORS_WITH_OBMC
  const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0);
  if (warp_types->local_warp_allowed) {
    if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) {
      memcpy(final_warp_params, &mbmi->wm_params[0],
             sizeof(*final_warp_params));
      return 1;
    }
  }
#endif  // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION

// Motion var, warped motion and global motion all configured
#if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION
  const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0);
  if (warp_types->local_warp_allowed) {
    if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) {
      memcpy(final_warp_params, &mbmi->wm_params[0],
             sizeof(*final_warp_params));
      return 1;
    }
  } else if (warp_types->global_warp_allowed &&
             (WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) {
    memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
    return 1;
  }
#endif  // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION

  return 0;
}
#endif  // CONFIG_GLOBAL_MOTION ||CONFIG_WARPED_MOTION

static INLINE void av1_make_inter_predictor(
    const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
    const int subpel_x, const int subpel_y, const struct scale_factors *sf,
    int w, int h, ConvolveParams *conv_params,
#if CONFIG_DUAL_FILTER
    const InterpFilter *interp_filter,
#else
    const InterpFilter interp_filter,
#endif
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
    const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane,
    int ref,
#endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
    int mi_col_offset, int mi_row_offset,
#endif
    int xs, int ys, const MACROBLOCKD *xd) {
  (void)xd;

#if CONFIG_MOTION_VAR
  const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset];
#else
  const MODE_INFO *mi = xd->mi[0];
  (void)mi;
#endif  // CONFIG_MOTION_VAR

// Make sure the selected motion mode is valid for this configuration
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
  assert_motion_mode_valid(mi->mbmi.motion_mode,
#if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
                           0, xd->global_motion,
#endif  // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
                           mi);
#endif  // CONFIG MOTION_VAR || CONFIG_WARPED_MOTION

#if CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION
  WarpedMotionParams final_warp_params;
  const int do_warp = allow_warp(mi, warp_types,
#if CONFIG_GLOBAL_MOTION
                                 &xd->global_motion[mi->mbmi.ref_frame[ref]],
#endif  // CONFIG_GLOBAL_MOTION
#if CONFIG_MOTION_VAR
                                 mi_col_offset, mi_row_offset,
#endif  // CONFIG_MOTION_VAR
                                 &final_warp_params);
  if (do_warp) {
    const struct macroblockd_plane *const pd = &xd->plane[plane];
    const struct buf_2d *const pre_buf = &pd->pre[ref];
    av1_warp_plane(&final_warp_params,
#if CONFIG_HIGHBITDEPTH
                   xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif  // CONFIG_HIGHBITDEPTH
                   pre_buf->buf0, pre_buf->width, pre_buf->height,
                   pre_buf->stride, dst, p_col, p_row, w, h, dst_stride,
                   pd->subsampling_x, pd->subsampling_y, xs, ys, ref);
    return;
  }
#endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_HIGHBITDEPTH
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
                           sf, w, h, conv_params->ref, interp_filter, xs, ys,
                           xd->bd);
    return;
  }
#endif  // CONFIG_HIGHBITDEPTH
  inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w,
                  h, conv_params, interp_filter, xs, ys);
}

#if CONFIG_EXT_INTER
void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
                                     uint8_t *dst, int dst_stride,
                                     const int subpel_x, const int subpel_y,
                                     const struct scale_factors *sf, int w,
                                     int h,
#if CONFIG_DUAL_FILTER
                                     const InterpFilter *interp_filter,
#else
                                     const InterpFilter interp_filter,
#endif
                                     int xs, int ys,
#if CONFIG_SUPERTX
                                     int wedge_offset_x, int wedge_offset_y,
#endif  // CONFIG_SUPERTX
                                     int plane,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
                                     const WarpTypesAllowed *warp_types,
                                     int p_col, int p_row, int ref,
#endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
                                     MACROBLOCKD *xd);
#endif  // CONFIG_EXT_INTER

static INLINE int round_mv_comp_q4(int value) {
  return (value < 0 ? value - 2 : value + 2) / 4;
}

static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
  MV res = {
    round_mv_comp_q4(
        mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row +
        mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row),
    round_mv_comp_q4(
        mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col +
        mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col)
  };
  return res;
}

static INLINE int round_mv_comp_q2(int value) {
  return (value < 0 ? value - 1 : value + 1) / 2;
}

static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) {
  MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row +
                              mi->bmi[block1].as_mv[idx].as_mv.row),
             round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col +
                              mi->bmi[block1].as_mv[idx].as_mv.col) };
  return res;
}

// TODO(jkoleszar): yet another mv clamping function :-(
static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd,
                                           const MV *src_mv, int bw, int bh,
                                           int ss_x, int ss_y) {
  // If the MV points so far into the UMV border that no visible pixels
  // are used for reconstruction, the subpel part of the MV can be
  // discarded and the MV limited to 16 pixels with equivalent results.
  const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS;
  const int spel_right = spel_left - SUBPEL_SHIFTS;
  const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS;
  const int spel_bottom = spel_top - SUBPEL_SHIFTS;
  MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)),
                    src_mv->col * (1 << (1 - ss_x)) };
  assert(ss_x <= 1);
  assert(ss_y <= 1);

  clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
           xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
           xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
           xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);

  return clamped_mv;
}

static INLINE MV average_split_mvs(const struct macroblockd_plane *pd,
                                   const MODE_INFO *mi, int ref, int block) {
  const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0);
  MV res = { 0, 0 };
  switch (ss_idx) {
    case 0: res = mi->bmi[block].as_mv[ref].as_mv; break;
    case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break;
    case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break;
    case 3: res = mi_mv_pred_q4(mi, ref); break;
    default: assert(ss_idx <= 3 && ss_idx >= 0);
  }
  return res;
}

void av1_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir,
                                      int ic, int mi_row, int mi_col);

void av1_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
                                    BUFFER_SET *ctx, BLOCK_SIZE bsize);

void av1_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
                                     BUFFER_SET *ctx, BLOCK_SIZE bsize);

void av1_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
                                   BUFFER_SET *ctx, BLOCK_SIZE bsize);

#if CONFIG_SUPERTX
void av1_build_inter_predictors_sb_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_EXT_INTER
                                                 int mi_row_ori, int mi_col_ori,
#endif  // CONFIG_EXT_INTER
                                                 int mi_row, int mi_col,
                                                 BLOCK_SIZE bsize, int block);

void av1_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
#if CONFIG_EXT_INTER
                                          int mi_row_ori, int mi_col_ori,
#endif  // CONFIG_EXT_INTER
                                          int mi_row, int mi_col,
                                          BLOCK_SIZE bsize);
struct macroblockd_plane;
void av1_build_masked_inter_predictor_complex(
    MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre,
    int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori,
    BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition,
    int plane);
#endif  // CONFIG_SUPERTX

void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
                               int dst_stride, const MV *src_mv,
                               const struct scale_factors *sf, int w, int h,
                               ConvolveParams *conv_params,
#if CONFIG_DUAL_FILTER
                               const InterpFilter *interp_filter,
#else
                               const InterpFilter interp_filter,
#endif
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
                               const WarpTypesAllowed *warp_types, int p_col,
                               int p_row, int plane, int ref,
#endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
                               enum mv_precision precision, int x, int y,
                               const MACROBLOCKD *xd);

#if CONFIG_HIGHBITDEPTH
void av1_highbd_build_inter_predictor(
    const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
    const MV *mv_q3, const struct scale_factors *sf, int w, int h, int do_avg,
#if CONFIG_DUAL_FILTER
    const InterpFilter *interp_filter,
#else
    const InterpFilter interp_filter,
#endif
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
    const WarpTypesAllowed *warp_types, int p_col, int p_row,
#endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
    int plane, enum mv_precision precision, int x, int y,
    const MACROBLOCKD *xd);
#endif

static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride,
                                       const struct scale_factors *sf) {
  const int x = sf ? sf->scale_value_x(x_offset, sf) : x_offset;
  const int y = sf ? sf->scale_value_y(y_offset, sf) : y_offset;
  return y * stride + x;
}

static INLINE void setup_pred_plane(struct buf_2d *dst, BLOCK_SIZE bsize,
                                    uint8_t *src, int width, int height,
                                    int stride, int mi_row, int mi_col,
                                    const struct scale_factors *scale,
                                    int subsampling_x, int subsampling_y) {
#if CONFIG_CHROMA_SUB8X8
  if (bsize < BLOCK_8X8) {
    // Offset the buffer pointer
    if (subsampling_y && (mi_row & 0x01)) mi_row -= 1;
    if (subsampling_x && (mi_col & 0x01)) mi_col -= 1;
  }
#else
  (void)bsize;
#endif

  const int x = (MI_SIZE * mi_col) >> subsampling_x;
  const int y = (MI_SIZE * mi_row) >> subsampling_y;
  dst->buf = src + scaled_buffer_offset(x, y, stride, scale);
  dst->buf0 = src;
  dst->width = width;
  dst->height = height;
  dst->stride = stride;
}

void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
                          BLOCK_SIZE bsize, const YV12_BUFFER_CONFIG *src,
                          int mi_row, int mi_col);

void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
                          const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
                          const struct scale_factors *sf);

// Detect if the block have sub-pixel level motion vectors
// per component.
#define CHECK_SUBPEL 0
static INLINE int has_subpel_mv_component(const MODE_INFO *const mi,
                                          const MACROBLOCKD *const xd,
                                          int dir) {
#if CHECK_SUBPEL
  const MB_MODE_INFO *const mbmi = &mi->mbmi;
  const BLOCK_SIZE bsize = mbmi->sb_type;
  int plane;
  int ref = (dir >> 1);
#if CONFIG_CB4X4
  const int unify_bsize = 1;
#else
  const int unify_bsize = 0;
#endif

  if (bsize >= BLOCK_8X8 || unify_bsize) {
    if (dir & 0x01) {
      if (mbmi->mv[ref].as_mv.col & SUBPEL_MASK) return 1;
    } else {
      if (mbmi->mv[ref].as_mv.row & SUBPEL_MASK) return 1;
    }
  } else {
    for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
      const PARTITION_TYPE bp = BLOCK_8X8 - bsize;
      const struct macroblockd_plane *const pd = &xd->plane[plane];
      const int have_vsplit = bp != PARTITION_HORZ;
      const int have_hsplit = bp != PARTITION_VERT;
      const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
      const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);

      int x, y;
      for (y = 0; y < num_4x4_h; ++y) {
        for (x = 0; x < num_4x4_w; ++x) {
          const MV mv = average_split_mvs(pd, mi, ref, y * 2 + x);
          if (dir & 0x01) {
            if (mv.col & SUBPEL_MASK) return 1;
          } else {
            if (mv.row & SUBPEL_MASK) return 1;
          }
        }
      }
    }
  }

  return 0;
#else
  (void)mi;
  (void)xd;
  (void)dir;
  return 1;
#endif
}

static INLINE void set_default_interp_filters(
    MB_MODE_INFO *const mbmi, InterpFilter frame_interp_filter) {
#if CONFIG_DUAL_FILTER
  int dir;
  for (dir = 0; dir < 4; ++dir)
    mbmi->interp_filter[dir] = frame_interp_filter == SWITCHABLE
                                   ? EIGHTTAP_REGULAR
                                   : frame_interp_filter;
#else
  mbmi->interp_filter = frame_interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR
                                                          : frame_interp_filter;
#endif  // CONFIG_DUAL_FILTER
}

static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) {
  (void)xd;
#if CONFIG_WARPED_MOTION
  const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
  if (mbmi->motion_mode == WARPED_CAUSAL) return 0;
#endif  // CONFIG_WARPED_MOTION
#if CONFIG_GLOBAL_MOTION
  if (is_nontrans_global_motion(xd)) return 0;
#endif  // CONFIG_GLOBAL_MOTION
  return 1;
}

static INLINE int av1_is_interp_search_needed(const MACROBLOCKD *const xd) {
  MODE_INFO *const mi = xd->mi[0];
  const int is_compound = has_second_ref(&mi->mbmi);
  int ref;
  for (ref = 0; ref < 1 + is_compound; ++ref) {
    int row_col;
    for (row_col = 0; row_col < 2; ++row_col) {
      const int dir = (ref << 1) + row_col;
      if (has_subpel_mv_component(mi, xd, dir)) {
        return 1;
      }
    }
  }
  return 0;
}

#if CONFIG_MOTION_VAR
const uint8_t *av1_get_obmc_mask(int length);
void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                      int mi_row, int mi_col);
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                     int mi_row, int mi_col,
                                     uint8_t *above[MAX_MB_PLANE],
                                     int above_stride[MAX_MB_PLANE],
                                     uint8_t *left[MAX_MB_PLANE],
                                     int left_stride[MAX_MB_PLANE]);
void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                         int mi_row, int mi_col,
                                         uint8_t *tmp_buf[MAX_MB_PLANE],
                                         int tmp_width[MAX_MB_PLANE],
                                         int tmp_height[MAX_MB_PLANE],
                                         int tmp_stride[MAX_MB_PLANE]);
void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                        int mi_row, int mi_col,
                                        uint8_t *tmp_buf[MAX_MB_PLANE],
                                        int tmp_width[MAX_MB_PLANE],
                                        int tmp_height[MAX_MB_PLANE],
                                        int tmp_stride[MAX_MB_PLANE]);
void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                        int mi_row, int mi_col);
#if CONFIG_NCOBMC
void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                          int mi_row, int mi_col);
#endif
#endif  // CONFIG_MOTION_VAR

#if CONFIG_EXT_INTER
#define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1)
#define MASK_MASTER_STRIDE (MASK_MASTER_SIZE)

void av1_init_wedge_masks();

static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index,
                                                          int wedge_sign,
                                                          BLOCK_SIZE sb_type) {
  return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index];
}

const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign,
                                 BLOCK_SIZE sb_type, int wedge_offset_x,
                                 int wedge_offset_y);

const uint8_t *av1_get_compound_type_mask_inverse(
    const INTERINTER_COMPOUND_DATA *const comp_data,
#if CONFIG_COMPOUND_SEGMENT
    uint8_t *mask_buffer, int h, int w, int stride,
#endif
    BLOCK_SIZE sb_type);

const uint8_t *av1_get_compound_type_mask(
    const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type);

void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred,
                                     uint8_t *upred, uint8_t *vpred,
                                     int ystride, int ustride, int vstride,
                                     BUFFER_SET *ctx, BLOCK_SIZE bsize);
void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred,
                                         int ystride, BUFFER_SET *ctx,
                                         BLOCK_SIZE bsize);
void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred,
                                         int ustride, BUFFER_SET *ctx,
                                         int plane, BLOCK_SIZE bsize);
void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred,
                                          uint8_t *vpred, int ustride,
                                          int vstride, BUFFER_SET *ctx,
                                          BLOCK_SIZE bsize);

void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd,
                                               BLOCK_SIZE bsize, int plane,
                                               BUFFER_SET *ctx,
                                               uint8_t *intra_pred,
                                               int intra_stride);
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
                            const uint8_t *inter_pred, int inter_stride,
                            const uint8_t *intra_pred, int intra_stride);

// Encoder only
void av1_build_inter_predictors_for_planes_single_buf(
    MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row,
    int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]);
void av1_build_wedge_inter_predictor_from_buf(
    MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to,
#if CONFIG_SUPERTX
    int wedge_offset_x, int wedge_offset_y,
#endif  // CONFIG_SUPERTX
    uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3],
    int ext_dst_stride1[3]);
#endif  // CONFIG_EXT_INTER

#ifdef __cplusplus
}  // extern "C"
#endif

#endif  // AV1_COMMON_RECONINTER_H_