1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "./aom_scale_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_config.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "av1/common/blockd.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#if CONFIG_MOTION_VAR
#include "av1/common/onyxc_int.h"
#include "av1/common/obmc.h"
#endif // CONFIG_MOTION_VAR
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
// This function will determine whether or not to create a warped
// prediction and return the appropriate motion model depending
// on the configuration. Behavior will change with different
// combinations of GLOBAL_MOTION, WARPED_MOTION and MOTION_VAR.
static INLINE int allow_warp(const MODE_INFO *const mi,
const WarpTypesAllowed *const warp_types,
#if CONFIG_GLOBAL_MOTION
const WarpedMotionParams *const gm_params,
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_MOTION_VAR
int build_for_obmc,
#endif // CONFIG_MOTION_VAR
WarpedMotionParams *final_warp_params) {
const MB_MODE_INFO *const mbmi = &mi->mbmi;
*final_warp_params = default_warp_params;
// Only global motion configured
#if CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
(void)mbmi;
if (warp_types->global_warp_allowed) {
memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
return 1;
}
#endif // CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
// Only warped motion configured
#if CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR
if (warp_types->local_warp_allowed) {
memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params));
return 1;
}
#endif // CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR
// Warped and global motion configured
#if CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
// When both are enabled, warped will take priority. The global parameters
// will only be used to compute projection samples to find the warped model.
// Note that when a block chooses global, it will not be possible to
// select WARPED_CAUSAL.
if (warp_types->local_warp_allowed) {
memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params));
return 1;
} else if (warp_types->global_warp_allowed) {
memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
return 1;
}
#endif // CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
// Motion var and global motion configured
#if CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION
// We warp if either case is true:
// 1.) We are predicting a block which uses global motion
// 2.) We are predicting a neighboring block of a block using OBMC,
// the neighboring block uses global motion, and we have enabled
// WARP_GM_NEIGHBORS_WITH_OBMC
(void)mbmi;
if (warp_types->global_warp_allowed &&
(WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) {
memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
return 1;
}
#endif // CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION
// Motion var and warped motion configured
#if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION
// We warp if either case is true:
// 1.) We are predicting a block with motion mode WARPED_CAUSAL
// 2.) We are predicting a neighboring block of a block using OBMC,
// the neighboring block has mode WARPED_CAUSAL, and we have enabled
// WARP_WM_NEIGHBORS_WITH_OBMC
if (warp_types->local_warp_allowed) {
if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) {
memcpy(final_warp_params, &mbmi->wm_params[0],
sizeof(*final_warp_params));
return 1;
}
}
#endif // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION
// Motion var, warped motion and global motion all configured
#if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION
if (warp_types->local_warp_allowed) {
if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) {
memcpy(final_warp_params, &mbmi->wm_params[0],
sizeof(*final_warp_params));
return 1;
}
} else if (warp_types->global_warp_allowed &&
(WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) {
memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
return 1;
}
#endif // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION
return 0;
}
#endif // CONFIG_GLOBAL_MOTION ||CONFIG_WARPED_MOTION
static INLINE void av1_make_inter_predictor(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
const int subpel_x, const int subpel_y, const struct scale_factors *sf,
int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane,
int ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
const MODE_INFO *mi, int build_for_obmc,
#endif
int xs, int ys, const MACROBLOCKD *xd) {
(void)xd;
#if !CONFIG_MOTION_VAR
const MODE_INFO *mi = xd->mi[0];
(void)mi;
#endif // CONFIG_MOTION_VAR
// Make sure the selected motion mode is valid for this configuration
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
assert_motion_mode_valid(mi->mbmi.motion_mode,
#if CONFIG_GLOBAL_MOTION
0, xd->global_motion,
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_WARPED_MOTION
xd,
#endif
mi);
#endif // CONFIG MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION
WarpedMotionParams final_warp_params;
const int do_warp = allow_warp(
mi, warp_types,
#if CONFIG_GLOBAL_MOTION
#if CONFIG_COMPOUND_SINGLEREF
// TODO(zoeliu): To further check the single
// ref comp mode to work together with
// global motion.
has_second_ref(&mi->mbmi) ? &xd->global_motion[mi->mbmi.ref_frame[ref]]
: &xd->global_motion[mi->mbmi.ref_frame[0]],
#else // !(CONFIG_COMPOUND_SINGLEREF)
&xd->global_motion[mi->mbmi.ref_frame[ref]],
#endif // CONFIG_COMPOUND_SINGLEREF
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_MOTION_VAR
build_for_obmc,
#endif // CONFIG_MOTION_VAR
&final_warp_params);
if (do_warp
#if CONFIG_AMVR
&& xd->cur_frame_mv_precision_level == 0
#endif
) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const struct buf_2d *const pre_buf = &pd->pre[ref];
av1_warp_plane(&final_warp_params,
#if CONFIG_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_HIGHBITDEPTH
pre_buf->buf0, pre_buf->width, pre_buf->height,
pre_buf->stride, dst, p_col, p_row, w, h, dst_stride,
pd->subsampling_x, pd->subsampling_y, xs, ys, conv_params);
return;
}
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
sf, w, h, conv_params, interp_filters, xs, ys,
xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w,
h, conv_params, interp_filters, xs, ys);
}
#define NSMOOTHERS 1
// [smoother][negative][direction]
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_obl[NSMOOTHERS][2][WEDGE_DIRECTIONS]
[MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
DECLARE_ALIGNED(16, static uint8_t,
wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]);
// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound
// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE.
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]);
static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2];
// Some unused wedge codebooks left temporarily to facilitate experiments.
// To be removed when settled.
/*
static wedge_code_type wedge_codebook_8_hgtw[8] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
};
static wedge_code_type wedge_codebook_8_hltw[8] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static wedge_code_type wedge_codebook_8_heqw[8] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
};
static const wedge_code_type wedge_codebook_32_hgtw[32] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 },
{ WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 },
{ WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 },
{ WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 },
{ WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 },
{ WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 },
{ WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 },
{ WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 },
{ WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 },
{ WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 },
{ WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 },
{ WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 },
};
static const wedge_code_type wedge_codebook_32_hltw[32] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 },
{ WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 },
{ WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 },
{ WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 },
{ WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 },
{ WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 },
{ WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 },
{ WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 },
{ WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 },
{ WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 },
{ WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 },
{ WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 },
};
static const wedge_code_type wedge_codebook_32_heqw[32] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
{ WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 },
{ WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 },
{ WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 },
{ WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 },
{ WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 },
{ WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 },
{ WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 },
{ WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 },
{ WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 },
{ WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 },
{ WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 },
{ WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 },
};
*/
static const wedge_code_type wedge_codebook_16_hgtw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_hltw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_heqw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL] = {
#if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#endif // CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#if CONFIG_WEDGE
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], 0,
wedge_masks[BLOCK_8X8] },
{ 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], 0,
wedge_masks[BLOCK_8X16] },
{ 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], 0,
wedge_masks[BLOCK_16X8] },
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], 0,
wedge_masks[BLOCK_16X16] },
{ 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], 0,
wedge_masks[BLOCK_16X32] },
{ 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], 0,
wedge_masks[BLOCK_32X16] },
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], 0,
wedge_masks[BLOCK_32X32] },
#else
{ 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], 0,
wedge_masks[BLOCK_8X8] },
{ 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], 0,
wedge_masks[BLOCK_8X16] },
{ 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], 0,
wedge_masks[BLOCK_16X8] },
{ 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], 0,
wedge_masks[BLOCK_16X16] },
{ 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], 0,
wedge_masks[BLOCK_16X32] },
{ 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], 0,
wedge_masks[BLOCK_32X16] },
{ 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], 0,
wedge_masks[BLOCK_32X32] },
#endif // CONFIG_WEDGE
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#if CONFIG_EXT_PARTITION
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#endif // CONFIG_EXT_PARTITION
#if CONFIG_WEDGE
{ 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_4X16], 0,
wedge_masks[BLOCK_4X16] },
{ 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X4], 0,
wedge_masks[BLOCK_16X4] },
{ 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], 0,
wedge_masks[BLOCK_8X32] },
{ 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], 0,
wedge_masks[BLOCK_32X8] },
#else
{ 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_4X16], 0,
wedge_masks[BLOCK_4X16] },
{ 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X4], 0,
wedge_masks[BLOCK_16X4] },
{ 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], 0,
wedge_masks[BLOCK_8X32] },
{ 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], 0,
wedge_masks[BLOCK_32X8] },
#endif // CONFIG_WEDGE
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#if CONFIG_EXT_PARTITION
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#endif // CONFIG_EXT_PARTITION
};
static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
BLOCK_SIZE sb_type) {
const uint8_t *master;
const int bh = block_size_high[sb_type];
const int bw = block_size_wide[sb_type];
const wedge_code_type *a =
wedge_params_lookup[sb_type].codebook + wedge_index;
const int smoother = wedge_params_lookup[sb_type].smoother;
int woff, hoff;
const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index];
assert(wedge_index >= 0 &&
wedge_index < (1 << get_wedge_bits_lookup(sb_type)));
woff = (a->x_offset * bw) >> 3;
hoff = (a->y_offset * bh) >> 3;
master = wedge_mask_obl[smoother][neg ^ wsignflip][a->direction] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
return master;
}
const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign,
BLOCK_SIZE sb_type, int offset_x,
int offset_y) {
const uint8_t *mask =
get_wedge_mask_inplace(wedge_index, wedge_sign, sb_type);
if (mask) mask -= (offset_x + offset_y * MASK_MASTER_STRIDE);
return mask;
}
#if CONFIG_COMPOUND_SEGMENT
static uint8_t *invert_mask(uint8_t *mask_inv_buffer, const uint8_t *const mask,
int h, int w, int stride) {
int i, j;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
mask_inv_buffer[i * stride + j] =
AOM_BLEND_A64_MAX_ALPHA - mask[i * stride + j];
}
return mask_inv_buffer;
}
#endif // CONFIG_COMPOUND_SEGMENT
const uint8_t *av1_get_compound_type_mask_inverse(
const INTERINTER_COMPOUND_DATA *const comp_data,
#if CONFIG_COMPOUND_SEGMENT
uint8_t *mask_buffer, int h, int w, int stride,
#endif
BLOCK_SIZE sb_type) {
assert(is_masked_compound_type(comp_data->interinter_compound_type));
(void)sb_type;
switch (comp_data->interinter_compound_type) {
#if CONFIG_WEDGE
case COMPOUND_WEDGE:
return av1_get_contiguous_soft_mask(comp_data->wedge_index,
!comp_data->wedge_sign, sb_type);
#endif // CONFIG_WEDGE
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG:
return invert_mask(mask_buffer, comp_data->seg_mask, h, w, stride);
#endif // CONFIG_COMPOUND_SEGMENT
default: assert(0); return NULL;
}
}
const uint8_t *av1_get_compound_type_mask(
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) {
assert(is_masked_compound_type(comp_data->interinter_compound_type));
(void)sb_type;
switch (comp_data->interinter_compound_type) {
#if CONFIG_WEDGE
case COMPOUND_WEDGE:
return av1_get_contiguous_soft_mask(comp_data->wedge_index,
comp_data->wedge_sign, sb_type);
#endif // CONFIG_WEDGE
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG: return comp_data->seg_mask;
#endif // CONFIG_COMPOUND_SEGMENT
default: assert(0); return NULL;
}
}
#if CONFIG_COMPOUND_SEGMENT
#if COMPOUND_SEGMENT_TYPE == 0
static void uniform_mask(uint8_t *mask, int which_inverse, BLOCK_SIZE sb_type,
int h, int w, int mask_val) {
int i, j;
int block_stride = block_size_wide[sb_type];
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
mask[i * block_stride + j] =
which_inverse ? AOM_BLEND_A64_MAX_ALPHA - mask_val : mask_val;
}
}
void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w) {
(void)src0;
(void)src1;
(void)src0_stride;
(void)src1_stride;
switch (mask_type) {
case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break;
case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break;
default: assert(0);
}
}
#if CONFIG_HIGHBITDEPTH
void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w, int bd) {
(void)src0;
(void)src1;
(void)src0_stride;
(void)src1_stride;
(void)bd;
switch (mask_type) {
case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break;
case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break;
default: assert(0);
}
}
#endif // CONFIG_HIGHBITDEPTH
#elif COMPOUND_SEGMENT_TYPE == 1
#define DIFF_FACTOR 16
#if CONFIG_CONVOLVE_ROUND
static void diffwtd_mask_d32(uint8_t *mask, int which_inverse, int mask_base,
const int32_t *src0, int src0_stride,
const int32_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w,
ConvolveParams *conv_params, int bd) {
int round =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8);
int i, j, m, diff;
int block_stride = block_size_wide[sb_type];
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]);
diff = ROUND_POWER_OF_TWO(diff, round);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * block_stride + j] =
which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
static void build_compound_seg_mask_d32(uint8_t *mask, SEG_MASK_TYPE mask_type,
const int32_t *src0, int src0_stride,
const int32_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w,
ConvolveParams *conv_params, int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_d32(mask, 0, 38, src0, src0_stride, src1, src1_stride,
sb_type, h, w, conv_params, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_d32(mask, 1, 38, src0, src0_stride, src1, src1_stride,
sb_type, h, w, conv_params, bd);
break;
default: assert(0);
}
}
#endif
static void diffwtd_mask(uint8_t *mask, int which_inverse, int mask_base,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w) {
int i, j, m, diff;
int block_stride = block_size_wide[sb_type];
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff =
abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * block_stride + j] =
which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, sb_type,
h, w);
break;
case DIFFWTD_38_INV:
diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, sb_type,
h, w);
break;
default: assert(0);
}
}
#if CONFIG_HIGHBITDEPTH
static void diffwtd_mask_highbd(uint8_t *mask, int which_inverse, int mask_base,
const uint16_t *src0, int src0_stride,
const uint16_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w, int bd) {
int i, j, m, diff;
int block_stride = block_size_wide[sb_type];
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff = abs((int)src0[i * src0_stride + j] -
(int)src1[i * src1_stride + j]) >>
(bd - 8);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * block_stride + j] =
which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w, int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w,
bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w,
bd);
break;
default: assert(0);
}
}
#endif // CONFIG_HIGHBITDEPTH
#endif // COMPOUND_SEGMENT_TYPE
#endif // CONFIG_COMPOUND_SEGMENT
#if MASK_MASTER_SIZE == 64
static const uint8_t wedge_master_oblique_odd[NSMOOTHERS][MASK_MASTER_SIZE] = {
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18,
37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
}
};
static const uint8_t wedge_master_oblique_even[NSMOOTHERS][MASK_MASTER_SIZE] = {
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27,
46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
}
};
static const uint8_t wedge_master_vertical[NSMOOTHERS][MASK_MASTER_SIZE] = { {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21,
43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
} };
static void shift_copy(const uint8_t *src, uint8_t *dst, int shift, int width) {
if (shift >= 0) {
memcpy(dst + shift, src, width - shift);
memset(dst, src[0], shift);
} else {
shift = -shift;
memcpy(dst, src + shift, width - shift);
memset(dst + width - shift, src[width - 1], shift);
}
}
#else
static const double smoother_param[NSMOOTHERS] = { 3.0 };
#endif // MASK_MASTER_SIZE == 64
static void init_wedge_master_masks() {
int i, j, s;
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
const int stride = MASK_MASTER_STRIDE;
for (s = 0; s < NSMOOTHERS; s++) {
// Note: index [0] stores the masters, and [1] its complement.
#if MASK_MASTER_SIZE == 64
// Generate prototype by shifting the masters
int shift = h / 4;
for (i = 0; i < h; i += 2) {
shift_copy(wedge_master_oblique_even[s],
&wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride], shift,
MASK_MASTER_SIZE);
shift--;
shift_copy(wedge_master_oblique_odd[s],
&wedge_mask_obl[s][0][WEDGE_OBLIQUE63][(i + 1) * stride],
shift, MASK_MASTER_SIZE);
memcpy(&wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride],
wedge_master_vertical[s],
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[s][0]));
memcpy(&wedge_mask_obl[s][0][WEDGE_VERTICAL][(i + 1) * stride],
wedge_master_vertical[s],
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[s][0]));
}
#else
const int a[2] = { 2, 1 };
const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]);
for (i = 0; i < h; i++) {
for (j = 0; j < w; ++j) {
int x = (2 * j + 1 - w);
int y = (2 * i + 1 - h);
double d = (a[0] * x + a[1] * y) / asqrt;
const int msk = (int)rint((1.0 + tanh(d / smoother_param[s])) * 32);
wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride + j] = msk;
const int mskx = (int)rint((1.0 + tanh(x / smoother_param[s])) * 32);
wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride + j] = mskx;
}
}
#endif // MASK_MASTER_SIZE == 64
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int msk = wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride + j];
wedge_mask_obl[s][0][WEDGE_OBLIQUE27][j * stride + i] = msk;
wedge_mask_obl[s][0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[s][0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[s][1][WEDGE_OBLIQUE63][i * stride + j] =
wedge_mask_obl[s][1][WEDGE_OBLIQUE27][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[s][1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[s][1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
msk;
const int mskx = wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride + j];
wedge_mask_obl[s][0][WEDGE_HORIZONTAL][j * stride + i] = mskx;
wedge_mask_obl[s][1][WEDGE_VERTICAL][i * stride + j] =
wedge_mask_obl[s][1][WEDGE_HORIZONTAL][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - mskx;
}
}
}
}
// If the signs for the wedges for various blocksizes are
// inconsistent flip the sign flag. Do it only once for every
// wedge codebook.
static void init_wedge_signs() {
BLOCK_SIZE sb_type;
memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup));
for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES_ALL; ++sb_type) {
const int bw = block_size_wide[sb_type];
const int bh = block_size_high[sb_type];
const wedge_params_type wedge_params = wedge_params_lookup[sb_type];
const int wbits = wedge_params.bits;
const int wtypes = 1 << wbits;
int i, w;
if (wbits == 0) continue;
for (w = 0; w < wtypes; ++w) {
// Get the mask master, i.e. index [0]
const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type);
int avg = 0;
for (i = 0; i < bw; ++i) avg += mask[i];
for (i = 1; i < bh; ++i) avg += mask[i * MASK_MASTER_STRIDE];
avg = (avg + (bw + bh - 1) / 2) / (bw + bh - 1);
// Default sign of this wedge is 1 if the average < 32, 0 otherwise.
// If default sign is 1:
// If sign requested is 0, we need to flip the sign and return
// the complement i.e. index [1] instead. If sign requested is 1
// we need to flip the sign and return index [0] instead.
// If default sign is 0:
// If sign requested is 0, we need to return index [0] the master
// if sign requested is 1, we need to return the complement index [1]
// instead.
wedge_params.signflip[w] = (avg < 32);
// printf("%d[%d] = %d\n", sb_type, w, wedge_params.signflip[w]);
}
}
}
static void init_wedge_masks() {
uint8_t *dst = wedge_mask_buf;
BLOCK_SIZE bsize;
memset(wedge_masks, 0, sizeof(wedge_masks));
for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) {
const uint8_t *mask;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const wedge_params_type *wedge_params = &wedge_params_lookup[bsize];
const int wbits = wedge_params->bits;
const int wtypes = 1 << wbits;
int w;
if (wbits == 0) continue;
for (w = 0; w < wtypes; ++w) {
mask = get_wedge_mask_inplace(w, 0, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw,
bh);
wedge_params->masks[0][w] = dst;
dst += bw * bh;
mask = get_wedge_mask_inplace(w, 1, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw,
bh);
wedge_params->masks[1][w] = dst;
dst += bw * bh;
}
assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf));
}
}
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0
void av1_init_wedge_masks() {
init_wedge_master_masks();
init_wedge_signs();
init_wedge_masks();
}
#if CONFIG_SUPERTX
static void build_masked_compound_wedge_extend(
uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type,
int wedge_offset_x, int wedge_offset_y, int h, int w) {
const int subh = (2 << b_height_log2_lookup[sb_type]) == h;
const int subw = (2 << b_width_log2_lookup[sb_type]) == w;
const uint8_t *mask;
size_t mask_stride;
switch (comp_data->interinter_compound_type) {
case COMPOUND_WEDGE:
mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign,
sb_type, wedge_offset_x, wedge_offset_y);
mask_stride = MASK_MASTER_STRIDE;
break;
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG:
mask = comp_data->seg_mask;
mask_stride = block_size_wide[sb_type];
break;
#endif
default: assert(0); return;
}
aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride,
mask, (int)mask_stride, h, w, subh, subw);
}
#if CONFIG_HIGHBITDEPTH
static void build_masked_compound_wedge_extend_highbd(
uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride,
const uint8_t *src1_8, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type,
int wedge_offset_x, int wedge_offset_y, int h, int w, int bd) {
const int subh = (2 << b_height_log2_lookup[sb_type]) == h;
const int subw = (2 << b_width_log2_lookup[sb_type]) == w;
const uint8_t *mask;
size_t mask_stride;
switch (comp_data->interinter_compound_type) {
case COMPOUND_WEDGE:
mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign,
sb_type, wedge_offset_x, wedge_offset_y);
mask_stride = MASK_MASTER_STRIDE;
break;
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG:
mask = comp_data->seg_mask;
mask_stride = block_size_wide[sb_type];
break;
#endif
default: assert(0); return;
}
aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8,
src1_stride, mask, (int)mask_stride, h, w, subh,
subw, bd);
}
#endif // CONFIG_HIGHBITDEPTH
#else
#if CONFIG_CONVOLVE_ROUND
static void build_masked_compound_no_round(
CONV_BUF_TYPE *dst, int dst_stride, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << b_height_log2_lookup[sb_type]) == h;
const int subw = (2 << b_width_log2_lookup[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
aom_blend_a64_d32_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride,
mask, block_size_wide[sb_type], h, w, subh, subw);
}
#endif // CONFIG_CONVOLVE_ROUND
static void build_masked_compound(
uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << b_height_log2_lookup[sb_type]) == h;
const int subw = (2 << b_width_log2_lookup[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride,
mask, block_size_wide[sb_type], h, w, subh, subw);
}
#if CONFIG_HIGHBITDEPTH
static void build_masked_compound_highbd(
uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride,
const uint8_t *src1_8, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w, int bd) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << b_height_log2_lookup[sb_type]) == h;
const int subw = (2 << b_width_log2_lookup[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
// const uint8_t *mask =
// av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type);
aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8,
src1_stride, mask, block_size_wide[sb_type], h, w,
subh, subw, bd);
}
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_SUPERTX
void av1_make_masked_inter_predictor(
const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride,
const int subpel_x, const int subpel_y, const struct scale_factors *sf,
int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters,
int xs, int ys,
#if CONFIG_SUPERTX
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
int plane,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
MACROBLOCKD *xd) {
const MODE_INFO *mi = xd->mi[0];
const INTERINTER_COMPOUND_DATA comp_data = {
#if CONFIG_WEDGE
mi->mbmi.wedge_index,
mi->mbmi.wedge_sign,
#endif // CONFIG_WEDGE
#if CONFIG_COMPOUND_SEGMENT
mi->mbmi.mask_type,
xd->seg_mask,
#endif // CONFIG_COMPOUND_SEGMENT
mi->mbmi.interinter_compound_type
};
// We're going to call av1_make_inter_predictor to generate a prediction into
// a temporary buffer, then will blend that temporary buffer with that from
// the other reference.
//
// With CONFIG_CONVOLVE_ROUND, if the rounding mode is CONVOLVE_OPT_NO_ROUND
// then the predictions are at 32-bits, so we'll need 32 bits per
// pixel. Otherwise, we'll need up to 16 bits per pixel if
// CONFIG_HIGHBITDEPTH or just 8 otherwise.
#if CONFIG_CONVOLVE_ROUND
#define INTER_PRED_BYTES_PER_PIXEL 4
#elif CONFIG_HIGHBITDEPTH
#define INTER_PRED_BYTES_PER_PIXEL 2
#else
#define INTER_PRED_BYTES_PER_PIXEL 1
#endif
DECLARE_ALIGNED(16, uint8_t,
tmp_buf[INTER_PRED_BYTES_PER_PIXEL * MAX_SB_SQUARE]);
#undef INTER_PRED_BYTES_PER_PIXEL
#if CONFIG_HIGHBITDEPTH
uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
? CONVERT_TO_BYTEPTR(tmp_buf)
: tmp_buf;
const int bd = xd->bd;
#else
uint8_t *tmp_dst = tmp_buf;
const int bd = 8;
#endif
#if CONFIG_CONVOLVE_ROUND
const int tmp_buf_stride = MAX_SB_SIZE;
const int is_conv_no_round = conv_params->round == CONVOLVE_OPT_NO_ROUND;
CONV_BUF_TYPE *org_dst = conv_params->dst;
int org_dst_stride = conv_params->dst_stride;
CONV_BUF_TYPE *tmp_buf32 = (CONV_BUF_TYPE *)tmp_buf;
if (is_conv_no_round) {
conv_params->dst = tmp_buf32;
conv_params->dst_stride = tmp_buf_stride;
assert(conv_params->do_average == 0);
}
#endif // CONFIG_CONVOLVE_ROUND
// This will generate a prediction in tmp_buf for the second reference
av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x,
subpel_y, sf, w, h, conv_params, interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
warp_types, p_col, p_row, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
mi, 0,
#endif
xs, ys, xd);
#if CONFIG_COMPOUND_SEGMENT
if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) {
#if CONFIG_CONVOLVE_ROUND
if (is_conv_no_round) {
build_compound_seg_mask_d32(
comp_data.seg_mask, comp_data.mask_type, org_dst, org_dst_stride,
tmp_buf32, tmp_buf_stride, mi->mbmi.sb_type, h, w, conv_params, bd);
} else {
#endif // CONFIG_CONVOLVE_ROUND
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
build_compound_seg_mask_highbd(comp_data.seg_mask, comp_data.mask_type,
dst, dst_stride, tmp_dst, MAX_SB_SIZE,
mi->mbmi.sb_type, h, w, bd);
} else {
#endif
build_compound_seg_mask(comp_data.seg_mask, comp_data.mask_type, dst,
dst_stride, tmp_dst, MAX_SB_SIZE,
mi->mbmi.sb_type, h, w);
#if CONFIG_HIGHBITDEPTH
}
#endif
#if CONFIG_CONVOLVE_ROUND
}
#endif
}
#endif // CONFIG_COMPOUND_SEGMENT
#if CONFIG_SUPERTX
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_wedge_extend_highbd(
dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data,
mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
build_masked_compound_wedge_extend(
dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data,
mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w);
#else
#if CONFIG_CONVOLVE_ROUND
if (is_conv_no_round) {
build_masked_compound_no_round(org_dst, org_dst_stride, org_dst,
org_dst_stride, tmp_buf32, tmp_buf_stride,
&comp_data, mi->mbmi.sb_type, h, w);
const int convolve_rounding_bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
av1_highbd_convolve_rounding(org_dst, org_dst_stride, dst, dst_stride, w,
h, convolve_rounding_bits, xd->bd);
else
#endif
av1_convolve_rounding(org_dst, org_dst_stride, dst, dst_stride, w, h,
convolve_rounding_bits);
conv_params->do_post_rounding = 0;
} else {
#endif // CONFIG_CONVOLVE_ROUND
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_highbd(dst, dst_stride, dst, dst_stride, tmp_dst,
MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h,
w, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst,
MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h, w);
#if CONFIG_CONVOLVE_ROUND
}
#endif // CONFIG_CONVOLVE_ROUND
#endif // CONFIG_SUPERTX
#if CONFIG_COMPOUND_SEGMENT
(void)plane;
#endif // CONFIG_COMPOUND_SEGMENT
}
// TODO(sarahparker) av1_highbd_build_inter_predictor and
// av1_build_inter_predictor should be combined with
// av1_make_inter_predictor
#if CONFIG_HIGHBITDEPTH
void av1_highbd_build_inter_predictor(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref,
InterpFilters interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
const WarpTypesAllowed *warp_types, int p_col, int p_row,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
int plane, enum mv_precision precision, int x, int y,
const MACROBLOCKD *xd) {
const int is_q4 = precision == MV_PRECISION_Q4;
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
is_q4 ? src_mv->col : src_mv->col * 2 };
MV32 mv = av1_scale_mv(&mv_q4, x, y, sf);
mv.col += SCALE_EXTRA_OFF;
mv.row += SCALE_EXTRA_OFF;
const int subpel_x = mv.col & SCALE_SUBPEL_MASK;
const int subpel_y = mv.row & SCALE_SUBPEL_MASK;
ConvolveParams conv_params = get_conv_params(ref, ref, plane);
src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride +
(mv.col >> SCALE_SUBPEL_BITS);
av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
sf, w, h, &conv_params, interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
warp_types, p_col, p_row, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
xd->mi[0], 0,
#endif
sf->x_step_q4, sf->y_step_q4, xd);
}
#endif // CONFIG_HIGHBITDEPTH
void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, const MV *src_mv,
const struct scale_factors *sf, int w, int h,
ConvolveParams *conv_params,
InterpFilters interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
const WarpTypesAllowed *warp_types, int p_col,
int p_row, int plane, int ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
enum mv_precision precision, int x, int y,
const MACROBLOCKD *xd) {
const int is_q4 = precision == MV_PRECISION_Q4;
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
is_q4 ? src_mv->col : src_mv->col * 2 };
MV32 mv = av1_scale_mv(&mv_q4, x, y, sf);
mv.col += SCALE_EXTRA_OFF;
mv.row += SCALE_EXTRA_OFF;
const int subpel_x = mv.col & SCALE_SUBPEL_MASK;
const int subpel_y = mv.row & SCALE_SUBPEL_MASK;
src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride +
(mv.col >> SCALE_SUBPEL_BITS);
av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
sf, w, h, conv_params, interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
warp_types, p_col, p_row, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
xd->mi[0], 0,
#endif
sf->x_step_q4, sf->y_step_q4, xd);
}
typedef struct SubpelParams {
int xs;
int ys;
int subpel_x;
int subpel_y;
} SubpelParams;
static INLINE void build_inter_predictors(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
#if CONFIG_MOTION_VAR
const MODE_INFO *mi, int build_for_obmc,
#endif // CONFIG_MOTION_VAR
int block, int bw, int bh, int x, int y, int w, int h,
#if CONFIG_SUPERTX
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
#if !CONFIG_MOTION_VAR
const MODE_INFO *mi = xd->mi[0];
#endif // CONFIG_MOTION_VAR
int is_compound = has_second_ref(&mi->mbmi);
#if CONFIG_COMPOUND_SINGLEREF
int is_comp_mode_pred =
is_compound || is_inter_singleref_comp_mode(mi->mbmi.mode);
#endif // CONFIG_COMPOUND_SINGLEREF
int ref;
#if CONFIG_INTRABC
const int is_intrabc = is_intrabc_block(&mi->mbmi);
assert(IMPLIES(is_intrabc, !is_compound));
#endif // CONFIG_INTRABC
#if CONFIG_GLOBAL_MOTION
int is_global[2] = { 0, 0 };
for (ref = 0; ref < 1 + is_compound; ++ref) {
WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, block, wm->wmtype);
}
#if CONFIG_COMPOUND_SINGLEREF
if (!is_compound && is_comp_mode_pred) is_global[1] = is_global[0];
#endif // CONFIG_COMPOUND_SINGLEREF
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_CB4X4
(void)block;
(void)cm;
#endif
#if CONFIG_CHROMA_SUB8X8
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
int sub8x8_inter = bsize < BLOCK_8X8 && (ss_x || ss_y);
#if CONFIG_INTRABC
if (is_intrabc) {
sub8x8_inter = 0;
}
#endif
#if CONFIG_MOTION_VAR
sub8x8_inter = sub8x8_inter && !build_for_obmc;
#endif // CONFIG_MOTION_VAR
const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
if (sub8x8_inter) {
for (int row = row_start; row <= 0 && sub8x8_inter; ++row)
for (int col = col_start; col <= 0; ++col)
if (!is_inter_block(&xd->mi[row * xd->mi_stride + col]->mbmi))
sub8x8_inter = 0;
}
if (sub8x8_inter) {
// block size
const int b4_w = block_size_wide[bsize] >> ss_x;
const int b4_h = block_size_high[bsize] >> ss_y;
const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y);
const int b8_w = block_size_wide[plane_bsize] >> ss_x;
const int b8_h = block_size_high[plane_bsize] >> ss_y;
int idx, idy;
const int x_base = x;
const int y_base = y;
const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] };
int row = row_start;
for (idy = 0; idy < b8_h; idy += b4_h) {
int col = col_start;
for (idx = 0; idx < b8_w; idx += b4_w) {
MB_MODE_INFO *this_mbmi = &xd->mi[row * xd->mi_stride + col]->mbmi;
is_compound = has_second_ref(this_mbmi);
#if CONFIG_CONVOLVE_ROUND
DECLARE_ALIGNED(16, int32_t, tmp_dst[8 * 8]);
int tmp_dst_stride = 8;
assert(w <= 8 && h <= 8);
#endif // CONFIG_CONVOLVE_ROUND
#if CONFIG_CONVOLVE_ROUND
ConvolveParams conv_params =
get_conv_params_no_round(0, 0, plane, tmp_dst, tmp_dst_stride);
#else
ConvolveParams conv_params = get_conv_params(0, 0, plane);
#endif
struct buf_2d *const dst_buf = &pd->dst;
x = x_base + idx;
y = y_base + idy;
uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x;
// TODO(zoeliu): If single ref comp modes are considered here, a
// mismatch was caused. Need a further investigation.
for (ref = 0; ref < 1 + is_compound; ++ref) {
const RefBuffer *ref_buf =
&cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME];
const int c_offset = (mi_x + MI_SIZE * col_start) >> ss_x;
const int r_offset = (mi_y + MI_SIZE * row_start) >> ss_y;
pd->pre[ref].buf0 =
(plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer;
pd->pre[ref].buf =
pd->pre[ref].buf0 + scaled_buffer_offset(c_offset, r_offset,
ref_buf->buf->uv_stride,
&ref_buf->sf);
pd->pre[ref].width = ref_buf->buf->uv_crop_width;
pd->pre[ref].height = ref_buf->buf->uv_crop_height;
pd->pre[ref].stride = ref_buf->buf->uv_stride;
#if CONFIG_INTRABC
const struct scale_factors *const sf =
is_intrabc ? &xd->sf_identity : &ref_buf->sf;
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
#else
const struct scale_factors *const sf = &ref_buf->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
#endif // CONFIG_INTRABC
const MV mv = this_mbmi->mv[ref].as_mv;
uint8_t *pre;
int xs, ys, subpel_x, subpel_y;
const int is_scaled = av1_is_scaled(sf);
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
WarpTypesAllowed warp_types;
#if CONFIG_GLOBAL_MOTION
warp_types.global_warp_allowed = is_global[ref];
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_WARPED_MOTION
warp_types.local_warp_allowed =
this_mbmi->motion_mode == WARPED_CAUSAL;
#endif // CONFIG_WARPED_MOTION
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
if (is_scaled) {
int ssx = pd->subsampling_x;
int ssy = pd->subsampling_y;
int orig_pos_y = (mi_y << (SUBPEL_BITS - ssy)) + (y << SUBPEL_BITS);
orig_pos_y += mv.row * (1 << (1 - ssy));
int orig_pos_x = (mi_x << (SUBPEL_BITS - ssx)) + (x << SUBPEL_BITS);
orig_pos_x += mv.col * (1 << (1 - ssx));
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -((AOM_INTERP_EXTEND + bh) << SCALE_SUBPEL_BITS);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int left = -((AOM_INTERP_EXTEND + bw) << SCALE_SUBPEL_BITS);
const int right = (pre_buf->width + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
pre = pre_buf->buf0 +
(pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride +
(pos_x >> SCALE_SUBPEL_BITS);
subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_y = pos_y & SCALE_SUBPEL_MASK;
xs = sf->x_step_q4;
ys = sf->y_step_q4;
} else {
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
xs = ys = SCALE_SUBPEL_SHIFTS;
subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
pre = pre_buf->buf +
(y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride +
(x + (mv_q4.col >> SUBPEL_BITS));
}
conv_params.ref = ref;
conv_params.do_average = ref;
if (is_masked_compound_type(mi->mbmi.interinter_compound_type)) {
// masked compound type has its own average mechanism
conv_params.do_average = 0;
#if CONFIG_CONVOLVE_ROUND && CONFIG_COMPOUND_SEGMENT && CONFIG_SUPERTX
// TODO(angiebird): convolve_round does not support compound_segment
// when supertx is on
conv_params = get_conv_params(ref, 0, plane);
#endif
}
if (ref && is_masked_compound_type(mi->mbmi.interinter_compound_type))
av1_make_masked_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y,
sf, b4_w, b4_h, &conv_params, mi->mbmi.interp_filters, xs, ys,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
plane,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
&warp_types, (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
xd);
else
av1_make_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y,
sf, b4_w, b4_h, &conv_params, this_mbmi->interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
&warp_types, (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
mi, build_for_obmc,
#endif // CONFIG_MOTION_VAR
xs, ys, xd);
} // for (ref = 0; ref < 1 + is_compound; ++ref)
#if CONFIG_CONVOLVE_ROUND
if (conv_params.do_post_rounding) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
av1_highbd_convolve_rounding(
tmp_dst, tmp_dst_stride, dst, dst_buf->stride, b4_w, b4_h,
FILTER_BITS * 2 + is_compound - conv_params.round_0 -
conv_params.round_1,
xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_COMPOUND_SINGLEREF
av1_convolve_rounding(
tmp_dst, tmp_dst_stride, dst, dst_buf->stride, b4_w, b4_h,
FILTER_BITS * 2 + is_comp_mode_pred - conv_params.round_0 -
conv_params.round_1);
#else // !(CONFIG_COMPOUND_SINGLEREF)
av1_convolve_rounding(tmp_dst, tmp_dst_stride, dst, dst_buf->stride,
b4_w, b4_h,
FILTER_BITS * 2 + is_compound -
conv_params.round_0 - conv_params.round_1);
#endif // CONFIG_COMPOUND_SINGLEREF
}
#endif // CONFIG_CONVOLVE_ROUND
++col;
}
++row;
}
for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref];
return;
}
#else
(void)cm;
#endif // CONFIG_CHROMA_SUB8X8
{
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
uint8_t *pre[2];
SubpelParams subpel_params[2];
#if CONFIG_CONVOLVE_ROUND
DECLARE_ALIGNED(16, int32_t, tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE]);
#endif // CONFIG_CONVOLVE_ROUND
#if CONFIG_COMPOUND_SINGLEREF
for (ref = 0; ref < 1 + is_comp_mode_pred; ++ref)
#else
for (ref = 0; ref < 1 + is_compound; ++ref)
#endif // CONFIG_COMPOUND_SINGLEREF
{
#if CONFIG_INTRABC
const struct scale_factors *const sf =
is_intrabc ? &xd->sf_identity : &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
#else
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
#endif // CONFIG_INTRABC
#if CONFIG_CB4X4
const MV mv = mi->mbmi.mv[ref].as_mv;
#else
const MV mv =
#if CONFIG_MOTION_VAR
(mi->mbmi.sb_type < BLOCK_8X8 && !build_for_obmc)
?
#else
mi->mbmi.sb_type < BLOCK_8X8 ?
#endif
average_split_mvs(pd, mi, ref, block)
: mi->mbmi.mv[ref].as_mv;
#endif
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
// Note: The various inputs here have different units:
// * mi_x/mi_y are in units of luma pixels
// * mv is in units of 1/8 luma pixels
// * x/y are in units of pixels *in the current plane*
// Here we unify these into a q4-format position within the current
// plane, then project into the reference frame
int ssx = pd->subsampling_x;
int ssy = pd->subsampling_y;
int orig_pos_y = (mi_y << (SUBPEL_BITS - ssy)) + (y << SUBPEL_BITS);
orig_pos_y += mv.row * (1 << (1 - ssy));
int orig_pos_x = (mi_x << (SUBPEL_BITS - ssx)) + (x << SUBPEL_BITS);
orig_pos_x += mv.col * (1 << (1 - ssx));
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
// Clamp against the reference frame borders, with enough extension
// that we don't force the reference block to be partially onscreen.
const int top = -((AOM_INTERP_EXTEND + bh) << SCALE_SUBPEL_BITS);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int left = -((AOM_INTERP_EXTEND + bw) << SCALE_SUBPEL_BITS);
const int right = (pre_buf->width + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
pre[ref] = pre_buf->buf0 +
(pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride +
(pos_x >> SCALE_SUBPEL_BITS);
subpel_params[ref].subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params[ref].subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params[ref].xs = sf->x_step_q4;
subpel_params[ref].ys = sf->y_step_q4;
} else {
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
subpel_params[ref].subpel_x = (mv_q4.col & SUBPEL_MASK)
<< SCALE_EXTRA_BITS;
subpel_params[ref].subpel_y = (mv_q4.row & SUBPEL_MASK)
<< SCALE_EXTRA_BITS;
subpel_params[ref].xs = SCALE_SUBPEL_SHIFTS;
subpel_params[ref].ys = SCALE_SUBPEL_SHIFTS;
pre[ref] = pre_buf->buf +
(y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride +
(x + (mv_q4.col >> SUBPEL_BITS));
}
}
#if CONFIG_CONVOLVE_ROUND
ConvolveParams conv_params =
get_conv_params_no_round(ref, ref, plane, tmp_dst, MAX_SB_SIZE);
#else
ConvolveParams conv_params = get_conv_params(ref, ref, plane);
#endif // CONFIG_CONVOLVE_ROUND
#if CONFIG_COMPOUND_SINGLEREF
for (ref = 0; ref < 1 + is_comp_mode_pred; ++ref)
#else
for (ref = 0; ref < 1 + is_compound; ++ref)
#endif // CONFIG_COMPOUND_SINGLEREF
{
#if CONFIG_INTRABC
const struct scale_factors *const sf =
is_intrabc ? &xd->sf_identity : &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
#else
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
#endif // CONFIG_INTRABC
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
WarpTypesAllowed warp_types;
#if CONFIG_GLOBAL_MOTION
warp_types.global_warp_allowed = is_global[ref];
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_WARPED_MOTION
warp_types.local_warp_allowed = mi->mbmi.motion_mode == WARPED_CAUSAL;
#endif // CONFIG_WARPED_MOTION
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
conv_params.ref = ref;
conv_params.do_average = ref;
if (is_masked_compound_type(mi->mbmi.interinter_compound_type)) {
// masked compound type has its own average mechanism
conv_params.do_average = 0;
#if CONFIG_CONVOLVE_ROUND && CONFIG_COMPOUND_SEGMENT && CONFIG_SUPERTX
// TODO(angiebird): convolve_round does not support compound_segment
// when supertx is on
conv_params = get_conv_params(ref, 0, plane);
#endif
}
if (ref && is_masked_compound_type(mi->mbmi.interinter_compound_type))
av1_make_masked_inter_predictor(
pre[ref], pre_buf->stride, dst, dst_buf->stride,
subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h,
&conv_params, mi->mbmi.interp_filters, subpel_params[ref].xs,
subpel_params[ref].ys,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
plane,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
&warp_types, (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
xd);
else
av1_make_inter_predictor(
pre[ref], pre_buf->stride, dst, dst_buf->stride,
subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h,
&conv_params, mi->mbmi.interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
&warp_types, (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
mi, build_for_obmc,
#endif // CONFIG_MOTION_VAR
subpel_params[ref].xs, subpel_params[ref].ys, xd);
}
#if CONFIG_CONVOLVE_ROUND
// TODO(angiebird): This part needs optimization
if (conv_params.do_post_rounding) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
av1_highbd_convolve_rounding(
tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h,
FILTER_BITS * 2 + is_compound - conv_params.round_0 -
conv_params.round_1,
xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_COMPOUND_SINGLEREF
av1_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h,
FILTER_BITS * 2 + is_comp_mode_pred -
conv_params.round_0 - conv_params.round_1);
#else // !(CONFIG_COMPOUND_SINGLEREF)
av1_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h,
FILTER_BITS * 2 + is_compound -
conv_params.round_0 - conv_params.round_1);
#endif // CONFIG_COMPOUND_SINGLEREF
}
#endif // CONFIG_CONVOLVE_ROUND
}
}
static void build_inter_predictors_for_planes(const AV1_COMMON *cm,
MACROBLOCKD *xd, BLOCK_SIZE bsize,
int mi_row, int mi_col,
int plane_from, int plane_to) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
for (plane = plane_from; plane <= plane_to; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = pd->width;
const int bh = pd->height;
#if CONFIG_CB4X4
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
#endif
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !unify_bsize) {
const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);
const int pw = 8 >> (have_vsplit | pd->subsampling_x);
const int ph = 8 >> (have_hsplit | pd->subsampling_y);
int x, y;
assert(bp != PARTITION_NONE && bp < PARTITION_TYPES);
assert(bsize == BLOCK_8X8);
assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(cm, xd, plane,
#if CONFIG_MOTION_VAR
xd->mi[0], 0,
#endif // CONFIG_MOTION_VAR
y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
} else {
build_inter_predictors(cm, xd, plane,
#if CONFIG_MOTION_VAR
xd->mi[0], 0,
#endif // CONFIG_MOTION_VAR
0, bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
}
}
void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 0, 0);
#if CONFIG_INTERINTRA
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, NULL, NULL },
{ xd->plane[0].dst.stride, 0, 0 } };
if (!ctx) ctx = &default_ctx;
av1_build_interintra_predictors_sby(cm, xd, xd->plane[0].dst.buf,
xd->plane[0].dst.stride, ctx, bsize);
}
#else
(void)ctx;
#endif // CONFIG_INTERINTRA
}
void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 1,
MAX_MB_PLANE - 1);
#if CONFIG_INTERINTRA
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
BUFFER_SET default_ctx = {
{ NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf },
{ 0, xd->plane[1].dst.stride, xd->plane[2].dst.stride }
};
if (!ctx) ctx = &default_ctx;
av1_build_interintra_predictors_sbuv(
cm, xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf,
xd->plane[1].dst.stride, xd->plane[2].dst.stride, ctx, bsize);
}
#else
(void)ctx;
#endif // CONFIG_INTERINTRA
}
void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize);
av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, ctx, bsize);
}
void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize,
const YV12_BUFFER_CONFIG *src, int mi_row,
int mi_col) {
const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height,
src->uv_crop_height };
const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride,
src->uv_stride };
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &planes[i];
setup_pred_plane(&pd->dst, bsize, src->buffers[i], widths[i], heights[i],
strides[i], mi_row, mi_col, NULL, pd->subsampling_x,
pd->subsampling_y);
}
}
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf) {
if (src != NULL) {
int i;
uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer,
src->v_buffer };
const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height,
src->uv_crop_height };
const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride,
src->uv_stride };
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
setup_pred_plane(&pd->pre[idx], xd->mi[0]->mbmi.sb_type, buffers[i],
widths[i], heights[i], strides[i], mi_row, mi_col, sf,
pd->subsampling_x, pd->subsampling_y);
}
}
}
#if CONFIG_SUPERTX
#if CONFIG_CB4X4
static const uint8_t mask_4[4] = { 64, 52, 12, 0 };
static const uint8_t mask_4_uv[4] = { 64, 52, 12, 0 };
#endif // CONFIG_CB4X4
static const uint8_t mask_8[8] = { 64, 64, 62, 52, 12, 2, 0, 0 };
static const uint8_t mask_16[16] = { 63, 62, 60, 58, 55, 50, 43, 36,
28, 21, 14, 9, 6, 4, 2, 1 };
static const uint8_t mask_32[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63,
61, 57, 52, 45, 36, 28, 19, 12, 7, 3, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
static const uint8_t mask_8_uv[8] = { 64, 64, 62, 52, 12, 2, 0, 0 };
static const uint8_t mask_16_uv[16] = { 64, 64, 64, 64, 61, 53, 45, 36,
28, 19, 11, 3, 0, 0, 0, 0 };
static const uint8_t mask_32_uv[32] = { 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 60, 54, 46, 36,
28, 18, 10, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
static const uint8_t *get_supertx_mask(int length, int plane) {
switch (length) {
#if CONFIG_CB4X4
case 4: return plane ? mask_4_uv : mask_4;
#endif // CONFIG_CB4X4
case 8: return plane ? mask_8_uv : mask_8;
case 16: return plane ? mask_16_uv : mask_16;
case 32: return plane ? mask_32_uv : mask_32;
default: assert(0);
}
return NULL;
}
void av1_build_masked_inter_predictor_complex(
MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre,
int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition,
int plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int ssx = pd->subsampling_x;
const int ssy = pd->subsampling_y;
const int top_w = block_size_wide[top_bsize] >> ssx;
const int top_h = block_size_high[top_bsize] >> ssy;
const int w = block_size_wide[bsize] >> ssx;
const int h = block_size_high[bsize] >> ssy;
const int w_offset = ((mi_col - mi_col_ori) * MI_SIZE) >> ssx;
const int h_offset = ((mi_row - mi_row_ori) * MI_SIZE) >> ssy;
int w_remain, h_remain;
#if CONFIG_HIGHBITDEPTH
const int is_hdb = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_HIGHBITDEPTH
assert(bsize <= BLOCK_32X32);
assert(IMPLIES(plane == 0, ssx == 0));
assert(IMPLIES(plane == 0, ssy == 0));
switch (partition) {
case PARTITION_HORZ: {
const uint8_t *const mask = get_supertx_mask(h, ssy);
w_remain = top_w;
h_remain = top_h - h_offset - h;
dst += h_offset * dst_stride;
pre += h_offset * pre_stride;
#if CONFIG_HIGHBITDEPTH
if (is_hdb)
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre,
pre_stride, mask, h, top_w, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, pre_stride,
mask, h, top_w);
dst += h * dst_stride;
pre += h * pre_stride;
break;
}
case PARTITION_VERT: {
const uint8_t *const mask = get_supertx_mask(w, ssx);
w_remain = top_w - w_offset - w;
h_remain = top_h;
dst += w_offset;
pre += w_offset;
#if CONFIG_HIGHBITDEPTH
if (is_hdb)
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre,
pre_stride, mask, top_h, w, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, pre_stride,
mask, top_h, w);
dst += w;
pre += w;
break;
}
default: {
assert(0);
return;
}
}
if (w_remain == 0 || h_remain == 0) {
return;
}
#if CONFIG_HIGHBITDEPTH
if (is_hdb) {
dst = (uint8_t *)CONVERT_TO_SHORTPTR(dst);
pre = (const uint8_t *)CONVERT_TO_SHORTPTR(pre);
dst_stride *= 2;
pre_stride *= 2;
w_remain *= 2;
}
#endif // CONFIG_HIGHBITDEPTH
do {
memcpy(dst, pre, w_remain * sizeof(uint8_t));
dst += dst_stride;
pre += pre_stride;
} while (--h_remain);
}
void av1_build_inter_predictor_sb_sub8x8_extend(const AV1_COMMON *cm,
MACROBLOCKD *xd, int mi_row_ori,
int mi_col_ori, int mi_row,
int mi_col, int plane,
BLOCK_SIZE bsize, int block) {
// Prediction function used in supertx:
// Use the mv at current block (which is less than 8x8)
// to get prediction of a block located at (mi_row, mi_col) at size of bsize
// bsize can be larger than 8x8.
// block (0-3): the sub8x8 location of current block
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE;
const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE;
// For sub8x8 uv:
// Skip uv prediction in supertx except the first block (block = 0)
int max_plane = block ? 1 : MAX_MB_PLANE;
if (plane >= max_plane) return;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
build_inter_predictors(cm, xd, plane,
#if CONFIG_MOTION_VAR
xd->mi[0], 0,
#endif // CONFIG_MOTION_VAR
block, bw, bh, 0, 0, bw, bh, wedge_offset_x,
wedge_offset_y, mi_x, mi_y);
}
void av1_build_inter_predictor_sb_extend(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row_ori, int mi_col_ori,
int mi_row, int mi_col, int plane,
BLOCK_SIZE bsize) {
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE;
const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
build_inter_predictors(cm, xd, plane,
#if CONFIG_MOTION_VAR
xd->mi[0], 0,
#endif // CONFIG_MOTION_VAR
0, bw, bh, 0, 0, bw, bh, wedge_offset_x,
wedge_offset_y, mi_x, mi_y);
}
#endif // CONFIG_SUPERTX
#if CONFIG_MOTION_VAR
// obmc_mask_N[overlap_position]
static const uint8_t obmc_mask_1[1] = { 64 };
static const uint8_t obmc_mask_2[2] = { 45, 64 };
static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 };
static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 };
static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54,
56, 58, 60, 61, 64, 64, 64, 64 };
static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44,
45, 47, 48, 50, 51, 52, 53, 55,
56, 57, 58, 59, 60, 60, 61, 62,
64, 64, 64, 64, 64, 64, 64, 64 };
#if CONFIG_EXT_PARTITION
static const uint8_t obmc_mask_64[64] = {
33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44,
45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56,
56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62,
62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
#endif // CONFIG_EXT_PARTITION
const uint8_t *av1_get_obmc_mask(int length) {
switch (length) {
case 1: return obmc_mask_1;
case 2: return obmc_mask_2;
case 4: return obmc_mask_4;
case 8: return obmc_mask_8;
case 16: return obmc_mask_16;
case 32: return obmc_mask_32;
#if CONFIG_EXT_PARTITION
case 64: return obmc_mask_64;
#endif // CONFIG_EXT_PARTITION
default: assert(0); return NULL;
}
}
#if CONFIG_NCOBMC
// obmc_mask_flipN[overlap_position]
static const uint8_t obmc_mask_flip1[1] = { 55 };
static const uint8_t obmc_mask_flip2[2] = { 62, 45 };
static const uint8_t obmc_mask_flip4[4] = { 64, 59, 50, 39 };
static const uint8_t obmc_mask_flip8[8] = { 64, 63, 61, 57, 53, 48, 42, 36 };
static const uint8_t obmc_mask_flip16[16] = { 64, 64, 64, 63, 61, 60, 58, 56,
54, 52, 49, 46, 43, 40, 37, 34 };
static const uint8_t obmc_mask_flip32[32] = { 64, 64, 64, 64, 64, 63, 63, 62,
62, 61, 60, 60, 59, 58, 57, 56,
55, 53, 52, 51, 50, 48, 47, 45,
44, 43, 41, 40, 38, 36, 35, 33 };
#if CONFIG_EXT_PARTITION
static const uint8_t obmc_mask_flip64[64] = {
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 62, 62,
62, 62, 62, 61, 60, 60, 60, 60, 60, 59, 58, 58, 57, 57, 56, 56,
56, 55, 54, 53, 52, 52, 51, 51, 51, 50, 49, 48, 47, 47, 46, 45,
44, 44, 44, 43, 42, 41, 40, 40, 39, 38, 37, 36, 35, 35, 34, 33,
};
#endif // CONFIG_EXT_PARTITION
const uint8_t *av1_get_obmc_mask_flipped(int length) {
switch (length) {
case 1: return obmc_mask_flip1;
case 2: return obmc_mask_flip2;
case 4: return obmc_mask_flip4;
case 8: return obmc_mask_flip8;
case 16: return obmc_mask_flip16;
case 32: return obmc_mask_flip32;
#if CONFIG_EXT_PARTITION
case 64: return obmc_mask_flip64;
#endif // CONFIG_EXT_PARTITION
default: assert(0); return NULL;
}
}
#endif // CONFIG_NCOBMC
static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_rc,
uint8_t mi_hw, MODE_INFO *mi,
void *fun_ctxt) {
(void)xd;
(void)rel_mi_rc;
(void)mi_hw;
(void)mi;
++*(int *)fun_ctxt;
}
void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
mbmi->overlappable_neighbors[0] = 0;
mbmi->overlappable_neighbors[1] = 0;
if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return;
foreach_overlappable_nb_above(cm, xd, mi_col, INT_MAX, increment_int_ptr,
&mbmi->overlappable_neighbors[0]);
foreach_overlappable_nb_left(cm, xd, mi_row, INT_MAX, increment_int_ptr,
&mbmi->overlappable_neighbors[1]);
}
// HW does not support < 4x4 prediction. To limit the bandwidth requirement, for
// small blocks, only blend with neighbors from one side. If block-size of
// current plane is 4x4 or 8x4, the above neighbor (dir = 0) will be skipped. If
// it is 4x8, the left neighbor (dir = 1) will be skipped.
#define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable
int skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, const struct macroblockd_plane *pd,
int dir) {
assert(is_motion_variation_allowed_bsize(bsize));
BLOCK_SIZE bsize_plane =
ss_size_lookup[bsize][pd->subsampling_x][pd->subsampling_y];
#if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8
if (bsize_plane < BLOCK_4X4) return 1;
#endif
switch (bsize_plane) {
#if DISABLE_CHROMA_U8X8_OBMC
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return 1; break;
#else
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return dir == 0; break;
#endif
default: return 0;
}
}
struct obmc_inter_pred_ctxt {
uint8_t **adjacent;
int *adjacent_stride;
};
static INLINE void build_obmc_inter_pred_above(MACROBLOCKD *xd, int rel_mi_col,
uint8_t above_mi_width,
MODE_INFO *above_mi,
void *fun_ctxt) {
(void)above_mi;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
#if CONFIG_HIGHBITDEPTH
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_HIGHBITDEPTH
const int overlap =
AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x;
const int bh = overlap >> pd->subsampling_y;
const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x;
if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
const int dst_stride = pd->dst.stride;
uint8_t *const dst = &pd->dst.buf[plane_col];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col];
const uint8_t *const mask = av1_get_obmc_mask(bh);
#if CONFIG_HIGHBITDEPTH
if (is_hbd)
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bh, bw);
}
}
static INLINE void build_obmc_inter_pred_left(MACROBLOCKD *xd, int rel_mi_row,
uint8_t left_mi_height,
MODE_INFO *left_mi,
void *fun_ctxt) {
(void)left_mi;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
const int overlap =
AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
#if CONFIG_HIGHBITDEPTH
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_HIGHBITDEPTH
for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = overlap >> pd->subsampling_x;
const int bh = (left_mi_height * MI_SIZE) >> pd->subsampling_y;
const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y;
if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
const int dst_stride = pd->dst.stride;
uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride];
const uint8_t *const mask = av1_get_obmc_mask(bw);
#if CONFIG_HIGHBITDEPTH
if (is_hbd)
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bh, bw);
}
}
// This function combines motion compensated predictions that are generated by
// top/left neighboring blocks' inter predictors with the regular inter
// prediction. We assume the original prediction (bmc) is stored in
// xd->plane[].dst.buf
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *above[MAX_MB_PLANE],
int above_stride[MAX_MB_PLANE],
uint8_t *left[MAX_MB_PLANE],
int left_stride[MAX_MB_PLANE]) {
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
// handle above row
struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride };
foreach_overlappable_nb_above(cm, xd, mi_col,
max_neighbor_obmc[b_width_log2_lookup[bsize]],
build_obmc_inter_pred_above, &ctxt_above);
// handle left column
struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride };
foreach_overlappable_nb_left(cm, xd, mi_row,
max_neighbor_obmc[b_height_log2_lookup[bsize]],
build_obmc_inter_pred_left, &ctxt_left);
}
void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
if (is_interintra_pred(mbmi)) {
mbmi->ref_frame[1] = NONE_FRAME;
} else if (has_second_ref(mbmi) &&
is_masked_compound_type(mbmi->interinter_compound_type)) {
mbmi->interinter_compound_type = COMPOUND_AVERAGE;
mbmi->ref_frame[1] = NONE_FRAME;
#if CONFIG_COMPOUND_SINGLEREF
} else if (!has_second_ref(mbmi) &&
is_inter_singleref_comp_mode(mbmi->mode)) {
// mbmi->mode = compound_ref0_mode(mbmi->mode);
mbmi->mode = compound_ref1_mode(mbmi->mode);
assert(is_inter_singleref_mode(mbmi->mode));
mbmi->mv[0].as_int = mbmi->mv[1].as_int;
#endif // CONFIG_COMPOUND_SINGLEREF
}
if (has_second_ref(mbmi)) mbmi->ref_frame[1] = NONE_FRAME;
return;
}
struct build_prediction_ctxt {
const AV1_COMMON *cm;
int mi_row;
int mi_col;
uint8_t **tmp_buf;
int *tmp_width;
int *tmp_height;
int *tmp_stride;
int mb_to_far_edge;
};
static INLINE void build_prediction_by_above_pred(MACROBLOCKD *xd,
int rel_mi_col,
uint8_t above_mi_width,
MODE_INFO *above_mi,
void *fun_ctxt) {
MB_MODE_INFO *above_mbmi = &above_mi->mbmi;
const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type);
struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
const int above_mi_col = ctxt->mi_col + rel_mi_col;
MB_MODE_INFO backup_mbmi = *above_mbmi;
modify_neighbor_predictor_for_obmc(above_mbmi);
for (int j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col,
NULL, pd->subsampling_x, pd->subsampling_y);
}
#if CONFIG_COMPOUND_SINGLEREF
const int num_refs = 1 + is_inter_anyref_comp_mode(above_mbmi->mode);
#else
const int num_refs = 1 + has_second_ref(above_mbmi);
#endif
for (int ref = 0; ref < num_refs; ++ref) {
#if CONFIG_COMPOUND_SINGLEREF
const MV_REFERENCE_FRAME frame = has_second_ref(above_mbmi)
? above_mbmi->ref_frame[ref]
: above_mbmi->ref_frame[0];
#else
const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
#endif // CONFIG_COMPOUND_SINGLEREF
const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, ctxt->mi_row, above_mi_col,
&ref_buf->sf);
}
xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col);
xd->mb_to_right_edge = ctxt->mb_to_far_edge +
(xd->n8_w - rel_mi_col - above_mi_width) * MI_SIZE * 8;
int mi_x = above_mi_col << MI_SIZE_LOG2;
int mi_y = ctxt->mi_row << MI_SIZE_LOG2;
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
for (int j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x;
int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));
if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
build_inter_predictors(ctxt->cm, xd, j, above_mi, 1, 0, bw, bh, 0, 0, bw,
bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
*above_mbmi = backup_mbmi;
}
void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
if (!xd->up_available) return;
// Adjust mb_to_bottom_edge to have the correct value for the OBMC
// prediction block. This is half the height of the original block,
// except for 128-wide blocks, where we only use a height of 32.
int this_height = xd->n8_h * MI_SIZE;
int pred_height = AOMMIN(this_height / 2, 32);
xd->mb_to_bottom_edge += (this_height - pred_height) * 8;
struct build_prediction_ctxt ctxt = { cm, mi_row,
mi_col, tmp_buf,
tmp_width, tmp_height,
tmp_stride, xd->mb_to_right_edge };
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
foreach_overlappable_nb_above(cm, xd, mi_col,
max_neighbor_obmc[b_width_log2_lookup[bsize]],
build_prediction_by_above_pred, &ctxt);
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = ctxt.mb_to_far_edge;
xd->mb_to_bottom_edge -= (this_height - pred_height) * 8;
}
static INLINE void build_prediction_by_left_pred(MACROBLOCKD *xd,
int rel_mi_row,
uint8_t left_mi_height,
MODE_INFO *left_mi,
void *fun_ctxt) {
MB_MODE_INFO *left_mbmi = &left_mi->mbmi;
const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type);
struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
const int left_mi_row = ctxt->mi_row + rel_mi_row;
MB_MODE_INFO backup_mbmi = *left_mbmi;
modify_neighbor_predictor_for_obmc(left_mbmi);
for (int j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0,
NULL, pd->subsampling_x, pd->subsampling_y);
}
#if CONFIG_COMPOUND_SINGLEREF
const int num_refs = 1 + is_inter_anyref_comp_mode(left_mbmi->mode);
#else
const int num_refs = 1 + has_second_ref(left_mbmi);
#endif
for (int ref = 0; ref < num_refs; ++ref) {
#if CONFIG_COMPOUND_SINGLEREF
const MV_REFERENCE_FRAME frame = has_second_ref(left_mbmi)
? left_mbmi->ref_frame[ref]
: left_mbmi->ref_frame[0];
#else
const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
#endif // CONFIG_COMPOUND_SINGLEREF
const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, left_mi_row, ctxt->mi_col,
&ref_buf->sf);
}
xd->mb_to_top_edge = 8 * MI_SIZE * (-left_mi_row);
xd->mb_to_bottom_edge =
ctxt->mb_to_far_edge +
(xd->n8_h - rel_mi_row - left_mi_height) * MI_SIZE * 8;
int mi_x = ctxt->mi_col << MI_SIZE_LOG2;
int mi_y = left_mi_row << MI_SIZE_LOG2;
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
for (int j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y;
if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
build_inter_predictors(ctxt->cm, xd, j, left_mi, 1, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
*left_mbmi = backup_mbmi;
}
void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
if (!xd->left_available) return;
// Adjust mb_to_right_edge to have the correct value for the OBMC
// prediction block. This is half the width of the original block,
// except for 128-wide blocks, where we only use a width of 32.
int this_width = xd->n8_w * MI_SIZE;
int pred_width = AOMMIN(this_width / 2, 32);
xd->mb_to_right_edge += (this_width - pred_width) * 8;
struct build_prediction_ctxt ctxt = { cm, mi_row,
mi_col, tmp_buf,
tmp_width, tmp_height,
tmp_stride, xd->mb_to_bottom_edge };
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
foreach_overlappable_nb_left(cm, xd, mi_row,
max_neighbor_obmc[b_height_log2_lookup[bsize]],
build_prediction_by_left_pred, &ctxt);
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_right_edge -= (this_width - pred_width) * 8;
xd->mb_to_bottom_edge = ctxt.mb_to_far_edge;
}
void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col) {
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_HIGHBITDEPTH
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len);
} else {
#endif // CONFIG_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2;
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_width1, dst_height1, dst_stride1);
av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
dst_width2, dst_height2, dst_stride2);
av1_setup_dst_planes(xd->plane, xd->mi[0]->mbmi.sb_type,
get_frame_new_buffer(cm), mi_row, mi_col);
av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1,
dst_buf2, dst_stride2);
}
#if CONFIG_NCOBMC
void av1_build_prediction_by_bottom_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
#if CONFIG_DEBUG
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
#endif
int i, j, mi_step, ref;
const int ilimit = AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
int mb_to_right_edge_base = xd->mb_to_right_edge;
if (mi_row + xd->n8_h >= tile->mi_row_end ||
(mi_row + xd->n8_h) % MI_SIZE == 0 || (mi_row + xd->n8_h) >= cm->mi_rows)
return;
assert(bsize >= BLOCK_8X8);
xd->mb_to_top_edge -= xd->n8_h * 32;
for (i = 0; i < ilimit; i += mi_step) {
int mi_row_offset = xd->n8_h;
int mi_col_offset = i;
int mi_x, mi_y, bw, bh;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
MB_MODE_INFO backup_mbmi;
mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
backup_mbmi = *mbmi;
modify_neighbor_predictor_for_obmc(mbmi);
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, AOMMAX(mbmi->sb_type, BLOCK_8X8), tmp_buf[j],
tmp_width[j], tmp_height[j], tmp_stride[j],
(xd->n8_h >> 1), i, NULL, pd->subsampling_x,
pd->subsampling_y);
}
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + (xd->n8_h >> 1),
mi_col + i, &ref_buf->sf);
}
xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8);
xd->mb_to_right_edge =
mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64;
mi_x = (mi_col + i) << MI_SIZE_LOG2;
mi_y = (mi_row << MI_SIZE_LOG2) + xd->n8_h * (MI_SIZE >> 1);
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_x;
bh = (xd->n8_h << (MI_SIZE_LOG2 - 1)) >> pd->subsampling_y;
if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> (!have_vsplit);
const int num_4x4_h = 2 >> (!have_hsplit);
const int pw = 8 >> (have_vsplit + pd->subsampling_x);
int x, y;
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x) {
if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y != 0)
continue;
build_inter_predictors(cm, xd, j, mi, 1, y * 2 + x, bw, bh,
(4 * x) >> pd->subsampling_x,
xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0,
pw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
} else {
build_inter_predictors(cm, xd, j, mi, 1, 0, bw, bh, 0,
xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, bw,
bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
}
*mbmi = backup_mbmi;
}
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = mb_to_right_edge_base;
xd->mb_to_top_edge += xd->n8_h * 32;
}
void av1_build_prediction_by_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
const int tmp_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
#if CONFIG_DEBUG
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
#endif
int i, j, mi_step, ref;
const int ilimit = AOMMIN(xd->n8_h, cm->mi_rows - mi_row);
int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
if (mi_col + xd->n8_w >= tile->mi_col_end ||
(mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols)
return;
assert(bsize >= BLOCK_8X8);
xd->mb_to_left_edge -= xd->n8_w / 2 * MI_SIZE * 8;
for (i = 0; i < ilimit; i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = xd->n8_w;
int mi_x, mi_y, bw, bh;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
MB_MODE_INFO backup_mbmi;
mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
backup_mbmi = *mbmi;
modify_neighbor_predictor_for_obmc(mbmi);
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, AOMMAX(mbmi->sb_type, BLOCK_8X8), tmp_buf[j],
tmp_width[j], tmp_height[j], tmp_stride[j], i,
xd->n8_w >> 1, NULL, pd->subsampling_x,
pd->subsampling_y);
}
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i,
mi_col + (xd->n8_w >> 1), &ref_buf->sf);
}
xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8);
xd->mb_to_bottom_edge =
mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * MI_SIZE * 8;
mi_x = (mi_col << MI_SIZE_LOG2) + xd->n8_w * (MI_SIZE >> 1);
mi_y = (mi_row + i) << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = (xd->n8_w << (MI_SIZE_LOG2 - 1)) >> pd->subsampling_x;
bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> (!have_vsplit);
const int num_4x4_h = 2 >> (!have_hsplit);
const int ph = 8 >> (have_hsplit + pd->subsampling_y);
int x, y;
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x) {
if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x != 0)
continue;
build_inter_predictors(cm, xd, j, mi, 1, y * 2 + x, bw, bh,
xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0,
(4 * y) >> pd->subsampling_y, bw, ph,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
} else {
build_inter_predictors(cm, xd, j, mi, 1, 0, bw, bh,
xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0, 0,
bw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
}
*mbmi = backup_mbmi;
}
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
xd->mb_to_left_edge += xd->n8_w / 2 * MI_SIZE * 8;
}
// This function combines motion compensated predictions that is generated by
// bottom/right neighboring blocks' inter predictors with prediction in dst
// buffer.
void av1_merge_dst_bottom_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *bottom[MAX_MB_PLANE],
const int bottom_stride[MAX_MB_PLANE],
uint8_t *right[MAX_MB_PLANE],
const int right_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int plane, i, mi_step;
const int bottom_available = mi_row + xd->n8_h < tile->mi_row_end &&
(mi_row + xd->n8_h) % MI_SIZE != 0 &&
(mi_row + xd->n8_h) < cm->mi_rows;
#if CONFIG_HIGHBITDEPTH
int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_HIGHBITDEPTH
// handle bottom row
for (i = 0; bottom_available && i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
i += mi_step) {
int mi_row_offset = xd->n8_h;
int mi_col_offset = i;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
int overlap;
mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
overlap = num_4x4_blocks_high_lookup[bsize] << 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x;
const int bh = overlap >> pd->subsampling_y;
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[((i * MI_SIZE) >> pd->subsampling_x) +
(((xd->n8_h * MI_SIZE - overlap) * dst_stride) >>
pd->subsampling_y)];
const int tmp_stride = bottom_stride[plane];
const uint8_t *const tmp =
&bottom[plane][((i * MI_SIZE) >> pd->subsampling_x) +
(((xd->n8_h * MI_SIZE - overlap) * tmp_stride) >>
pd->subsampling_y)];
const uint8_t *const mask = av1_get_obmc_mask_flipped(bh);
#if CONFIG_HIGHBITDEPTH
if (is_hbd)
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bh, bw);
}
} // each mi in the bottom row
// handle right column
if (mi_col + xd->n8_w >= tile->mi_col_end ||
(mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols)
return;
for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = xd->n8_w;
int overlap;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
overlap = num_4x4_blocks_wide_lookup[bsize] << 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = overlap >> pd->subsampling_x;
const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y;
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[((i * MI_SIZE * dst_stride) >> pd->subsampling_y) +
((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)];
const int tmp_stride = right_stride[plane];
const uint8_t *const tmp =
&right[plane][((i * MI_SIZE * tmp_stride) >> pd->subsampling_y) +
((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)];
const uint8_t *const mask = av1_get_obmc_mask_flipped(bw);
#if CONFIG_HIGHBITDEPTH
if (is_hbd)
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bh, bw);
}
} // each mi in the right column
}
// This function generates 4 sided obmc. (1) Prediction blocks generated by
// bottom and right motion vectors are calculated. (2) Combine them with the
// original prediction block (which should be pre-stored in xd->plane[].dst.buf
// before calling this function). The results is updated in xd->plane[].dst.buf
// (3) Call causal obmc prediction function, which will generate left and above
// preds, and then merge them and xd->plane[].dst.buf.
void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col) {
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_HIGHBITDEPTH
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len);
} else {
#endif // CONFIG_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2;
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
// TODO(zoeliu): COMPOUND_SINGLEREF has not worked with NCOBMC yet.
av1_build_prediction_by_bottom_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_width1, dst_height1, dst_stride1);
av1_build_prediction_by_right_preds(cm, xd, mi_row, mi_col, dst_buf2,
dst_width2, dst_height2, dst_stride2);
av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
mi_col);
av1_merge_dst_bottom_right_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_stride1, dst_buf2, dst_stride2);
av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
mi_col);
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
mi_col);
}
#endif // CONFIG_NCOBMC
#if CONFIG_NCOBMC_ADAPT_WEIGHT
void reset_xd_boundary(MACROBLOCKD *xd, int mi_row, int bh, int mi_col, int bw,
int mi_rows, int mi_cols) {
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
}
void set_sb_mi_boundaries(const AV1_COMMON *const cm, MACROBLOCKD *const xd,
const int mi_row, const int mi_col) {
const BLOCK_SIZE sb = cm->sb_size;
const int num_mi_w = mi_size_wide[sb];
const int num_mi_h = mi_size_high[sb];
xd->sb_mi_bd.mi_col_begin = mi_col;
xd->sb_mi_bd.mi_row_begin = mi_row;
// points to the last mi
xd->sb_mi_bd.mi_col_end =
mi_col + num_mi_w > cm->mi_cols ? cm->mi_cols - 1 : mi_col + num_mi_w - 1;
xd->sb_mi_bd.mi_row_end =
mi_row + num_mi_h > cm->mi_rows ? cm->mi_rows - 1 : mi_row + num_mi_h - 1;
}
#endif
#endif // CONFIG_MOTION_VAR
/* clang-format off */
#if CONFIG_INTERINTRA
#if CONFIG_EXT_PARTITION
static const int ii_weights1d[MAX_SB_SIZE] = {
60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32,
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16,
16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8,
8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4,
4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
static int ii_size_scales[BLOCK_SIZES_ALL] = {
#if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8
32, 32, 32,
#endif
32, 16, 16, 16, 8, 8, 8, 4,
4, 4, 2, 2, 2, 1, 1, 1,
16, 16, 8, 8, 4, 4, 2, 2
};
#else
static const int ii_weights1d[MAX_SB_SIZE] = {
60, 56, 52, 48, 45, 42, 39, 37, 34, 32, 30, 28, 26, 24, 22, 21,
19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 10, 9, 8, 8, 7, 7,
6, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2,
2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
static int ii_size_scales[BLOCK_SIZES_ALL] = {
#if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8
16, 16, 16,
#endif
16, 8, 8, 8, 4, 4, 4,
2, 2, 2, 1, 1, 1,
8, 8, 4, 4, 2, 2,
};
/* clang-format on */
#endif // CONFIG_EXT_PARTITION
static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra,
int wedge_index, int wedge_sign,
BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint8_t *comppred, int compstride,
const uint8_t *interpred, int interstride,
const uint8_t *intrapred, int intrastride) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
int i, j;
if (use_wedge_interintra) {
if (is_interintra_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw;
const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh;
aom_blend_a64_mask(comppred, compstride, intrapred, intrastride,
interpred, interstride, mask, block_size_wide[bsize],
bh, bw, subh, subw);
}
return;
}
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[i * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A64(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[j * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A64(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_SMOOTH_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[(i < j ? i : j) * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A64(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
comppred[i * compstride + j] = AOM_BLEND_AVG(
intrapred[i * intrastride + j], interpred[i * interstride + j]);
}
}
break;
}
}
#if CONFIG_HIGHBITDEPTH
static void combine_interintra_highbd(
INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index,
int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint8_t *comppred8, int compstride, const uint8_t *interpred8,
int interstride, const uint8_t *intrapred8, int intrastride, int bd) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
int i, j;
uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8);
const uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8);
const uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8);
if (use_wedge_interintra) {
if (is_interintra_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh;
const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw;
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask,
block_size_wide[bsize], bh, bw, subh, subw, bd);
}
return;
}
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[i * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A64(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[j * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A64(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_SMOOTH_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[(i < j ? i : j) * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A64(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
comppred[i * compstride + j] = AOM_BLEND_AVG(
interpred[i * interstride + j], intrapred[i * intrastride + j]);
}
}
break;
}
}
#endif // CONFIG_HIGHBITDEPTH
void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
BUFFER_SET *ctx, uint8_t *dst,
int dst_stride) {
struct macroblockd_plane *const pd = &xd->plane[plane];
BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]);
PREDICTION_MODE mode =
interintra_to_intra_mode[xd->mi[0]->mbmi.interintra_mode];
av1_predict_intra_block(cm, xd, pd->width, pd->height, plane_bsize, mode,
ctx->plane[plane], ctx->stride[plane], dst,
dst_stride, 0, 0, plane);
}
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
const uint8_t *inter_pred, int inter_stride,
const uint8_t *intra_pred, int intra_stride) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
combine_interintra_highbd(
xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra,
xd->mi[0]->mbmi.interintra_wedge_index,
xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize,
xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred,
inter_stride, intra_pred, intra_stride, xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
combine_interintra(xd->mi[0]->mbmi.interintra_mode,
xd->mi[0]->mbmi.use_wedge_interintra,
xd->mi[0]->mbmi.interintra_wedge_index,
xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize,
xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
inter_pred, inter_stride, intra_pred, intra_stride);
}
void av1_build_interintra_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *ypred, int ystride,
BUFFER_SET *ctx, BLOCK_SIZE bsize) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(
cm, xd, bsize, 0, ctx, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, 0, ypred, ystride,
CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
return;
}
#endif // CONFIG_HIGHBITDEPTH
{
DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, ctx,
intrapredictor, MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, 0, ypred, ystride, intrapredictor,
MAX_SB_SIZE);
}
}
void av1_build_interintra_predictors_sbc(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *upred, int ustride,
BUFFER_SET *ctx, int plane,
BLOCK_SIZE bsize) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t, uintrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(
cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(uintrapredictor),
MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, upred, ustride,
CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE);
return;
}
#endif // CONFIG_HIGHBITDEPTH
{
DECLARE_ALIGNED(16, uint8_t, uintrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx,
uintrapredictor, MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, upred, ustride, uintrapredictor,
MAX_SB_SIZE);
}
}
void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *upred, uint8_t *vpred,
int ustride, int vstride,
BUFFER_SET *ctx, BLOCK_SIZE bsize) {
av1_build_interintra_predictors_sbc(cm, xd, upred, ustride, ctx, 1, bsize);
av1_build_interintra_predictors_sbc(cm, xd, vpred, vstride, ctx, 2, bsize);
}
void av1_build_interintra_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *ypred, uint8_t *upred,
uint8_t *vpred, int ystride, int ustride,
int vstride, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
av1_build_interintra_predictors_sby(cm, xd, ypred, ystride, ctx, bsize);
av1_build_interintra_predictors_sbuv(cm, xd, upred, vpred, ustride, vstride,
ctx, bsize);
}
#endif // CONFIG_INTERINTRA
// Builds the inter-predictor for the single ref case
// for use in the encoder to search the wedges efficiently.
static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane,
int block, int bw, int bh, int x,
int y, int w, int h, int mi_x,
int mi_y, int ref,
uint8_t *const ext_dst,
int ext_dst_stride) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi[0];
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
#if CONFIG_HIGHBITDEPTH
uint8_t *const dst =
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? CONVERT_TO_BYTEPTR(ext_dst)
: ext_dst) +
ext_dst_stride * y + x;
#else
uint8_t *const dst = ext_dst + ext_dst_stride * y + x;
#endif
const MV mv = mi->mbmi.sb_type < BLOCK_8X8
? average_split_mvs(pd, mi, ref, block)
: mi->mbmi.mv[ref].as_mv;
uint8_t *pre;
int xs, ys, subpel_x, subpel_y;
const int is_scaled = av1_is_scaled(sf);
ConvolveParams conv_params = get_conv_params(ref, 0, plane);
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
WarpTypesAllowed warp_types;
#if CONFIG_GLOBAL_MOTION
#if CONFIG_COMPOUND_SINGLEREF
WarpedMotionParams *const wm =
mi->mbmi.ref_frame[ref] > 0 ? &xd->global_motion[mi->mbmi.ref_frame[ref]]
: &xd->global_motion[mi->mbmi.ref_frame[0]];
#else // !(CONFIG_COMPOUND_SINGLEREF)
WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]];
#endif // CONFIG_COMPOUND_SINGLEREF
warp_types.global_warp_allowed = is_global_mv_block(mi, block, wm->wmtype);
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_WARPED_MOTION
warp_types.local_warp_allowed = mi->mbmi.motion_mode == WARPED_CAUSAL;
#endif // CONFIG_WARPED_MOTION
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
if (is_scaled) {
int ssx = pd->subsampling_x;
int ssy = pd->subsampling_y;
int orig_pos_y = (mi_y << (SUBPEL_BITS - ssy)) + (y << SUBPEL_BITS);
orig_pos_y += mv.row * (1 << (1 - ssy));
int orig_pos_x = (mi_x << (SUBPEL_BITS - ssx)) + (x << SUBPEL_BITS);
orig_pos_x += mv.col * (1 << (1 - ssx));
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -((AOM_INTERP_EXTEND + bh) << SCALE_SUBPEL_BITS);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int left = -((AOM_INTERP_EXTEND + bw) << SCALE_SUBPEL_BITS);
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride +
(pos_x >> SCALE_SUBPEL_BITS);
subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_y = pos_y & SCALE_SUBPEL_MASK;
xs = sf->x_step_q4;
ys = sf->y_step_q4;
} else {
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
xs = ys = SCALE_SUBPEL_SHIFTS;
subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
pre = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride +
(x + (mv_q4.col >> SUBPEL_BITS));
}
av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, subpel_x,
subpel_y, sf, w, h, &conv_params,
mi->mbmi.interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
&warp_types, (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
mi, 0,
#endif
xs, ys, xd);
}
void av1_build_inter_predictors_for_planes_single_buf(
MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row,
int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, &xd->plane[plane]);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
int x, y;
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
assert(bsize == BLOCK_8X8);
#if CONFIG_COMPOUND_SINGLEREF
assert(has_second_ref(&xd->mi[0]->mbmi) ||
!is_inter_singleref_comp_mode(xd->mi[0]->mbmi.mode));
#endif // CONFIG_COMPOUND_SINGLEREF
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors_single_buf(
xd, plane, y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4, mi_x, mi_y, ref,
ext_dst[plane], ext_dst_stride[plane]);
} else {
build_inter_predictors_single_buf(xd, plane, 0, bw, bh, 0, 0, bw, bh,
mi_x, mi_y, ref, ext_dst[plane],
ext_dst_stride[plane]);
}
}
}
static void build_wedge_inter_predictor_from_buf(
MACROBLOCKD *xd, int plane, int x, int y, int w, int h,
#if CONFIG_SUPERTX
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1,
int ext_dst_stride1) {
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int is_compound = has_second_ref(mbmi);
MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
const INTERINTER_COMPOUND_DATA comp_data = {
#if CONFIG_WEDGE
mbmi->wedge_index,
mbmi->wedge_sign,
#endif // CONFIG_WEDGE
#if CONFIG_COMPOUND_SEGMENT
mbmi->mask_type,
xd->seg_mask,
#endif // CONFIG_COMPOUND_SEGMENT
mbmi->interinter_compound_type
};
#if CONFIG_COMPOUND_SINGLEREF
if ((is_compound || is_inter_singleref_comp_mode(mbmi->mode)) &&
is_masked_compound_type(mbmi->interinter_compound_type))
#else // !CONFIG_COMPOUND_SINGLEREF
if (is_compound && is_masked_compound_type(mbmi->interinter_compound_type))
#endif // CONFIG_COMPOUND_SINGLEREF
{
#if CONFIG_COMPOUND_SEGMENT
if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_compound_seg_mask_highbd(
comp_data.seg_mask, comp_data.mask_type,
CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, mbmi->sb_type, h, w,
xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
build_compound_seg_mask(comp_data.seg_mask, comp_data.mask_type,
ext_dst0, ext_dst_stride0, ext_dst1,
ext_dst_stride1, mbmi->sb_type, h, w);
}
#endif // CONFIG_COMPOUND_SEGMENT
#if CONFIG_SUPERTX
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_wedge_extend_highbd(
dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, &comp_data,
mbmi->sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
build_masked_compound_wedge_extend(
dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1,
ext_dst_stride1, &comp_data, mbmi->sb_type, wedge_offset_x,
wedge_offset_y, h, w);
#else // !CONFIG_SUPERTX
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_highbd(
dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, &comp_data,
mbmi->sb_type, h, w, xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0,
ext_dst1, ext_dst_stride1, &comp_data,
mbmi->sb_type, h, w);
#endif // CONFIG_SUPERTX
} else {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
dst, dst_buf->stride, NULL, 0, NULL, 0, w, h,
xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL,
0, NULL, 0, w, h);
}
}
void av1_build_wedge_inter_predictor_from_buf(
MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to,
#if CONFIG_SUPERTX
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3],
int ext_dst_stride1[3]) {
int plane;
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, &xd->plane[plane]);
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
int x, y;
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_wedge_inter_predictor_from_buf(
xd, plane, 4 * x, 4 * y, 4, 4,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane],
ext_dst_stride1[plane]);
} else {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
build_wedge_inter_predictor_from_buf(
xd, plane, 0, 0, bw, bh,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane],
ext_dst_stride1[plane]);
}
}
}
#if CONFIG_NCOBMC_ADAPT_WEIGHT
void alloc_ncobmc_pred_buffer(MACROBLOCKD *const xd) {
int i;
// allocate interpolated prediction buffer
for (i = 0; i < MAX_MB_PLANE; ++i) {
xd->ncobmc_pred_buf[i] = (uint8_t *)malloc(sizeof(uint8_t) * MAX_SB_SQUARE);
av1_zero_array(xd->ncobmc_pred_buf[i], MAX_SB_SQUARE);
xd->ncobmc_pred_buf_stride[i] = MAX_SB_SIZE;
}
}
void free_ncobmc_pred_buffer(MACROBLOCKD *const xd) {
for (int i = 0; i < MAX_MB_PLANE; ++i) free(xd->ncobmc_pred_buf[i]);
}
void get_pred_from_intrpl_buf(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize, int plane) {
uint8_t *dst = xd->plane[plane].dst.buf;
int ds = xd->plane[plane].dst.stride;
int ss_x = xd->plane[plane].subsampling_x;
int ss_y = xd->plane[plane].subsampling_y;
const int ip_wide = mi_size_wide[bsize] * MI_SIZE >> ss_x;
const int ip_high = mi_size_high[bsize] * MI_SIZE >> ss_y;
// relative coordinates of this MI in the superblock
int row_rlt = (mi_row - xd->sb_mi_bd.mi_row_begin) * MI_SIZE >> ss_y;
int col_rlt = (mi_col - xd->sb_mi_bd.mi_col_begin) * MI_SIZE >> ss_x;
int s = xd->ncobmc_pred_buf_stride[plane];
int r, c;
for (r = 0; r < ip_high; ++r) {
for (c = 0; c < ip_wide; ++c) {
dst[r * ds + c] =
xd->ncobmc_pred_buf[plane][(r + row_rlt) * s + c + col_rlt];
}
}
}
// scaling factors for ncobmc kernels
#define KERNEL_SCALE_LOG 14
void build_ncobmc_intrpl_pred(const AV1_COMMON *const cm, MACROBLOCKD *xd,
int plane, int pxl_row, int pxl_col,
BLOCK_SIZE bsize, uint8_t *preds[][MAX_MB_PLANE],
int stride[MAX_MB_PLANE], // pred buffer strides
int mode) {
const ADAPT_OVERLAP_BLOCK ao_block = adapt_overlap_block_lookup[bsize];
const NCOBMC_KERNELS *const knls = &cm->ncobmc_kernels[ao_block][mode];
const int wide = mi_size_wide[bsize] * MI_SIZE;
const int high = mi_size_high[bsize] * MI_SIZE;
const int s = stride[plane];
const int ss_x = xd->plane[plane].subsampling_x;
const int ss_y = xd->plane[plane].subsampling_y;
int row_offset = (pxl_row - xd->sb_mi_bd.mi_row_begin * MI_SIZE) >> ss_y;
int col_offset = (pxl_col - xd->sb_mi_bd.mi_col_begin * MI_SIZE) >> ss_x;
int dst_stride = xd->ncobmc_pred_buf_stride[plane];
int dst_offset = row_offset * dst_stride + col_offset;
#if CONFIG_HIGHBITDEPTH
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#else
const int is_hbd = 0;
#endif // CONFIG_HIGHBITDEPTH
int r, c, k_r, k_c;
int64_t tmp;
for (r = 0; r < (high >> ss_x); ++r) {
for (c = 0; c < (wide >> ss_y); ++c) {
int pos = r * s + c;
int q_tmp;
uint8_t val;
// TODO(weitinglin): find out the optimal sub-sampling patterns for
// chroma
k_r = (r << ss_y) + ss_y;
k_c = (c << ss_x) + ss_x;
if (ss_y && k_r >= high) k_r -= 1;
if (ss_x && k_c >= wide) k_c -= 1;
if (!is_hbd) {
uint8_t *tmp_p[4];
int i;
for (i = 0; i < 4; ++i) tmp_p[i] = preds[i][plane];
tmp = 0;
for (i = 0; i < 4; ++i)
tmp += knls->KERNEL[i][k_r][k_c] * tmp_p[i][pos];
} else {
uint16_t *tmp_p[4];
int i;
for (i = 0; i < 4; ++i) tmp_p[i] = CONVERT_TO_SHORTPTR(preds[i][plane]);
tmp = 0;
for (i = 0; i < 4; ++i)
tmp += knls->KERNEL[i][k_r][k_c] * tmp_p[i][pos];
}
q_tmp = (tmp <= 0) ? 0 : ROUND_POWER_OF_TWO(tmp, KERNEL_SCALE_LOG);
val = clip_pixel(q_tmp);
xd->ncobmc_pred_buf[plane][r * dst_stride + c + dst_offset] = val;
assert(r * dst_stride + c + dst_offset < MAX_SB_SQUARE);
}
}
}
void get_pred_by_horz_neighbor(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize,
int mi_row, int mi_col,
uint8_t *dst_buf[MAX_MB_PLANE],
int dst_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
const int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
const int mb_to_top_edge_base = xd->mb_to_top_edge;
const int mb_to_left_edge_base = xd->mb_to_left_edge;
const int mb_to_right_edge_base = xd->mb_to_right_edge;
int overlappable_offset = -1;
const int mi_nums = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row);
int i, j, mi_step, ref;
xd->mb_to_right_edge += mi_size_wide[bsize] * MI_SIZE * 4;
// build from left neighbors
for (i = 0; i < mi_nums; i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = -1;
int mi_x, mi_y, bw, bh;
MODE_INFO *left_mi;
MB_MODE_INFO *left_mbmi, backup_mbmi;
BLOCK_SIZE l_bsize;
// create the original prediction if offset exceeds the boundary
if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) mi_col_offset = 0;
left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
left_mbmi = &left_mi->mbmi;
l_bsize = AOMMAX(left_mbmi->sb_type, BLOCK_8X8);
mi_step = AOMMIN(xd->n8_h, mi_size_high[l_bsize]);
// reset the mi if it is not overlappble
if (!is_neighbor_overlappable(left_mbmi)) {
// use left_mbmi->sb_type instead of l_bsize to handle
// sub8x8 cases
int search_mi_step = mi_size_high[left_mbmi->sb_type];
while (!is_neighbor_overlappable(left_mbmi)) {
mi_row_offset += search_mi_step;
if (mi_row_offset < mi_nums) {
left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
left_mbmi = &left_mi->mbmi;
search_mi_step = mi_size_high[left_mbmi->sb_type];
} else {
if (overlappable_offset >= 0) {
mi_row_offset = overlappable_offset;
} else {
mi_row_offset = 0;
mi_col_offset = 0;
}
left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
left_mbmi = &left_mi->mbmi;
break;
}
}
} else {
// update the available overlappable mi
overlappable_offset = mi_row_offset;
}
backup_mbmi = *left_mbmi;
modify_neighbor_predictor_for_obmc(left_mbmi);
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, l_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE,
dst_stride[j], i, 0, NULL, pd->subsampling_x,
pd->subsampling_y);
}
#if CONFIG_COMPOUND_SINGLEREF
for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(left_mbmi->mode));
++ref) {
const MV_REFERENCE_FRAME frame = has_second_ref(left_mbmi)
? left_mbmi->ref_frame[ref]
: left_mbmi->ref_frame[0];
#else // !(CONFIG_COMPOUND_SINGLEREF)
for (ref = 0; ref < 1 + has_second_ref(left_mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
#endif // CONFIG_COMPOUND_SINGLEREF
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col,
&ref_buf->sf);
}
xd->mb_to_top_edge = -((mi_row + i) * MI_SIZE * 8);
xd->mb_to_bottom_edge =
mb_to_bottom_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8;
mi_x = mi_col << MI_SIZE_LOG2;
mi_y = (mi_row + i) << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = mi_size_wide[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x;
bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
build_inter_predictors(cm, xd, j, left_mi, 1, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
*left_mbmi = backup_mbmi;
}
// build from right neighbors
xd->mb_to_right_edge = mb_to_right_edge_base;
xd->mb_to_left_edge -= mi_size_wide[bsize] * MI_SIZE * 4;
overlappable_offset = -1;
for (i = 0; i < mi_nums; i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = mi_size_wide[bsize];
int mi_x, mi_y, bw, bh;
int mi_col_shift = mi_size_wide[bsize] >> 1;
MODE_INFO *right_mi;
MB_MODE_INFO *right_mbmi, backup_mbmi;
BLOCK_SIZE r_bsize;
// create the original prediction if offset exceeds the boundary
if (mi_col + mi_col_offset > xd->sb_mi_bd.mi_col_end) mi_col_offset = 0;
right_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
right_mbmi = &right_mi->mbmi;
r_bsize = AOMMAX(right_mbmi->sb_type, BLOCK_8X8);
mi_step = AOMMIN(mi_nums, mi_size_high[r_bsize]);
if (!is_neighbor_overlappable(right_mbmi)) {
int search_mi_step = mi_size_high[right_mbmi->sb_type];
while (!is_neighbor_overlappable(right_mbmi)) {
mi_row_offset += search_mi_step;
if (mi_row_offset < mi_nums) {
right_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
right_mbmi = &right_mi->mbmi;
search_mi_step = mi_size_high[right_mbmi->sb_type];
} else {
if (overlappable_offset >= 0) {
mi_row_offset = overlappable_offset;
} else {
mi_row_offset = 0;
mi_col_offset = 0;
}
right_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
right_mbmi = &right_mi->mbmi;
break;
}
}
} else {
overlappable_offset = mi_row_offset;
}
backup_mbmi = *right_mbmi;
modify_neighbor_predictor_for_obmc(right_mbmi);
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, r_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE,
dst_stride[j], i, mi_col_shift, NULL, pd->subsampling_x,
pd->subsampling_y);
}
#if CONFIG_COMPOUND_SINGLEREF
for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(right_mbmi->mode));
++ref) {
const MV_REFERENCE_FRAME frame = has_second_ref(right_mbmi)
? right_mbmi->ref_frame[ref]
: right_mbmi->ref_frame[0];
#else // !(CONFIG_COMPOUND_SINGLEREF)
for (ref = 0; ref < 1 + has_second_ref(right_mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = right_mbmi->ref_frame[ref];
#endif // CONFIG_COMPOUND_SINGLEREF
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i,
mi_col + mi_col_shift, &ref_buf->sf);
}
xd->mb_to_top_edge = -((mi_row + i) * MI_SIZE * 8);
xd->mb_to_bottom_edge =
mb_to_bottom_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8;
mi_x = (mi_col + mi_col_shift) << MI_SIZE_LOG2;
mi_y = (mi_row + i) << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = mi_size_wide[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x;
bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
build_inter_predictors(cm, xd, j, right_mi, 1, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
*right_mbmi = backup_mbmi;
}
// restore the boundaries
xd->mb_to_top_edge = mb_to_top_edge_base;
xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
xd->mb_to_left_edge = mb_to_left_edge_base;
xd->mb_to_right_edge = mb_to_right_edge_base;
}
void get_pred_by_vert_neighbor(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize,
int mi_row, int mi_col,
uint8_t *dst_buf[MAX_MB_PLANE],
int dst_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
const int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
const int mb_to_top_edge_base = xd->mb_to_top_edge;
const int mb_to_left_edge_base = xd->mb_to_left_edge;
const int mb_to_right_edge_base = xd->mb_to_right_edge;
int overlappable_offset = -1;
const int mi_nums = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col);
int i, j, mi_step, ref;
xd->mb_to_bottom_edge += mi_nums * MI_SIZE * 4;
// build from above neighbors
for (i = 0; i < mi_nums; i += mi_step) {
int mi_row_offset = -1;
int mi_col_offset = i;
int mi_x, mi_y, bw, bh;
MODE_INFO *above_mi;
MB_MODE_INFO *above_mbmi, backup_mbmi;
BLOCK_SIZE a_bsize;
// create the original prediction if offset exceeds the boundary
if (mi_row <= tile->mi_row_start) mi_row_offset = 0;
above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
above_mbmi = &above_mi->mbmi;
a_bsize = AOMMAX(above_mbmi->sb_type, BLOCK_8X8);
mi_step = AOMMIN(mi_nums, mi_size_high[a_bsize]);
// reset the mi if it is not overlappble
if (!is_neighbor_overlappable(above_mbmi)) {
int search_mi_step = mi_size_high[above_mbmi->sb_type];
// backward search
while (!is_neighbor_overlappable(above_mbmi)) {
mi_col_offset += search_mi_step;
if (mi_col_offset < mi_nums) {
above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
above_mbmi = &above_mi->mbmi;
search_mi_step = mi_size_high[above_mbmi->sb_type];
} else {
if (overlappable_offset >= 0) {
mi_col_offset = overlappable_offset;
} else {
mi_row_offset = 0;
mi_col_offset = 0;
}
above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
above_mbmi = &above_mi->mbmi;
break;
}
}
} else {
// update the available overlappable mi
overlappable_offset = mi_col_offset;
}
backup_mbmi = *above_mbmi;
modify_neighbor_predictor_for_obmc(above_mbmi);
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, a_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE,
dst_stride[j], 0, i, NULL, pd->subsampling_x,
pd->subsampling_y);
}
#if CONFIG_COMPOUND_SINGLEREF
for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(above_mbmi->mode));
++ref) {
const MV_REFERENCE_FRAME frame = has_second_ref(above_mbmi)
? above_mbmi->ref_frame[ref]
: above_mbmi->ref_frame[0];
#else // !(CONFIG_COMPOUND_SINGLEREF)
for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
#endif // CONFIG_COMPOUND_SINGLEREF
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i,
&ref_buf->sf);
}
xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8);
xd->mb_to_right_edge =
mb_to_right_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8;
mi_x = (mi_col + i) << MI_SIZE_LOG2;
mi_y = mi_row << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bh = mi_size_high[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x;
bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
build_inter_predictors(cm, xd, j, above_mi, 1, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
*above_mbmi = backup_mbmi;
}
// build from bottom neighbors
xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
xd->mb_to_top_edge -= mi_size_high[bsize] * MI_SIZE * 4;
overlappable_offset = -1;
for (i = 0; i < mi_nums; i += mi_step) {
int mi_row_offset = mi_size_high[bsize];
int mi_col_offset = i;
int mi_x, mi_y, bw, bh;
int mi_row_shift = mi_size_high[bsize] >> 1;
MODE_INFO *bottom_mi;
MB_MODE_INFO *bottom_mbmi, backup_mbmi;
BLOCK_SIZE b_bsize;
// create the original prediction if offset exceeds the boundary
if (mi_row + mi_row_offset > xd->sb_mi_bd.mi_row_end) mi_row_offset = 0;
bottom_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
bottom_mbmi = &bottom_mi->mbmi;
b_bsize = AOMMAX(bottom_mbmi->sb_type, BLOCK_8X8);
mi_step = AOMMIN(mi_nums, mi_size_high[b_bsize]);
// reset the mi if it is not overlappble
if (!is_neighbor_overlappable(bottom_mbmi)) {
int search_mi_step = mi_size_high[bottom_mbmi->sb_type];
while (!is_neighbor_overlappable(bottom_mbmi)) {
mi_col_offset += search_mi_step;
if (mi_col_offset < mi_nums) {
bottom_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
bottom_mbmi = &bottom_mi->mbmi;
search_mi_step = mi_size_high[bottom_mbmi->sb_type];
} else {
if (overlappable_offset >= 0) {
mi_col_offset = overlappable_offset;
} else {
mi_col_offset = 0;
mi_row_offset = 0;
}
bottom_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
bottom_mbmi = &bottom_mi->mbmi;
break;
}
}
} else {
// update the available overlappable mi
overlappable_offset = mi_col_offset;
}
backup_mbmi = *bottom_mbmi;
modify_neighbor_predictor_for_obmc(bottom_mbmi);
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, b_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE,
dst_stride[j], mi_row_shift, i, NULL, pd->subsampling_x,
pd->subsampling_y);
}
#if CONFIG_COMPOUND_SINGLEREF
for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(bottom_mbmi->mode));
++ref) {
const MV_REFERENCE_FRAME frame = has_second_ref(bottom_mbmi)
? bottom_mbmi->ref_frame[ref]
: bottom_mbmi->ref_frame[0];
#else // !(CONFIG_COMPOUND_SINGLEREF)
for (ref = 0; ref < 1 + has_second_ref(bottom_mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = bottom_mbmi->ref_frame[ref];
#endif // CONFIG_COMPOUND_SINGLEREF
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + mi_row_shift,
mi_col + i, &ref_buf->sf);
}
xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8);
xd->mb_to_right_edge =
mb_to_right_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8;
mi_x = (mi_col + i) << MI_SIZE_LOG2;
mi_y = (mi_row + mi_row_shift) << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bh = mi_size_high[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x;
bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
build_inter_predictors(cm, xd, j, bottom_mi, 1, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
*bottom_mbmi = backup_mbmi;
}
// restore the boundaries
xd->mb_to_top_edge = mb_to_top_edge_base;
xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
xd->mb_to_left_edge = mb_to_left_edge_base;
xd->mb_to_right_edge = mb_to_right_edge_base;
}
void get_pred_by_corner_neighbor(const AV1_COMMON *cm, MACROBLOCKD *xd,
int bsize, int mi_row, int mi_col,
uint8_t *dst_buf[MAX_MB_PLANE],
int dst_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
const int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
const int mb_to_top_edge_base = xd->mb_to_top_edge;
const int mb_to_left_edge_base = xd->mb_to_left_edge;
const int mb_to_right_edge_base = xd->mb_to_right_edge;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
// location of four mi sources
const int mi_row_offsets[4] = { -1, -1, mi_high, mi_high };
const int mi_col_offsets[4] = { -1, mi_wide, -1, mi_wide };
MB_MODE_INFO backup_mbmi;
int mi_x, mi_y, bh, bw;
int i, j, ref;
assert(bsize >= BLOCK_8X8);
for (i = 0; i < 4; ++i) {
int mi_row_offset = mi_row_offsets[i];
int mi_col_offset = mi_col_offsets[i];
MODE_INFO *corner_mi;
MB_MODE_INFO *corner_mbmi;
if (mi_col + mi_col_offset < tile->mi_col_start ||
mi_col + mi_col_offset > xd->sb_mi_bd.mi_col_end)
mi_col_offset = 0;
if (mi_row + mi_row_offset < tile->mi_row_start ||
mi_row + mi_row_offset > xd->sb_mi_bd.mi_row_end)
mi_row_offset = 0;
corner_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
corner_mbmi = &corner_mi->mbmi;
// reset the mi if it is not overlappble
if (!is_neighbor_overlappable(corner_mbmi)) {
mi_row_offset = 0;
mi_col_offset = 0;
corner_mi = xd->mi[0];
corner_mbmi = &corner_mi->mbmi;
}
backup_mbmi = *corner_mbmi;
modify_neighbor_predictor_for_obmc(corner_mbmi);
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, BLOCK_8X8, dst_buf[j], MAX_SB_SIZE,
MAX_SB_SIZE, dst_stride[j], (i / 2) * (mi_high >> 1),
(i % 2) * (mi_wide >> 1), NULL, pd->subsampling_x,
pd->subsampling_y);
}
#if CONFIG_COMPOUND_SINGLEREF
for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(corner_mbmi->mode));
++ref) {
const MV_REFERENCE_FRAME frame = has_second_ref(corner_mbmi)
? corner_mbmi->ref_frame[ref]
: corner_mbmi->ref_frame[0];
#else
for (ref = 0; ref < 1 + has_second_ref(corner_mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = corner_mbmi->ref_frame[ref];
#endif
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf,
mi_row + (i / 2) * (mi_high >> 1),
mi_col + (i % 2) * (mi_wide >> 1), &ref_buf->sf);
}
// adjust mi boundaries of this block
xd->mb_to_bottom_edge =
mb_to_bottom_edge_base + (1 - (i / 2)) * mi_high * MI_SIZE * 4;
xd->mb_to_top_edge = mb_to_top_edge_base - (i / 2) * mi_high * MI_SIZE * 4;
xd->mb_to_right_edge =
mb_to_right_edge_base + (1 - (i % 2)) * mi_wide * MI_SIZE * 4;
xd->mb_to_left_edge =
mb_to_left_edge_base - (i % 2) * mi_wide * MI_SIZE * 4;
mi_x = (mi_col + (i % 2) * mi_wide / 2) << MI_SIZE_LOG2;
mi_y = (mi_row + (i / 2) * mi_high / 2) << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bh = mi_high << MI_SIZE_LOG2 >> (pd->subsampling_x + 1);
bw = mi_wide << MI_SIZE_LOG2 >> (pd->subsampling_y + 1);
build_inter_predictors(cm, xd, j, corner_mi, 1, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
*corner_mbmi = backup_mbmi;
}
// restore the boundaries
xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
xd->mb_to_top_edge = mb_to_top_edge_base;
xd->mb_to_right_edge = mb_to_right_edge_base;
xd->mb_to_left_edge = mb_to_left_edge_base;
}
// get the stitched extra prediction for this block
void av1_get_ext_blk_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize,
int mi_row, int mi_col,
uint8_t *dst_buf[][MAX_MB_PLANE],
int dst_stride[MAX_MB_PLANE]) {
get_pred_by_corner_neighbor(cm, xd, bsize, mi_row, mi_col, dst_buf[0],
dst_stride);
get_pred_by_vert_neighbor(cm, xd, bsize, mi_row, mi_col, dst_buf[1],
dst_stride);
get_pred_by_horz_neighbor(cm, xd, bsize, mi_row, mi_col, dst_buf[2],
dst_stride);
}
void av1_get_ori_blk_pred(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize,
int mi_row, int mi_col,
uint8_t *dst_buf[MAX_MB_PLANE],
int dst_stride[MAX_MB_PLANE]) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
int mi_x = mi_col << MI_SIZE_LOG2;
int mi_y = mi_row << MI_SIZE_LOG2;
int bw = block_size_wide[bsize];
int bh = block_size_high[bsize];
int i, ref;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
setup_pred_plane(&pd->dst, BLOCK_8X8, dst_buf[i], MAX_SB_SIZE, MAX_SB_SIZE,
dst_stride[i], 0, 0, NULL, pd->subsampling_x,
pd->subsampling_y);
}
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if (!av1_is_valid_scale(&ref_buf->sf))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, &ref_buf->sf);
}
for (i = 0; i < MAX_MB_PLANE; ++i) {
const struct macroblockd_plane *pd = &xd->plane[i];
build_inter_predictors(cm, xd, i, mi, 1, 0, bw >> pd->subsampling_x,
bh >> pd->subsampling_y, 0, 0,
bw >> pd->subsampling_x, bh >> pd->subsampling_y,
#if CONFIG_SUPERTX
0, 0,
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
}
#endif
|