summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/cfl.c
blob: d66a989ad67e7b8916d1ab46e67eea3e12a66328 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/onyxc_int.h"

#include "aom/internal/aom_codec_internal.h"

void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm, int subsampling_x,
              int subsampling_y) {
  if (!((subsampling_x == 0 && subsampling_y == 0) ||
        (subsampling_x == 1 && subsampling_y == 1))) {
    aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                       "Only 4:4:4 and 4:2:0 are currently supported by CfL");
  }
  memset(&cfl->y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE);
  cfl->subsampling_x = subsampling_x;
  cfl->subsampling_y = subsampling_y;
}

// CfL computes its own block-level DC_PRED. This is required to compute both
// alpha_cb and alpha_cr before the prediction are computed.
void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
  const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U];
  const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V];

  const uint8_t *const dst_u = pd_u->dst.buf;
  const uint8_t *const dst_v = pd_v->dst.buf;

  const int dst_u_stride = pd_u->dst.stride;
  const int dst_v_stride = pd_v->dst.stride;

  const int block_width = (plane_bsize != BLOCK_INVALID)
                              ? block_size_wide[plane_bsize]
                              : tx_size_wide[tx_size];
  const int block_height = (plane_bsize != BLOCK_INVALID)
                               ? block_size_high[plane_bsize]
                               : tx_size_high[tx_size];

  // Number of pixel on the top and left borders.
  const int num_pel = block_width + block_height;

  int sum_u = 0;
  int sum_v = 0;

  // Match behavior of build_intra_predictors (reconintra.c) at superblock
  // boundaries:
  //
  // 127 127 127 .. 127 127 127 127 127 127
  // 129  A   B  ..  Y   Z
  // 129  C   D  ..  W   X
  // 129  E   F  ..  U   V
  // 129  G   H  ..  S   T   T   T   T   T
  // ..

  // TODO(ltrudeau) replace this with DC_PRED assembly
  if (xd->up_available && xd->mb_to_right_edge >= 0) {
    for (int i = 0; i < block_width; i++) {
      sum_u += dst_u[-dst_u_stride + i];
      sum_v += dst_v[-dst_v_stride + i];
    }
  } else {
    sum_u = block_width * 127;
    sum_v = block_width * 127;
  }

  if (xd->left_available && xd->mb_to_bottom_edge >= 0) {
    for (int i = 0; i < block_height; i++) {
      sum_u += dst_u[i * dst_u_stride - 1];
      sum_v += dst_v[i * dst_v_stride - 1];
    }
  } else {
    sum_u += block_height * 129;
    sum_v += block_height * 129;
  }

  xd->cfl->dc_pred[CFL_PRED_U] = (sum_u + (num_pel >> 1)) / num_pel;
  xd->cfl->dc_pred[CFL_PRED_V] = (sum_v + (num_pel >> 1)) / num_pel;
}

// Predict the current transform block using CfL.
// it is assumed that dst points at the start of the transform block
void cfl_predict_block(const CFL_CTX *cfl, uint8_t *dst, int dst_stride,
                       int row, int col, TX_SIZE tx_size, int dc_pred) {
  const int tx_block_width = tx_size_wide[tx_size];
  const int tx_block_height = tx_size_high[tx_size];

  // TODO(ltrudeau) implement alpha
  // Place holder for alpha
  const double alpha = 0;
  const double y_avg = cfl_load(cfl, dst, dst_stride, row, col, tx_size);

  for (int j = 0; j < tx_block_height; j++) {
    for (int i = 0; i < tx_block_width; i++) {
      dst[i] = (uint8_t)(alpha * y_avg + dc_pred + 0.5);
    }
    dst += dst_stride;
  }
}

void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row,
               int col, TX_SIZE tx_size) {
  const int tx_width = tx_size_wide[tx_size];
  const int tx_height = tx_size_high[tx_size];
  const int tx_off_log2 = tx_size_wide_log2[0];

  // Store the input into the CfL pixel buffer
  uint8_t *y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2];

  // Check that we remain inside the pixel buffer.
  assert(MAX_SB_SIZE * (row + tx_height - 1) + col + tx_width - 1 <
         MAX_SB_SQUARE);

  for (int j = 0; j < tx_height; j++) {
    for (int i = 0; i < tx_width; i++) {
      y_pix[i] = input[i];
    }
    y_pix += MAX_SB_SIZE;
    input += input_stride;
  }

  // Store the surface of the pixel buffer that was written to, this way we
  // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
  // frame boundary)
  if (col == 0 && row == 0) {
    cfl->y_width = tx_width;
    cfl->y_height = tx_height;
  } else {
    cfl->y_width = OD_MAXI((col << tx_off_log2) + tx_width, cfl->y_width);
    cfl->y_height = OD_MAXI((row << tx_off_log2) + tx_height, cfl->y_height);
  }
}

// Load from the CfL pixel buffer into output
double cfl_load(const CFL_CTX *cfl, uint8_t *output, int output_stride, int row,
                int col, TX_SIZE tx_size) {
  const int tx_width = tx_size_wide[tx_size];
  const int tx_height = tx_size_high[tx_size];
  const int sub_x = cfl->subsampling_x;
  const int sub_y = cfl->subsampling_y;
  const int tx_off_log2 = tx_size_wide_log2[0];

  const uint8_t *y_pix;

  int diff_width = 0;
  int diff_height = 0;

  int pred_row_offset = 0;
  int output_row_offset = 0;
  int top_left, bot_left;

  // TODO(ltrudeau) add support for 4:2:2
  if (sub_y == 0 && sub_x == 0) {
    y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2];
    int uv_width = (col << tx_off_log2) + tx_width;
    diff_width = uv_width - cfl->y_width;
    int uv_height = (row << tx_off_log2) + tx_width;
    diff_height = uv_height - cfl->y_height;
    for (int j = 0; j < tx_height; j++) {
      for (int i = 0; i < tx_width; i++) {
        // In 4:4:4, pixels match 1 to 1
        output[output_row_offset + i] = y_pix[pred_row_offset + i];
      }
      pred_row_offset += MAX_SB_SIZE;
      output_row_offset += output_stride;
    }
  } else if (sub_y == 1 && sub_x == 1) {
    y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << (tx_off_log2 + sub_y)];
    int uv_width = ((col << tx_off_log2) + tx_width) << sub_x;
    diff_width = (uv_width - cfl->y_width) >> sub_x;
    int uv_height = ((row << tx_off_log2) + tx_width) << sub_y;
    diff_height = (uv_height - cfl->y_height) >> sub_y;
    for (int j = 0; j < tx_height; j++) {
      for (int i = 0; i < tx_width; i++) {
        top_left = (pred_row_offset + i) << sub_y;
        bot_left = top_left + MAX_SB_SIZE;
        // In 4:2:0, average pixels in 2x2 grid
        output[output_row_offset + i] = OD_SHR_ROUND(
            y_pix[top_left] + y_pix[top_left + 1]        // Top row
                + y_pix[bot_left] + y_pix[bot_left + 1]  // Bottom row
            ,
            2);
      }
      pred_row_offset += MAX_SB_SIZE;
      output_row_offset += output_stride;
    }
  } else {
    assert(0);  // Unsupported chroma subsampling
  }
  // Due to frame boundary issues, it is possible that the total area of
  // covered by Chroma exceeds that of Luma. When this happens, we write over
  // the broken data by repeating the last columns and/or rows.
  //
  // Note that in order to manage the case where both rows and columns
  // overrun,
  // we apply rows first. This way, when the rows overrun the bottom of the
  // frame, the columns will be copied over them.
  if (diff_width > 0) {
    int last_pixel;
    output_row_offset = tx_width - diff_width;

    for (int j = 0; j < tx_height; j++) {
      last_pixel = output_row_offset - 1;
      for (int i = 0; i < diff_width; i++) {
        output[output_row_offset + i] = output[last_pixel];
      }
      output_row_offset += output_stride;
    }
  }

  if (diff_height > 0) {
    output_row_offset = diff_height * output_stride;
    const int last_row_offset = output_row_offset - output_stride;
    for (int j = 0; j < diff_height; j++) {
      for (int i = 0; i < tx_width; i++) {
        output[output_row_offset + i] = output[last_row_offset + i];
      }
      output_row_offset += output_stride;
    }
  }

  int avg = 0;
  output_row_offset = 0;
  for (int j = 0; j < tx_height; j++) {
    for (int i = 0; i < tx_width; i++) {
      avg += output[output_row_offset + i];
    }
    output_row_offset += output_stride;
  }
  return avg / (double)(tx_width * tx_height);
}