1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/onyxc_int.h"
#include "aom/internal/aom_codec_internal.h"
void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm) {
if (!((cm->subsampling_x == 0 && cm->subsampling_y == 0) ||
(cm->subsampling_x == 1 && cm->subsampling_y == 1))) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Only 4:4:4 and 4:2:0 are currently supported by CfL");
}
memset(&cfl->y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE);
cfl->subsampling_x = cm->subsampling_x;
cfl->subsampling_y = cm->subsampling_y;
cfl->are_parameters_computed = 0;
}
// Load from the CfL pixel buffer into output
static void cfl_load(CFL_CTX *cfl, int row, int col, int width, int height) {
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int off_log2 = tx_size_wide_log2[0];
// TODO(ltrudeau) convert to uint16 to add HBD support
const uint8_t *y_pix;
// TODO(ltrudeau) convert to uint16 to add HBD support
uint8_t *output = cfl->y_down_pix;
int pred_row_offset = 0;
int output_row_offset = 0;
// TODO(ltrudeau) should be faster to downsample when we store the values
// TODO(ltrudeau) add support for 4:2:2
if (sub_y == 0 && sub_x == 0) {
y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << off_log2];
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
// In 4:4:4, pixels match 1 to 1
output[output_row_offset + i] = y_pix[pred_row_offset + i];
}
pred_row_offset += MAX_SB_SIZE;
output_row_offset += MAX_SB_SIZE;
}
} else if (sub_y == 1 && sub_x == 1) {
y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << (off_log2 + sub_y)];
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
int top_left = (pred_row_offset + i) << sub_y;
int bot_left = top_left + MAX_SB_SIZE;
// In 4:2:0, average pixels in 2x2 grid
output[output_row_offset + i] = OD_SHR_ROUND(
y_pix[top_left] + y_pix[top_left + 1] // Top row
+ y_pix[bot_left] + y_pix[bot_left + 1] // Bottom row
,
2);
}
pred_row_offset += MAX_SB_SIZE;
output_row_offset += MAX_SB_SIZE;
}
} else {
assert(0); // Unsupported chroma subsampling
}
// Due to frame boundary issues, it is possible that the total area of
// covered by Chroma exceeds that of Luma. When this happens, we write over
// the broken data by repeating the last columns and/or rows.
//
// Note that in order to manage the case where both rows and columns
// overrun,
// we apply rows first. This way, when the rows overrun the bottom of the
// frame, the columns will be copied over them.
const int uv_width = (col << off_log2) + width;
const int uv_height = (row << off_log2) + height;
const int diff_width = uv_width - (cfl->y_width >> sub_x);
const int diff_height = uv_height - (cfl->y_height >> sub_y);
if (diff_width > 0) {
int last_pixel;
output_row_offset = width - diff_width;
for (int j = 0; j < height; j++) {
last_pixel = output_row_offset - 1;
for (int i = 0; i < diff_width; i++) {
output[output_row_offset + i] = output[last_pixel];
}
output_row_offset += MAX_SB_SIZE;
}
}
if (diff_height > 0) {
output_row_offset = (height - diff_height) * MAX_SB_SIZE;
const int last_row_offset = output_row_offset - MAX_SB_SIZE;
for (int j = 0; j < diff_height; j++) {
for (int i = 0; i < width; i++) {
output[output_row_offset + i] = output[last_row_offset + i];
}
output_row_offset += MAX_SB_SIZE;
}
}
}
// CfL computes its own block-level DC_PRED. This is required to compute both
// alpha_cb and alpha_cr before the prediction are computed.
static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) {
const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U];
const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V];
const uint8_t *const dst_u = pd_u->dst.buf;
const uint8_t *const dst_v = pd_v->dst.buf;
const int dst_u_stride = pd_u->dst.stride;
const int dst_v_stride = pd_v->dst.stride;
CFL_CTX *const cfl = xd->cfl;
// Compute DC_PRED until block boundary. We can't assume the neighbor will use
// the same transform size.
const int width = max_block_wide(xd, plane_bsize, AOM_PLANE_U)
<< tx_size_wide_log2[0];
const int height = max_block_high(xd, plane_bsize, AOM_PLANE_U)
<< tx_size_high_log2[0];
// Number of pixel on the top and left borders.
const int num_pel = width + height;
int sum_u = 0;
int sum_v = 0;
// Match behavior of build_intra_predictors (reconintra.c) at superblock
// boundaries:
//
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
#if CONFIG_CHROMA_SUB8X8
if (xd->chroma_up_available && xd->mb_to_right_edge >= 0) {
#else
if (xd->up_available && xd->mb_to_right_edge >= 0) {
#endif
// TODO(ltrudeau) replace this with DC_PRED assembly
for (int i = 0; i < width; i++) {
sum_u += dst_u[-dst_u_stride + i];
sum_v += dst_v[-dst_v_stride + i];
}
} else {
sum_u = width * 127;
sum_v = width * 127;
}
#if CONFIG_CHROMA_SUB8X8
if (xd->chroma_left_available && xd->mb_to_bottom_edge >= 0) {
#else
if (xd->left_available && xd->mb_to_bottom_edge >= 0) {
#endif
for (int i = 0; i < height; i++) {
sum_u += dst_u[i * dst_u_stride - 1];
sum_v += dst_v[i * dst_v_stride - 1];
}
} else {
sum_u += height * 129;
sum_v += height * 129;
}
// TODO(ltrudeau) Because of max_block_wide and max_block_high, num_pel will
// not be a power of two. So these divisions will have to use a lookup table.
cfl->dc_pred[CFL_PRED_U] = (sum_u + (num_pel >> 1)) / num_pel;
cfl->dc_pred[CFL_PRED_V] = (sum_v + (num_pel >> 1)) / num_pel;
}
static void cfl_compute_averages(CFL_CTX *cfl, TX_SIZE tx_size) {
const int width = cfl->uv_width;
const int height = cfl->uv_height;
const int tx_height = tx_size_high[tx_size];
const int tx_width = tx_size_wide[tx_size];
const int stride = width >> tx_size_wide_log2[tx_size];
const int block_row_stride = MAX_SB_SIZE << tx_size_high_log2[tx_size];
const int num_pel_log2 =
(tx_size_high_log2[tx_size] + tx_size_wide_log2[tx_size]);
// TODO(ltrudeau) Convert to uint16 for HBD support
const uint8_t *y_pix = cfl->y_down_pix;
// TODO(ltrudeau) Convert to uint16 for HBD support
const uint8_t *t_y_pix;
int *averages_q3 = cfl->y_averages_q3;
cfl_load(cfl, 0, 0, width, height);
int a = 0;
for (int b_j = 0; b_j < height; b_j += tx_height) {
for (int b_i = 0; b_i < width; b_i += tx_width) {
int sum = 0;
t_y_pix = y_pix;
for (int t_j = 0; t_j < tx_height; t_j++) {
for (int t_i = b_i; t_i < b_i + tx_width; t_i++) {
sum += t_y_pix[t_i];
}
t_y_pix += MAX_SB_SIZE;
}
averages_q3[a++] =
((sum << 3) + (1 << (num_pel_log2 - 1))) >> num_pel_log2;
// Loss is never more than 1/2 (in Q3)
assert(fabs((double)averages_q3[a - 1] -
(sum / ((double)(1 << num_pel_log2))) * (1 << 3)) <= 0.5);
}
assert(a % stride == 0);
y_pix += block_row_stride;
}
cfl->y_averages_stride = stride;
assert(a <= MAX_NUM_TXB);
}
static INLINE int cfl_idx_to_alpha(int alpha_idx, CFL_SIGN_TYPE alpha_sign,
CFL_PRED_TYPE pred_type) {
const int mag_idx = cfl_alpha_codes[alpha_idx][pred_type];
const int abs_alpha_q3 = cfl_alpha_mags_q3[mag_idx];
if (alpha_sign == CFL_SIGN_POS) {
return abs_alpha_q3;
} else {
assert(abs_alpha_q3 != 0);
assert(cfl_alpha_mags_q3[mag_idx + 1] == -abs_alpha_q3);
return -abs_alpha_q3;
}
}
// Predict the current transform block using CfL.
void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
int row, int col, TX_SIZE tx_size, int plane) {
CFL_CTX *const cfl = xd->cfl;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
// CfL parameters must be computed before prediction can be done.
assert(cfl->are_parameters_computed == 1);
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
// TODO(ltrudeau) Convert to uint16 to support HBD
const uint8_t *y_pix = cfl->y_down_pix;
const int dc_pred = cfl->dc_pred[plane - 1];
const int alpha_q3 = cfl_idx_to_alpha(
mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs[plane - 1], plane - 1);
const int avg_row =
(row << tx_size_wide_log2[0]) >> tx_size_wide_log2[tx_size];
const int avg_col =
(col << tx_size_high_log2[0]) >> tx_size_high_log2[tx_size];
const int avg_q3 =
cfl->y_averages_q3[cfl->y_averages_stride * avg_row + avg_col];
cfl_load(cfl, row, col, width, height);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
// TODO(ltrudeau) add support for HBD.
dst[i] =
clip_pixel(get_scaled_luma_q0(alpha_q3, y_pix[i], avg_q3) + dc_pred);
}
dst += dst_stride;
y_pix += MAX_SB_SIZE;
}
}
void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row,
int col, TX_SIZE tx_size, BLOCK_SIZE bsize) {
const int tx_width = tx_size_wide[tx_size];
const int tx_height = tx_size_high[tx_size];
const int tx_off_log2 = tx_size_wide_log2[0];
#if CONFIG_CHROMA_SUB8X8
if (bsize < BLOCK_8X8) {
// Transform cannot be smaller than
assert(tx_width >= 4);
assert(tx_height >= 4);
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
// For chroma_sub8x8, the CfL prediction for prediction blocks smaller than
// 8X8 uses non chroma reference reconstructed luma pixels. To do so, we
// combine the 4X4 non chroma reference into the CfL pixel buffers based on
// their row and column index.
// The following code is adapted from the is_chroma_reference() function.
if ((cfl->mi_row &
0x01) // Increment the row index for odd indexed 4X4 blocks
&& (bh == 4) // But not for 4X8 blocks
&& cfl->subsampling_y) { // And only when chroma is subsampled
assert(row == 0);
row++;
}
if ((cfl->mi_col &
0x01) // Increment the col index for odd indexed 4X4 blocks
&& (bw == 4) // But not for 8X4 blocks
&& cfl->subsampling_x) { // And only when chroma is subsampled
assert(col == 0);
col++;
}
}
#else
(void)bsize;
#endif
// Invalidate current parameters
cfl->are_parameters_computed = 0;
// Store the surface of the pixel buffer that was written to, this way we
// can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
// frame boundary)
if (col == 0 && row == 0) {
cfl->y_width = tx_width;
cfl->y_height = tx_height;
} else {
cfl->y_width = OD_MAXI((col << tx_off_log2) + tx_width, cfl->y_width);
cfl->y_height = OD_MAXI((row << tx_off_log2) + tx_height, cfl->y_height);
}
// Check that we will remain inside the pixel buffer.
assert((row << tx_off_log2) + tx_height <= MAX_SB_SIZE);
assert((col << tx_off_log2) + tx_width <= MAX_SB_SIZE);
// Store the input into the CfL pixel buffer
uint8_t *y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2];
// TODO(ltrudeau) Speedup possible by moving the downsampling to cfl_store
for (int j = 0; j < tx_height; j++) {
for (int i = 0; i < tx_width; i++) {
y_pix[i] = input[i];
}
y_pix += MAX_SB_SIZE;
input += input_stride;
}
}
void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) {
CFL_CTX *const cfl = xd->cfl;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
// Do not call cfl_compute_parameters multiple time on the same values.
assert(cfl->are_parameters_computed == 0);
#if CONFIG_CHROMA_SUB8X8
const BLOCK_SIZE plane_bsize = AOMMAX(
BLOCK_4X4, get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U]));
#else
const BLOCK_SIZE plane_bsize =
get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U]);
#endif
// AOM_PLANE_U is used, but both planes will have the same sizes.
cfl->uv_width = max_intra_block_width(xd, plane_bsize, AOM_PLANE_U, tx_size);
cfl->uv_height =
max_intra_block_height(xd, plane_bsize, AOM_PLANE_U, tx_size);
#if CONFIG_DEBUG
if (mbmi->sb_type >= BLOCK_8X8) {
assert(cfl->y_width <= cfl->uv_width << cfl->subsampling_x);
assert(cfl->y_height <= cfl->uv_height << cfl->subsampling_y);
}
#endif
// Compute block-level DC_PRED for both chromatic planes.
// DC_PRED replaces beta in the linear model.
cfl_dc_pred(xd, plane_bsize);
// Compute transform-level average on reconstructed luma input.
cfl_compute_averages(cfl, tx_size);
cfl->are_parameters_computed = 1;
}
|