1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "aom_ports/system_state.h"
#include "av1/common/blockd.h"
#include "av1/common/onyxc_int.h"
PREDICTION_MODE av1_left_block_mode(const MODE_INFO *cur_mi,
const MODE_INFO *left_mi, int b) {
if (b == 0 || b == 2) {
if (!left_mi || is_inter_block(&left_mi->mbmi)) return DC_PRED;
return get_y_mode(left_mi, b + 1);
} else {
assert(b == 1 || b == 3);
return cur_mi->bmi[b - 1].as_mode;
}
}
PREDICTION_MODE av1_above_block_mode(const MODE_INFO *cur_mi,
const MODE_INFO *above_mi, int b) {
if (b == 0 || b == 1) {
if (!above_mi || is_inter_block(&above_mi->mbmi)) return DC_PRED;
return get_y_mode(above_mi, b + 2);
} else {
assert(b == 2 || b == 3);
return cur_mi->bmi[b - 2].as_mode;
}
}
#if CONFIG_COEF_INTERLEAVE
void av1_foreach_transformed_block_interleave(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
foreach_transformed_block_visitor visit, void *arg) {
const struct macroblockd_plane *const pd_y = &xd->plane[0];
const struct macroblockd_plane *const pd_c = &xd->plane[1];
const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const TX_SIZE tx_log2_y = mbmi->tx_size;
const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c);
const int tx_sz_y = (1 << tx_log2_y);
const int tx_sz_c = (1 << tx_log2_c);
const BLOCK_SIZE plane_bsize_y = get_plane_block_size(bsize, pd_y);
const BLOCK_SIZE plane_bsize_c = get_plane_block_size(bsize, pd_c);
const int num_4x4_w_y = num_4x4_blocks_wide_lookup[plane_bsize_y];
const int num_4x4_w_c = num_4x4_blocks_wide_lookup[plane_bsize_c];
const int num_4x4_h_y = num_4x4_blocks_high_lookup[plane_bsize_y];
const int num_4x4_h_c = num_4x4_blocks_high_lookup[plane_bsize_c];
const int step_y = 1 << (tx_log2_y << 1);
const int step_c = 1 << (tx_log2_c << 1);
const int max_4x4_w_y =
get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge, pd_y->subsampling_x);
const int max_4x4_h_y =
get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge, pd_y->subsampling_y);
const int extra_step_y = ((num_4x4_w_y - max_4x4_w_y) >> tx_log2_y) * step_y;
const int max_4x4_w_c =
get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge, pd_c->subsampling_x);
const int max_4x4_h_c =
get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge, pd_c->subsampling_y);
const int extra_step_c = ((num_4x4_w_c - max_4x4_w_c) >> tx_log2_c) * step_c;
// The max_4x4_w/h may be smaller than tx_sz under some corner cases,
// i.e. when the SB is splitted by tile boundaries.
const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y;
const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y;
const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c;
const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c;
const int tu_num_c = tu_num_w_c * tu_num_h_c;
int tu_idx_c = 0;
int offset_y, row_y, col_y;
int offset_c, row_c, col_c;
for (row_y = 0; row_y < tu_num_h_y; row_y++) {
for (col_y = 0; col_y < tu_num_w_y; col_y++) {
// luma
offset_y = (row_y * tu_num_w_y + col_y) * step_y + row_y * extra_step_y;
visit(0, offset_y, row_y * tx_sz_y, col_y * tx_sz_y, plane_bsize_y,
tx_log2_y, arg);
// chroma
if (tu_idx_c < tu_num_c) {
row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
offset_c = tu_idx_c * step_c + (tu_idx_c / tu_num_w_c) * extra_step_c;
visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
tu_idx_c++;
}
}
}
// In 422 case, it's possible that Chroma has more TUs than Luma
while (tu_idx_c < tu_num_c) {
row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
offset_c = tu_idx_c * step_c + row_c * extra_step_c;
visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
tu_idx_c++;
}
}
#endif
void av1_foreach_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = get_tx_size(plane, xd);
#if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
#else
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
#endif
const uint8_t txw_unit = tx_size_wide_unit[tx_size];
const uint8_t txh_unit = tx_size_high_unit[tx_size];
const int step = txw_unit * txh_unit;
int i = 0, r, c;
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (r = 0; r < max_blocks_high; r += txh_unit) {
// Skip visiting the sub blocks that are wholly within the UMV.
for (c = 0; c < max_blocks_wide; c += txw_unit) {
visit(plane, i, r, c, plane_bsize, tx_size, arg);
i += step;
}
}
}
#if CONFIG_LV_MAP
void av1_foreach_transformed_block(const MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
foreach_transformed_block_visitor visit,
void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_CB4X4
if (!is_chroma_reference(mi_row, mi_col, bsize,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y))
continue;
#else
(void)mi_row;
(void)mi_col;
#endif
av1_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg);
}
}
#endif
#if CONFIG_DAALA_DIST
void av1_foreach_8x8_transformed_block_in_yplane(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
foreach_transformed_block_visitor visit,
foreach_transformed_block_visitor mi_visit, void *arg) {
const struct macroblockd_plane *const pd = &xd->plane[0];
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = get_tx_size(0, xd);
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const uint8_t txw_unit = tx_size_wide_unit[tx_size];
const uint8_t txh_unit = tx_size_high_unit[tx_size];
const int step = txw_unit * txh_unit;
int i = 0, r, c;
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
const int skip_check_r = tx_size_high[tx_size] == 8 ? 1 : 0;
const int skip_check_c = tx_size_wide[tx_size] == 8 ? 1 : 0;
assert(plane_bsize >= BLOCK_8X8);
assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (r = 0; r < max_blocks_high; r += txh_unit) {
// Skip visiting the sub blocks that are wholly within the UMV.
for (c = 0; c < max_blocks_wide; c += txw_unit) {
visit(0, i, r, c, plane_bsize, tx_size, arg);
// Call whenever each 8x8 tx block is done
if (((r & txh_unit) || skip_check_r) && ((c & txw_unit) || skip_check_c))
mi_visit(0, i, r - (1 - skip_check_r) * txh_unit,
c - (1 - skip_check_c) * txw_unit, plane_bsize, tx_size, arg);
i += step;
}
}
}
#endif
#if !CONFIG_PVQ || CONFIG_VAR_TX
void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd,
int plane, TX_SIZE tx_size, int has_eob, int aoff,
int loff) {
ENTROPY_CONTEXT *const a = pd->above_context + aoff;
ENTROPY_CONTEXT *const l = pd->left_context + loff;
const int txs_wide = tx_size_wide_unit[tx_size];
const int txs_high = tx_size_high_unit[tx_size];
#if CONFIG_CB4X4
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
#else
const BLOCK_SIZE bsize = AOMMAX(xd->mi[0]->mbmi.sb_type, BLOCK_8X8);
#endif
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
// above
if (has_eob && xd->mb_to_right_edge < 0) {
int i;
const int blocks_wide = max_block_wide(xd, plane_bsize, plane);
int above_contexts = txs_wide;
if (above_contexts + aoff > blocks_wide)
above_contexts = blocks_wide - aoff;
for (i = 0; i < above_contexts; ++i) a[i] = has_eob;
for (i = above_contexts; i < txs_wide; ++i) a[i] = 0;
} else {
memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * txs_wide);
}
// left
if (has_eob && xd->mb_to_bottom_edge < 0) {
int i;
const int blocks_high = max_block_high(xd, plane_bsize, plane);
int left_contexts = txs_high;
if (left_contexts + loff > blocks_high) left_contexts = blocks_high - loff;
for (i = 0; i < left_contexts; ++i) l[i] = has_eob;
for (i = left_contexts; i < txs_high; ++i) l[i] = 0;
} else {
memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * txs_high);
}
}
#endif
void av1_reset_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
int i;
int nplanes;
#if CONFIG_CB4X4
int chroma_ref;
chroma_ref =
is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y);
nplanes = 1 + (MAX_MB_PLANE - 1) * chroma_ref;
#else
(void)mi_row;
(void)mi_col;
nplanes = MAX_MB_PLANE;
#endif
for (i = 0; i < nplanes; i++) {
struct macroblockd_plane *const pd = &xd->plane[i];
#if CONFIG_CHROMA_2X2 || !CONFIG_CB4X4
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
#else
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
#endif
const int txs_wide = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int txs_high = block_size_high[plane_bsize] >> tx_size_high_log2[0];
memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * txs_wide);
memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * txs_high);
}
}
void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].plane_type = get_plane_type(i);
xd->plane[i].subsampling_x = i ? ss_x : 0;
xd->plane[i].subsampling_y = i ? ss_y : 0;
}
}
#if CONFIG_EXT_INTRA
const int16_t dr_intra_derivative[90] = {
1, 14666, 7330, 4884, 3660, 2926, 2435, 2084, 1821, 1616, 1451, 1317, 1204,
1108, 1026, 955, 892, 837, 787, 743, 703, 666, 633, 603, 574, 548,
524, 502, 481, 461, 443, 426, 409, 394, 379, 365, 352, 339, 327,
316, 305, 294, 284, 274, 265, 256, 247, 238, 230, 222, 214, 207,
200, 192, 185, 179, 172, 166, 159, 153, 147, 141, 136, 130, 124,
119, 113, 108, 103, 98, 93, 88, 83, 78, 73, 68, 63, 59,
54, 49, 45, 40, 35, 31, 26, 22, 17, 13, 8, 4,
};
#if CONFIG_INTRA_INTERP
int av1_is_intra_filter_switchable(int angle) {
assert(angle > 0 && angle < 270);
if (angle % 45 == 0) return 0;
if (angle > 90 && angle < 180) {
return 1;
} else {
return ((angle < 90 ? dr_intra_derivative[angle]
: dr_intra_derivative[270 - angle]) &
0xFF) > 0;
}
}
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
|