summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/av1_inv_txfm2d.c
blob: e07f994c6279f7463752c2221bb570e88e896828 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "./av1_rtcd.h"
#include "av1/common/enums.h"
#include "av1/common/av1_txfm.h"
#include "av1/common/av1_inv_txfm1d.h"
#include "av1/common/av1_inv_txfm1d_cfg.h"

static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) {
  switch (txfm_type) {
    case TXFM_TYPE_DCT4: return av1_idct4_new;
    case TXFM_TYPE_DCT8: return av1_idct8_new;
    case TXFM_TYPE_DCT16: return av1_idct16_new;
    case TXFM_TYPE_DCT32: return av1_idct32_new;
    case TXFM_TYPE_ADST4: return av1_iadst4_new;
    case TXFM_TYPE_ADST8: return av1_iadst8_new;
    case TXFM_TYPE_ADST16: return av1_iadst16_new;
    case TXFM_TYPE_ADST32: return av1_iadst32_new;
#if CONFIG_EXT_TX
    case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c;
    case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c;
    case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c;
    case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c;
#endif  // CONFIG_EXT_TX
    default: assert(0); return NULL;
  }
}

static const TXFM_1D_CFG *inv_txfm_col_cfg_ls[TX_TYPES_1D][TX_SIZES] = {
  // DCT
  {
#if CONFIG_CHROMA_2X2
      NULL,
#endif
      &inv_txfm_1d_col_cfg_dct_4, &inv_txfm_1d_col_cfg_dct_8,
      &inv_txfm_1d_col_cfg_dct_16, &inv_txfm_1d_col_cfg_dct_32 },
  // ADST
  {
#if CONFIG_CHROMA_2X2
      NULL,
#endif
      &inv_txfm_1d_col_cfg_adst_4, &inv_txfm_1d_col_cfg_adst_8,
      &inv_txfm_1d_col_cfg_adst_16, &inv_txfm_1d_col_cfg_adst_32 },
#if CONFIG_EXT_TX
  // FLIPADST
  {
#if CONFIG_CHROMA_2X2
      NULL,
#endif
      &inv_txfm_1d_col_cfg_adst_4, &inv_txfm_1d_col_cfg_adst_8,
      &inv_txfm_1d_col_cfg_adst_16, &inv_txfm_1d_col_cfg_adst_32 },
  // IDENTITY
  {
#if CONFIG_CHROMA_2X2
      NULL,
#endif
      &inv_txfm_1d_cfg_identity_4, &inv_txfm_1d_cfg_identity_8,
      &inv_txfm_1d_cfg_identity_16, &inv_txfm_1d_cfg_identity_32 },
#endif  // CONFIG_EXT_TX
};

static const TXFM_1D_CFG *inv_txfm_row_cfg_ls[TX_TYPES_1D][TX_SIZES] = {
  // DCT
  {
#if CONFIG_CHROMA_2X2
      NULL,
#endif
      &inv_txfm_1d_row_cfg_dct_4, &inv_txfm_1d_row_cfg_dct_8,
      &inv_txfm_1d_row_cfg_dct_16, &inv_txfm_1d_row_cfg_dct_32 },
  // ADST
  {
#if CONFIG_CHROMA_2X2
      NULL,
#endif
      &inv_txfm_1d_row_cfg_adst_4, &inv_txfm_1d_row_cfg_adst_8,
      &inv_txfm_1d_row_cfg_adst_16, &inv_txfm_1d_row_cfg_adst_32 },
#if CONFIG_EXT_TX
  // FLIPADST
  {
#if CONFIG_CHROMA_2X2
      NULL,
#endif
      &inv_txfm_1d_row_cfg_adst_4, &inv_txfm_1d_row_cfg_adst_8,
      &inv_txfm_1d_row_cfg_adst_16, &inv_txfm_1d_row_cfg_adst_32 },
  // IDENTITY
  {
#if CONFIG_CHROMA_2X2
      NULL,
#endif
      &inv_txfm_1d_cfg_identity_4, &inv_txfm_1d_cfg_identity_8,
      &inv_txfm_1d_cfg_identity_16, &inv_txfm_1d_cfg_identity_32 },
#endif  // CONFIG_EXT_TX
};

TXFM_2D_FLIP_CFG av1_get_inv_txfm_cfg(int tx_type, int tx_size) {
  TXFM_2D_FLIP_CFG cfg;
  set_flip_cfg(tx_type, &cfg);
  int tx_type_col = vtx_tab[tx_type];
  int tx_type_row = htx_tab[tx_type];
  // TODO(sarahparker) this is currently only implemented for
  // square transforms
  cfg.col_cfg = inv_txfm_col_cfg_ls[tx_type_col][tx_size];
  cfg.row_cfg = inv_txfm_row_cfg_ls[tx_type_row][tx_size];
  return cfg;
}

TXFM_2D_FLIP_CFG av1_get_inv_txfm_64x64_cfg(int tx_type) {
  TXFM_2D_FLIP_CFG cfg = { 0, 0, NULL, NULL };
  switch (tx_type) {
    case DCT_DCT:
      cfg.col_cfg = &inv_txfm_1d_col_cfg_dct_64;
      cfg.row_cfg = &inv_txfm_1d_row_cfg_dct_64;
      set_flip_cfg(tx_type, &cfg);
      break;
    default: assert(0);
  }
  return cfg;
}

static INLINE void inv_txfm2d_add_c(const int32_t *input, int16_t *output,
                                    int stride, TXFM_2D_FLIP_CFG *cfg,
                                    int32_t *txfm_buf) {
  // TODO(sarahparker) must correct for rectangular transforms in follow up
  const int txfm_size = cfg->row_cfg->txfm_size;
  const int8_t *shift = cfg->row_cfg->shift;
  const int8_t *stage_range_col = cfg->col_cfg->stage_range;
  const int8_t *stage_range_row = cfg->row_cfg->stage_range;
  const int8_t *cos_bit_col = cfg->col_cfg->cos_bit;
  const int8_t *cos_bit_row = cfg->row_cfg->cos_bit;
  const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->col_cfg->txfm_type);
  const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->row_cfg->txfm_type);

  // txfm_buf's length is  txfm_size * txfm_size + 2 * txfm_size
  // it is used for intermediate data buffering
  int32_t *temp_in = txfm_buf;
  int32_t *temp_out = temp_in + txfm_size;
  int32_t *buf = temp_out + txfm_size;
  int32_t *buf_ptr = buf;
  int c, r;

  // Rows
  for (r = 0; r < txfm_size; ++r) {
    txfm_func_row(input, buf_ptr, cos_bit_row, stage_range_row);
    round_shift_array(buf_ptr, txfm_size, -shift[0]);
    input += txfm_size;
    buf_ptr += txfm_size;
  }

  // Columns
  for (c = 0; c < txfm_size; ++c) {
    if (cfg->lr_flip == 0) {
      for (r = 0; r < txfm_size; ++r) temp_in[r] = buf[r * txfm_size + c];
    } else {
      // flip left right
      for (r = 0; r < txfm_size; ++r)
        temp_in[r] = buf[r * txfm_size + (txfm_size - c - 1)];
    }
    txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
    round_shift_array(temp_out, txfm_size, -shift[1]);
    if (cfg->ud_flip == 0) {
      for (r = 0; r < txfm_size; ++r) output[r * stride + c] += temp_out[r];
    } else {
      // flip upside down
      for (r = 0; r < txfm_size; ++r)
        output[r * stride + c] += temp_out[txfm_size - r - 1];
    }
  }
}

static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output,
                                         int stride, int32_t *txfm_buf,
                                         int tx_type, int tx_size, int bd) {
  // output contains the prediction signal which is always positive and smaller
  // than (1 << bd) - 1
  // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
  // int16_t*
  TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, tx_size);
  inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf);
  // TODO(sarahparker) just using the cfg_row->txfm_size for now because
  // we are assumint this is only used for square transforms. This will
  // be adjusted in a follow up
  clamp_block((int16_t *)output, cfg.row_cfg->txfm_size, stride, 0,
              (1 << bd) - 1);
}

void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output,
                              int stride, int tx_type, int bd) {
  int txfm_buf[4 * 4 + 4 + 4];
  inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd);
}

void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output,
                              int stride, int tx_type, int bd) {
  int txfm_buf[8 * 8 + 8 + 8];
  inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd);
}

void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output,
                                int stride, int tx_type, int bd) {
  int txfm_buf[16 * 16 + 16 + 16];
  inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd);
}

void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output,
                                int stride, int tx_type, int bd) {
  int txfm_buf[32 * 32 + 32 + 32];
  inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd);
}

void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output,
                                int stride, int tx_type, int bd) {
  int txfm_buf[64 * 64 + 64 + 64];
  // output contains the prediction signal which is always positive and smaller
  // than (1 << bd) - 1
  // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
  // int16_t*
  TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_64x64_cfg(tx_type);
  inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf);
  clamp_block((int16_t *)output, 64, stride, 0, (1 << bd) - 1);
}