summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/noise_model.c
blob: 5975c62e81a81b861f2076cdc71ebffa525f65d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
/*
 * Copyright (c) 2017, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/noise_model.h"
#include "aom_dsp/noise_util.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/common.h"
#include "av1/encoder/mathutils.h"

#define kLowPolyNumParams 3

static const int kMaxLag = 4;

// Defines a function that can be used to obtain the mean of a block for the
// provided data type (uint8_t, or uint16_t)
#define GET_BLOCK_MEAN(INT_TYPE, suffix)                                    \
  static double get_block_mean_##suffix(const INT_TYPE *data, int w, int h, \
                                        int stride, int x_o, int y_o,       \
                                        int block_size) {                   \
    const int max_h = AOMMIN(h - y_o, block_size);                          \
    const int max_w = AOMMIN(w - x_o, block_size);                          \
    double block_mean = 0;                                                  \
    for (int y = 0; y < max_h; ++y) {                                       \
      for (int x = 0; x < max_w; ++x) {                                     \
        block_mean += data[(y_o + y) * stride + x_o + x];                   \
      }                                                                     \
    }                                                                       \
    return block_mean / (max_w * max_h);                                    \
  }

GET_BLOCK_MEAN(uint8_t, lowbd);
GET_BLOCK_MEAN(uint16_t, highbd);

static INLINE double get_block_mean(const uint8_t *data, int w, int h,
                                    int stride, int x_o, int y_o,
                                    int block_size, int use_highbd) {
  if (use_highbd)
    return get_block_mean_highbd((const uint16_t *)data, w, h, stride, x_o, y_o,
                                 block_size);
  return get_block_mean_lowbd(data, w, h, stride, x_o, y_o, block_size);
}

// Defines a function that can be used to obtain the variance of a block
// for the provided data type (uint8_t, or uint16_t)
#define GET_NOISE_VAR(INT_TYPE, suffix)                                  \
  static double get_noise_var_##suffix(                                  \
      const INT_TYPE *data, const INT_TYPE *denoised, int stride, int w, \
      int h, int x_o, int y_o, int block_size_x, int block_size_y) {     \
    const int max_h = AOMMIN(h - y_o, block_size_y);                     \
    const int max_w = AOMMIN(w - x_o, block_size_x);                     \
    double noise_var = 0;                                                \
    double noise_mean = 0;                                               \
    for (int y = 0; y < max_h; ++y) {                                    \
      for (int x = 0; x < max_w; ++x) {                                  \
        double noise = (double)data[(y_o + y) * stride + x_o + x] -      \
                       denoised[(y_o + y) * stride + x_o + x];           \
        noise_mean += noise;                                             \
        noise_var += noise * noise;                                      \
      }                                                                  \
    }                                                                    \
    noise_mean /= (max_w * max_h);                                       \
    return noise_var / (max_w * max_h) - noise_mean * noise_mean;        \
  }

GET_NOISE_VAR(uint8_t, lowbd);
GET_NOISE_VAR(uint16_t, highbd);

static INLINE double get_noise_var(const uint8_t *data, const uint8_t *denoised,
                                   int w, int h, int stride, int x_o, int y_o,
                                   int block_size_x, int block_size_y,
                                   int use_highbd) {
  if (use_highbd)
    return get_noise_var_highbd((const uint16_t *)data,
                                (const uint16_t *)denoised, w, h, stride, x_o,
                                y_o, block_size_x, block_size_y);
  return get_noise_var_lowbd(data, denoised, w, h, stride, x_o, y_o,
                             block_size_x, block_size_y);
}

static void equation_system_clear(aom_equation_system_t *eqns) {
  const int n = eqns->n;
  memset(eqns->A, 0, sizeof(*eqns->A) * n * n);
  memset(eqns->x, 0, sizeof(*eqns->x) * n);
  memset(eqns->b, 0, sizeof(*eqns->b) * n);
}

static void equation_system_copy(aom_equation_system_t *dst,
                                 const aom_equation_system_t *src) {
  const int n = dst->n;
  memcpy(dst->A, src->A, sizeof(*dst->A) * n * n);
  memcpy(dst->x, src->x, sizeof(*dst->x) * n);
  memcpy(dst->b, src->b, sizeof(*dst->b) * n);
}

static int equation_system_init(aom_equation_system_t *eqns, int n) {
  eqns->A = (double *)aom_malloc(sizeof(*eqns->A) * n * n);
  eqns->b = (double *)aom_malloc(sizeof(*eqns->b) * n);
  eqns->x = (double *)aom_malloc(sizeof(*eqns->x) * n);
  eqns->n = n;
  if (!eqns->A || !eqns->b || !eqns->x) {
    fprintf(stderr, "Failed to allocate system of equations of size %d\n", n);
    aom_free(eqns->A);
    aom_free(eqns->b);
    aom_free(eqns->x);
    memset(eqns, 0, sizeof(*eqns));
    return 0;
  }
  equation_system_clear(eqns);
  return 1;
}

static int equation_system_solve(aom_equation_system_t *eqns) {
  const int n = eqns->n;
  double *b = (double *)aom_malloc(sizeof(*b) * n);
  double *A = (double *)aom_malloc(sizeof(*A) * n * n);
  int ret = 0;
  if (A == NULL || b == NULL) {
    fprintf(stderr, "Unable to allocate temp values of size %dx%d\n", n, n);
    aom_free(b);
    aom_free(A);
    return 0;
  }
  memcpy(A, eqns->A, sizeof(*eqns->A) * n * n);
  memcpy(b, eqns->b, sizeof(*eqns->b) * n);
  ret = linsolve(n, A, eqns->n, b, eqns->x);
  aom_free(b);
  aom_free(A);

  if (ret == 0) {
    return 0;
  }
  return 1;
}

static void equation_system_add(aom_equation_system_t *dest,
                                aom_equation_system_t *src) {
  const int n = dest->n;
  int i, j;
  for (i = 0; i < n; ++i) {
    for (j = 0; j < n; ++j) {
      dest->A[i * n + j] += src->A[i * n + j];
    }
    dest->b[i] += src->b[i];
  }
}

static void equation_system_free(aom_equation_system_t *eqns) {
  if (!eqns) return;
  aom_free(eqns->A);
  aom_free(eqns->b);
  aom_free(eqns->x);
  memset(eqns, 0, sizeof(*eqns));
}

static void noise_strength_solver_clear(aom_noise_strength_solver_t *solver) {
  equation_system_clear(&solver->eqns);
  solver->num_equations = 0;
  solver->total = 0;
}

static void noise_strength_solver_add(aom_noise_strength_solver_t *dest,
                                      aom_noise_strength_solver_t *src) {
  equation_system_add(&dest->eqns, &src->eqns);
  dest->num_equations += src->num_equations;
  dest->total += src->total;
}

// Return the number of coefficients required for the given parameters
static int num_coeffs(const aom_noise_model_params_t params) {
  const int n = 2 * params.lag + 1;
  switch (params.shape) {
    case AOM_NOISE_SHAPE_DIAMOND: return params.lag * (params.lag + 1);
    case AOM_NOISE_SHAPE_SQUARE: return (n * n) / 2;
  }
  return 0;
}

static int noise_state_init(aom_noise_state_t *state, int n, int bit_depth) {
  const int kNumBins = 20;
  if (!equation_system_init(&state->eqns, n)) {
    fprintf(stderr, "Failed initialization noise state with size %d\n", n);
    return 0;
  }
  state->ar_gain = 1.0;
  state->num_observations = 0;
  return aom_noise_strength_solver_init(&state->strength_solver, kNumBins,
                                        bit_depth);
}

static void set_chroma_coefficient_fallback_soln(aom_equation_system_t *eqns) {
  const double kTolerance = 1e-6;
  const int last = eqns->n - 1;
  // Set all of the AR coefficients to zero, but try to solve for correlation
  // with the luma channel
  memset(eqns->x, 0, sizeof(*eqns->x) * eqns->n);
  if (fabs(eqns->A[last * eqns->n + last]) > kTolerance) {
    eqns->x[last] = eqns->b[last] / eqns->A[last * eqns->n + last];
  }
}

int aom_noise_strength_lut_init(aom_noise_strength_lut_t *lut, int num_points) {
  if (!lut) return 0;
  lut->points = (double(*)[2])aom_malloc(num_points * sizeof(*lut->points));
  if (!lut->points) return 0;
  lut->num_points = num_points;
  memset(lut->points, 0, sizeof(*lut->points) * num_points);
  return 1;
}

void aom_noise_strength_lut_free(aom_noise_strength_lut_t *lut) {
  if (!lut) return;
  aom_free(lut->points);
  memset(lut, 0, sizeof(*lut));
}

double aom_noise_strength_lut_eval(const aom_noise_strength_lut_t *lut,
                                   double x) {
  int i = 0;
  // Constant extrapolation for x <  x_0.
  if (x < lut->points[0][0]) return lut->points[0][1];
  for (i = 0; i < lut->num_points - 1; ++i) {
    if (x >= lut->points[i][0] && x <= lut->points[i + 1][0]) {
      const double a =
          (x - lut->points[i][0]) / (lut->points[i + 1][0] - lut->points[i][0]);
      return lut->points[i + 1][1] * a + lut->points[i][1] * (1.0 - a);
    }
  }
  // Constant extrapolation for x > x_{n-1}
  return lut->points[lut->num_points - 1][1];
}

static double noise_strength_solver_get_bin_index(
    const aom_noise_strength_solver_t *solver, double value) {
  const double val =
      fclamp(value, solver->min_intensity, solver->max_intensity);
  const double range = solver->max_intensity - solver->min_intensity;
  return (solver->num_bins - 1) * (val - solver->min_intensity) / range;
}

static double noise_strength_solver_get_value(
    const aom_noise_strength_solver_t *solver, double x) {
  const double bin = noise_strength_solver_get_bin_index(solver, x);
  const int bin_i0 = (int)floor(bin);
  const int bin_i1 = AOMMIN(solver->num_bins - 1, bin_i0 + 1);
  const double a = bin - bin_i0;
  return (1.0 - a) * solver->eqns.x[bin_i0] + a * solver->eqns.x[bin_i1];
}

void aom_noise_strength_solver_add_measurement(
    aom_noise_strength_solver_t *solver, double block_mean, double noise_std) {
  const double bin = noise_strength_solver_get_bin_index(solver, block_mean);
  const int bin_i0 = (int)floor(bin);
  const int bin_i1 = AOMMIN(solver->num_bins - 1, bin_i0 + 1);
  const double a = bin - bin_i0;
  const int n = solver->num_bins;
  solver->eqns.A[bin_i0 * n + bin_i0] += (1.0 - a) * (1.0 - a);
  solver->eqns.A[bin_i1 * n + bin_i0] += a * (1.0 - a);
  solver->eqns.A[bin_i1 * n + bin_i1] += a * a;
  solver->eqns.A[bin_i0 * n + bin_i1] += a * (1.0 - a);
  solver->eqns.b[bin_i0] += (1.0 - a) * noise_std;
  solver->eqns.b[bin_i1] += a * noise_std;
  solver->total += noise_std;
  solver->num_equations++;
}

int aom_noise_strength_solver_solve(aom_noise_strength_solver_t *solver) {
  // Add regularization proportional to the number of constraints
  const int n = solver->num_bins;
  const double kAlpha = 2.0 * (double)(solver->num_equations) / n;
  int result = 0;
  double mean = 0;

  // Do this in a non-destructive manner so it is not confusing to the caller
  double *old_A = solver->eqns.A;
  double *A = (double *)aom_malloc(sizeof(*A) * n * n);
  if (!A) {
    fprintf(stderr, "Unable to allocate copy of A\n");
    return 0;
  }
  memcpy(A, old_A, sizeof(*A) * n * n);

  for (int i = 0; i < n; ++i) {
    const int i_lo = AOMMAX(0, i - 1);
    const int i_hi = AOMMIN(n - 1, i + 1);
    A[i * n + i_lo] -= kAlpha;
    A[i * n + i] += 2 * kAlpha;
    A[i * n + i_hi] -= kAlpha;
  }

  // Small regularization to give average noise strength
  mean = solver->total / solver->num_equations;
  for (int i = 0; i < n; ++i) {
    A[i * n + i] += 1.0 / 8192.;
    solver->eqns.b[i] += mean / 8192.;
  }
  solver->eqns.A = A;
  result = equation_system_solve(&solver->eqns);
  solver->eqns.A = old_A;

  aom_free(A);
  return result;
}

int aom_noise_strength_solver_init(aom_noise_strength_solver_t *solver,
                                   int num_bins, int bit_depth) {
  if (!solver) return 0;
  memset(solver, 0, sizeof(*solver));
  solver->num_bins = num_bins;
  solver->min_intensity = 0;
  solver->max_intensity = (1 << bit_depth) - 1;
  solver->total = 0;
  solver->num_equations = 0;
  return equation_system_init(&solver->eqns, num_bins);
}

void aom_noise_strength_solver_free(aom_noise_strength_solver_t *solver) {
  if (!solver) return;
  equation_system_free(&solver->eqns);
}

double aom_noise_strength_solver_get_center(
    const aom_noise_strength_solver_t *solver, int i) {
  const double range = solver->max_intensity - solver->min_intensity;
  const int n = solver->num_bins;
  return ((double)i) / (n - 1) * range + solver->min_intensity;
}

// Computes the residual if a point were to be removed from the lut. This is
// calculated as the area between the output of the solver and the line segment
// that would be formed between [x_{i - 1}, x_{i + 1}).
static void update_piecewise_linear_residual(
    const aom_noise_strength_solver_t *solver,
    const aom_noise_strength_lut_t *lut, double *residual, int start, int end) {
  const double dx = 255. / solver->num_bins;
  for (int i = AOMMAX(start, 1); i < AOMMIN(end, lut->num_points - 1); ++i) {
    const int lower = AOMMAX(0, (int)floor(noise_strength_solver_get_bin_index(
                                    solver, lut->points[i - 1][0])));
    const int upper = AOMMIN(solver->num_bins - 1,
                             (int)ceil(noise_strength_solver_get_bin_index(
                                 solver, lut->points[i + 1][0])));
    double r = 0;
    for (int j = lower; j <= upper; ++j) {
      const double x = aom_noise_strength_solver_get_center(solver, j);
      if (x < lut->points[i - 1][0]) continue;
      if (x >= lut->points[i + 1][0]) continue;
      const double y = solver->eqns.x[j];
      const double a = (x - lut->points[i - 1][0]) /
                       (lut->points[i + 1][0] - lut->points[i - 1][0]);
      const double estimate_y =
          lut->points[i - 1][1] * (1.0 - a) + lut->points[i + 1][1] * a;
      r += fabs(y - estimate_y);
    }
    residual[i] = r * dx;
  }
}

int aom_noise_strength_solver_fit_piecewise(
    const aom_noise_strength_solver_t *solver, int max_output_points,
    aom_noise_strength_lut_t *lut) {
  // The tolerance is normalized to be give consistent results between
  // different bit-depths.
  const double kTolerance = solver->max_intensity * 0.00625 / 255.0;
  if (!aom_noise_strength_lut_init(lut, solver->num_bins)) {
    fprintf(stderr, "Failed to init lut\n");
    return 0;
  }
  for (int i = 0; i < solver->num_bins; ++i) {
    lut->points[i][0] = aom_noise_strength_solver_get_center(solver, i);
    lut->points[i][1] = solver->eqns.x[i];
  }
  if (max_output_points < 0) {
    max_output_points = solver->num_bins;
  }

  double *residual = aom_malloc(solver->num_bins * sizeof(*residual));
  memset(residual, 0, sizeof(*residual) * solver->num_bins);

  update_piecewise_linear_residual(solver, lut, residual, 0, solver->num_bins);

  // Greedily remove points if there are too many or if it doesn't hurt local
  // approximation (never remove the end points)
  while (lut->num_points > 2) {
    int min_index = 1;
    for (int j = 1; j < lut->num_points - 1; ++j) {
      if (residual[j] < residual[min_index]) {
        min_index = j;
      }
    }
    const double dx =
        lut->points[min_index + 1][0] - lut->points[min_index - 1][0];
    const double avg_residual = residual[min_index] / dx;
    if (lut->num_points <= max_output_points && avg_residual > kTolerance) {
      break;
    }

    const int num_remaining = lut->num_points - min_index - 1;
    memmove(lut->points + min_index, lut->points + min_index + 1,
            sizeof(lut->points[0]) * num_remaining);
    lut->num_points--;

    update_piecewise_linear_residual(solver, lut, residual, min_index - 1,
                                     min_index + 1);
  }
  aom_free(residual);
  return 1;
}

int aom_flat_block_finder_init(aom_flat_block_finder_t *block_finder,
                               int block_size, int bit_depth, int use_highbd) {
  const int n = block_size * block_size;
  aom_equation_system_t eqns;
  double *AtA_inv = 0;
  double *A = 0;
  int x = 0, y = 0, i = 0, j = 0;
  if (!equation_system_init(&eqns, kLowPolyNumParams)) {
    fprintf(stderr, "Failed to init equation system for block_size=%d\n",
            block_size);
    return 0;
  }

  AtA_inv = (double *)aom_malloc(kLowPolyNumParams * kLowPolyNumParams *
                                 sizeof(*AtA_inv));
  A = (double *)aom_malloc(kLowPolyNumParams * n * sizeof(*A));
  if (AtA_inv == NULL || A == NULL) {
    fprintf(stderr, "Failed to alloc A or AtA_inv for block_size=%d\n",
            block_size);
    aom_free(AtA_inv);
    aom_free(A);
    equation_system_free(&eqns);
    return 0;
  }

  block_finder->A = A;
  block_finder->AtA_inv = AtA_inv;
  block_finder->block_size = block_size;
  block_finder->normalization = (1 << bit_depth) - 1;
  block_finder->use_highbd = use_highbd;

  for (y = 0; y < block_size; ++y) {
    const double yd = ((double)y - block_size / 2.) / (block_size / 2.);
    for (x = 0; x < block_size; ++x) {
      const double xd = ((double)x - block_size / 2.) / (block_size / 2.);
      const double coords[3] = { yd, xd, 1 };
      const int row = y * block_size + x;
      A[kLowPolyNumParams * row + 0] = yd;
      A[kLowPolyNumParams * row + 1] = xd;
      A[kLowPolyNumParams * row + 2] = 1;

      for (i = 0; i < kLowPolyNumParams; ++i) {
        for (j = 0; j < kLowPolyNumParams; ++j) {
          eqns.A[kLowPolyNumParams * i + j] += coords[i] * coords[j];
        }
      }
    }
  }

  // Lazy inverse using existing equation solver.
  for (i = 0; i < kLowPolyNumParams; ++i) {
    memset(eqns.b, 0, sizeof(*eqns.b) * kLowPolyNumParams);
    eqns.b[i] = 1;
    equation_system_solve(&eqns);

    for (j = 0; j < kLowPolyNumParams; ++j) {
      AtA_inv[j * kLowPolyNumParams + i] = eqns.x[j];
    }
  }
  equation_system_free(&eqns);
  return 1;
}

void aom_flat_block_finder_free(aom_flat_block_finder_t *block_finder) {
  if (!block_finder) return;
  aom_free(block_finder->A);
  aom_free(block_finder->AtA_inv);
  memset(block_finder, 0, sizeof(*block_finder));
}

void aom_flat_block_finder_extract_block(
    const aom_flat_block_finder_t *block_finder, const uint8_t *const data,
    int w, int h, int stride, int offsx, int offsy, double *plane,
    double *block) {
  const int block_size = block_finder->block_size;
  const int n = block_size * block_size;
  const double *A = block_finder->A;
  const double *AtA_inv = block_finder->AtA_inv;
  double plane_coords[kLowPolyNumParams];
  double AtA_inv_b[kLowPolyNumParams];
  int xi, yi, i;

  if (block_finder->use_highbd) {
    const uint16_t *const data16 = (const uint16_t *const)data;
    for (yi = 0; yi < block_size; ++yi) {
      const int y = clamp(offsy + yi, 0, h - 1);
      for (xi = 0; xi < block_size; ++xi) {
        const int x = clamp(offsx + xi, 0, w - 1);
        block[yi * block_size + xi] =
            ((double)data16[y * stride + x]) / block_finder->normalization;
      }
    }
  } else {
    for (yi = 0; yi < block_size; ++yi) {
      const int y = clamp(offsy + yi, 0, h - 1);
      for (xi = 0; xi < block_size; ++xi) {
        const int x = clamp(offsx + xi, 0, w - 1);
        block[yi * block_size + xi] =
            ((double)data[y * stride + x]) / block_finder->normalization;
      }
    }
  }
  multiply_mat(block, A, AtA_inv_b, 1, n, kLowPolyNumParams);
  multiply_mat(AtA_inv, AtA_inv_b, plane_coords, kLowPolyNumParams,
               kLowPolyNumParams, 1);
  multiply_mat(A, plane_coords, plane, n, kLowPolyNumParams, 1);

  for (i = 0; i < n; ++i) {
    block[i] -= plane[i];
  }
}

typedef struct {
  int index;
  float score;
} index_and_score_t;

static int compare_scores(const void *a, const void *b) {
  const float diff =
      ((index_and_score_t *)a)->score - ((index_and_score_t *)b)->score;
  if (diff < 0)
    return -1;
  else if (diff > 0)
    return 1;
  return 0;
}

int aom_flat_block_finder_run(const aom_flat_block_finder_t *block_finder,
                              const uint8_t *const data, int w, int h,
                              int stride, uint8_t *flat_blocks) {
  // The gradient-based features used in this code are based on:
  //  A. Kokaram, D. Kelly, H. Denman and A. Crawford, "Measuring noise
  //  correlation for improved video denoising," 2012 19th, ICIP.
  // The thresholds are more lenient to allow for correct grain modeling
  // if extreme cases.
  const int block_size = block_finder->block_size;
  const int n = block_size * block_size;
  const double kTraceThreshold = 0.15 / (32 * 32);
  const double kRatioThreshold = 1.25;
  const double kNormThreshold = 0.08 / (32 * 32);
  const double kVarThreshold = 0.005 / (double)n;
  const int num_blocks_w = (w + block_size - 1) / block_size;
  const int num_blocks_h = (h + block_size - 1) / block_size;
  int num_flat = 0;
  int bx = 0, by = 0;
  double *plane = (double *)aom_malloc(n * sizeof(*plane));
  double *block = (double *)aom_malloc(n * sizeof(*block));
  index_and_score_t *scores = (index_and_score_t *)aom_malloc(
      num_blocks_w * num_blocks_h * sizeof(*scores));
  if (plane == NULL || block == NULL || scores == NULL) {
    fprintf(stderr, "Failed to allocate memory for block of size %d\n", n);
    aom_free(plane);
    aom_free(block);
    aom_free(scores);
    return -1;
  }

#ifdef NOISE_MODEL_LOG_SCORE
  fprintf(stderr, "score = [");
#endif
  for (by = 0; by < num_blocks_h; ++by) {
    for (bx = 0; bx < num_blocks_w; ++bx) {
      // Compute gradient covariance matrix.
      double Gxx = 0, Gxy = 0, Gyy = 0;
      double var = 0;
      double mean = 0;
      int xi, yi;
      aom_flat_block_finder_extract_block(block_finder, data, w, h, stride,
                                          bx * block_size, by * block_size,
                                          plane, block);

      for (yi = 1; yi < block_size - 1; ++yi) {
        for (xi = 1; xi < block_size - 1; ++xi) {
          const double gx = (block[yi * block_size + xi + 1] -
                             block[yi * block_size + xi - 1]) /
                            2;
          const double gy = (block[yi * block_size + xi + block_size] -
                             block[yi * block_size + xi - block_size]) /
                            2;
          Gxx += gx * gx;
          Gxy += gx * gy;
          Gyy += gy * gy;

          mean += block[yi * block_size + xi];
          var += block[yi * block_size + xi] * block[yi * block_size + xi];
        }
      }
      mean /= (block_size - 2) * (block_size - 2);

      // Normalize gradients by block_size.
      Gxx /= ((block_size - 2) * (block_size - 2));
      Gxy /= ((block_size - 2) * (block_size - 2));
      Gyy /= ((block_size - 2) * (block_size - 2));
      var = var / ((block_size - 2) * (block_size - 2)) - mean * mean;

      {
        const double trace = Gxx + Gyy;
        const double det = Gxx * Gyy - Gxy * Gxy;
        const double e1 = (trace + sqrt(trace * trace - 4 * det)) / 2.;
        const double e2 = (trace - sqrt(trace * trace - 4 * det)) / 2.;
        const double norm = e1;  // Spectral norm
        const double ratio = (e1 / AOMMAX(e2, 1e-6));
        const int is_flat = (trace < kTraceThreshold) &&
                            (ratio < kRatioThreshold) &&
                            (norm < kNormThreshold) && (var > kVarThreshold);
        // The following weights are used to combine the above features to give
        // a sigmoid score for flatness. If the input was normalized to [0,100]
        // the magnitude of these values would be close to 1 (e.g., weights
        // corresponding to variance would be a factor of 10000x smaller).
        // The weights are given in the following order:
        //    [{var}, {ratio}, {trace}, {norm}, offset]
        // with one of the most discriminative being simply the variance.
        const double weights[5] = { -6682, -0.2056, 13087, -12434, 2.5694 };
        const float score =
            (float)(1.0 / (1 + exp(-(weights[0] * var + weights[1] * ratio +
                                     weights[2] * trace + weights[3] * norm +
                                     weights[4]))));
        flat_blocks[by * num_blocks_w + bx] = is_flat ? 255 : 0;
        scores[by * num_blocks_w + bx].score = var > kVarThreshold ? score : 0;
        scores[by * num_blocks_w + bx].index = by * num_blocks_w + bx;
#ifdef NOISE_MODEL_LOG_SCORE
        fprintf(stderr, "%g %g %g %g %g %d ", score, var, ratio, trace, norm,
                is_flat);
#endif
        num_flat += is_flat;
      }
    }
#ifdef NOISE_MODEL_LOG_SCORE
    fprintf(stderr, "\n");
#endif
  }
#ifdef NOISE_MODEL_LOG_SCORE
  fprintf(stderr, "];\n");
#endif
  // Find the top-scored blocks (most likely to be flat) and set the flat blocks
  // be the union of the thresholded results and the top 10th percentile of the
  // scored results.
  qsort(scores, num_blocks_w * num_blocks_h, sizeof(*scores), &compare_scores);
  const int top_nth_percentile = num_blocks_w * num_blocks_h * 90 / 100;
  const float score_threshold = scores[top_nth_percentile].score;
  for (int i = 0; i < num_blocks_w * num_blocks_h; ++i) {
    if (scores[i].score >= score_threshold) {
      num_flat += flat_blocks[scores[i].index] == 0;
      flat_blocks[scores[i].index] |= 1;
    }
  }
  aom_free(block);
  aom_free(plane);
  aom_free(scores);
  return num_flat;
}

int aom_noise_model_init(aom_noise_model_t *model,
                         const aom_noise_model_params_t params) {
  const int n = num_coeffs(params);
  const int lag = params.lag;
  const int bit_depth = params.bit_depth;
  int x = 0, y = 0, i = 0, c = 0;

  memset(model, 0, sizeof(*model));
  if (params.lag < 1) {
    fprintf(stderr, "Invalid noise param: lag = %d must be >= 1\n", params.lag);
    return 0;
  }
  if (params.lag > kMaxLag) {
    fprintf(stderr, "Invalid noise param: lag = %d must be <= %d\n", params.lag,
            kMaxLag);
    return 0;
  }

  memcpy(&model->params, &params, sizeof(params));
  for (c = 0; c < 3; ++c) {
    if (!noise_state_init(&model->combined_state[c], n + (c > 0), bit_depth)) {
      fprintf(stderr, "Failed to allocate noise state for channel %d\n", c);
      aom_noise_model_free(model);
      return 0;
    }
    if (!noise_state_init(&model->latest_state[c], n + (c > 0), bit_depth)) {
      fprintf(stderr, "Failed to allocate noise state for channel %d\n", c);
      aom_noise_model_free(model);
      return 0;
    }
  }
  model->n = n;
  model->coords = (int(*)[2])aom_malloc(sizeof(*model->coords) * n);

  for (y = -lag; y <= 0; ++y) {
    const int max_x = y == 0 ? -1 : lag;
    for (x = -lag; x <= max_x; ++x) {
      switch (params.shape) {
        case AOM_NOISE_SHAPE_DIAMOND:
          if (abs(x) <= y + lag) {
            model->coords[i][0] = x;
            model->coords[i][1] = y;
            ++i;
          }
          break;
        case AOM_NOISE_SHAPE_SQUARE:
          model->coords[i][0] = x;
          model->coords[i][1] = y;
          ++i;
          break;
        default:
          fprintf(stderr, "Invalid shape\n");
          aom_noise_model_free(model);
          return 0;
      }
    }
  }
  assert(i == n);
  return 1;
}

void aom_noise_model_free(aom_noise_model_t *model) {
  int c = 0;
  if (!model) return;

  aom_free(model->coords);
  for (c = 0; c < 3; ++c) {
    equation_system_free(&model->latest_state[c].eqns);
    equation_system_free(&model->combined_state[c].eqns);

    equation_system_free(&model->latest_state[c].strength_solver.eqns);
    equation_system_free(&model->combined_state[c].strength_solver.eqns);
  }
  memset(model, 0, sizeof(*model));
}

// Extracts the neighborhood defined by coords around point (x, y) from
// the difference between the data and denoised images. Also extracts the
// entry (possibly downsampled) for (x, y) in the alt_data (e.g., luma).
#define EXTRACT_AR_ROW(INT_TYPE, suffix)                                   \
  static double extract_ar_row_##suffix(                                   \
      int(*coords)[2], int num_coords, const INT_TYPE *const data,         \
      const INT_TYPE *const denoised, int stride, int sub_log2[2],         \
      const INT_TYPE *const alt_data, const INT_TYPE *const alt_denoised,  \
      int alt_stride, int x, int y, double *buffer) {                      \
    for (int i = 0; i < num_coords; ++i) {                                 \
      const int x_i = x + coords[i][0], y_i = y + coords[i][1];            \
      buffer[i] =                                                          \
          (double)data[y_i * stride + x_i] - denoised[y_i * stride + x_i]; \
    }                                                                      \
    const double val =                                                     \
        (double)data[y * stride + x] - denoised[y * stride + x];           \
                                                                           \
    if (alt_data && alt_denoised) {                                        \
      double avg_data = 0, avg_denoised = 0;                               \
      int num_samples = 0;                                                 \
      for (int dy_i = 0; dy_i < (1 << sub_log2[1]); dy_i++) {              \
        const int y_up = (y << sub_log2[1]) + dy_i;                        \
        for (int dx_i = 0; dx_i < (1 << sub_log2[0]); dx_i++) {            \
          const int x_up = (x << sub_log2[0]) + dx_i;                      \
          avg_data += alt_data[y_up * alt_stride + x_up];                  \
          avg_denoised += alt_denoised[y_up * alt_stride + x_up];          \
          num_samples++;                                                   \
        }                                                                  \
      }                                                                    \
      buffer[num_coords] = (avg_data - avg_denoised) / num_samples;        \
    }                                                                      \
    return val;                                                            \
  }

EXTRACT_AR_ROW(uint8_t, lowbd);
EXTRACT_AR_ROW(uint16_t, highbd);

static int add_block_observations(
    aom_noise_model_t *noise_model, int c, const uint8_t *const data,
    const uint8_t *const denoised, int w, int h, int stride, int sub_log2[2],
    const uint8_t *const alt_data, const uint8_t *const alt_denoised,
    int alt_stride, const uint8_t *const flat_blocks, int block_size,
    int num_blocks_w, int num_blocks_h) {
  const int lag = noise_model->params.lag;
  const int num_coords = noise_model->n;
  const double normalization = (1 << noise_model->params.bit_depth) - 1;
  double *A = noise_model->latest_state[c].eqns.A;
  double *b = noise_model->latest_state[c].eqns.b;
  double *buffer = (double *)aom_malloc(sizeof(*buffer) * (num_coords + 1));
  const int n = noise_model->latest_state[c].eqns.n;

  if (!buffer) {
    fprintf(stderr, "Unable to allocate buffer of size %d\n", num_coords + 1);
    return 0;
  }
  for (int by = 0; by < num_blocks_h; ++by) {
    const int y_o = by * (block_size >> sub_log2[1]);
    for (int bx = 0; bx < num_blocks_w; ++bx) {
      const int x_o = bx * (block_size >> sub_log2[0]);
      if (!flat_blocks[by * num_blocks_w + bx]) {
        continue;
      }
      int y_start =
          (by > 0 && flat_blocks[(by - 1) * num_blocks_w + bx]) ? 0 : lag;
      int x_start =
          (bx > 0 && flat_blocks[by * num_blocks_w + bx - 1]) ? 0 : lag;
      int y_end = AOMMIN((h >> sub_log2[1]) - by * (block_size >> sub_log2[1]),
                         block_size >> sub_log2[1]);
      int x_end = AOMMIN(
          (w >> sub_log2[0]) - bx * (block_size >> sub_log2[0]) - lag,
          (bx + 1 < num_blocks_w && flat_blocks[by * num_blocks_w + bx + 1])
              ? (block_size >> sub_log2[0])
              : ((block_size >> sub_log2[0]) - lag));
      for (int y = y_start; y < y_end; ++y) {
        for (int x = x_start; x < x_end; ++x) {
          const double val =
              noise_model->params.use_highbd
                  ? extract_ar_row_highbd(noise_model->coords, num_coords,
                                          (const uint16_t *const)data,
                                          (const uint16_t *const)denoised,
                                          stride, sub_log2,
                                          (const uint16_t *const)alt_data,
                                          (const uint16_t *const)alt_denoised,
                                          alt_stride, x + x_o, y + y_o, buffer)
                  : extract_ar_row_lowbd(noise_model->coords, num_coords, data,
                                         denoised, stride, sub_log2, alt_data,
                                         alt_denoised, alt_stride, x + x_o,
                                         y + y_o, buffer);
          for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
              A[i * n + j] +=
                  (buffer[i] * buffer[j]) / (normalization * normalization);
            }
            b[i] += (buffer[i] * val) / (normalization * normalization);
          }
          noise_model->latest_state[c].num_observations++;
        }
      }
    }
  }
  aom_free(buffer);
  return 1;
}

static void add_noise_std_observations(
    aom_noise_model_t *noise_model, int c, const double *coeffs,
    const uint8_t *const data, const uint8_t *const denoised, int w, int h,
    int stride, int sub_log2[2], const uint8_t *const alt_data, int alt_stride,
    const uint8_t *const flat_blocks, int block_size, int num_blocks_w,
    int num_blocks_h) {
  const int num_coords = noise_model->n;
  aom_noise_strength_solver_t *noise_strength_solver =
      &noise_model->latest_state[c].strength_solver;

  const aom_noise_strength_solver_t *noise_strength_luma =
      &noise_model->latest_state[0].strength_solver;
  const double luma_gain = noise_model->latest_state[0].ar_gain;
  const double noise_gain = noise_model->latest_state[c].ar_gain;
  for (int by = 0; by < num_blocks_h; ++by) {
    const int y_o = by * (block_size >> sub_log2[1]);
    for (int bx = 0; bx < num_blocks_w; ++bx) {
      const int x_o = bx * (block_size >> sub_log2[0]);
      if (!flat_blocks[by * num_blocks_w + bx]) {
        continue;
      }
      const int num_samples_h =
          AOMMIN((h >> sub_log2[1]) - by * (block_size >> sub_log2[1]),
                 block_size >> sub_log2[1]);
      const int num_samples_w =
          AOMMIN((w >> sub_log2[0]) - bx * (block_size >> sub_log2[0]),
                 (block_size >> sub_log2[0]));
      // Make sure that we have a reasonable amount of samples to consider the
      // block
      if (num_samples_w * num_samples_h > block_size) {
        const double block_mean = get_block_mean(
            alt_data ? alt_data : data, w, h, alt_data ? alt_stride : stride,
            x_o << sub_log2[0], y_o << sub_log2[1], block_size,
            noise_model->params.use_highbd);
        const double noise_var = get_noise_var(
            data, denoised, stride, w >> sub_log2[0], h >> sub_log2[1], x_o,
            y_o, block_size >> sub_log2[0], block_size >> sub_log2[1],
            noise_model->params.use_highbd);
        // We want to remove the part of the noise that came from being
        // correlated with luma. Note that the noise solver for luma must
        // have already been run.
        const double luma_strength =
            c > 0 ? luma_gain * noise_strength_solver_get_value(
                                    noise_strength_luma, block_mean)
                  : 0;
        const double corr = c > 0 ? coeffs[num_coords] : 0;
        // Chroma noise:
        //    N(0, noise_var) = N(0, uncorr_var) + corr * N(0, luma_strength^2)
        // The uncorrelated component:
        //   uncorr_var = noise_var - (corr * luma_strength)^2
        // But don't allow fully correlated noise (hence the max), since the
        // synthesis cannot model it.
        const double uncorr_std = sqrt(
            AOMMAX(noise_var / 16, noise_var - pow(corr * luma_strength, 2)));
        // After we've removed correlation with luma, undo the gain that will
        // come from running the IIR filter.
        const double adjusted_strength = uncorr_std / noise_gain;
        aom_noise_strength_solver_add_measurement(
            noise_strength_solver, block_mean, adjusted_strength);
      }
    }
  }
}

// Return true if the noise estimate appears to be different from the combined
// (multi-frame) estimate. The difference is measured by checking whether the
// AR coefficients have diverged (using a threshold on normalized cross
// correlation), or whether the noise strength has changed.
static int is_noise_model_different(aom_noise_model_t *const noise_model) {
  // These thresholds are kind of arbitrary and will likely need further tuning
  // (or exported as parameters). The threshold on noise strength is a weighted
  // difference between the noise strength histograms
  const double kCoeffThreshold = 0.9;
  const double kStrengthThreshold =
      0.005 * (1 << (noise_model->params.bit_depth - 8));
  for (int c = 0; c < 1; ++c) {
    const double corr =
        aom_normalized_cross_correlation(noise_model->latest_state[c].eqns.x,
                                         noise_model->combined_state[c].eqns.x,
                                         noise_model->combined_state[c].eqns.n);
    if (corr < kCoeffThreshold) return 1;

    const double dx =
        1.0 / noise_model->latest_state[c].strength_solver.num_bins;

    const aom_equation_system_t *latest_eqns =
        &noise_model->latest_state[c].strength_solver.eqns;
    const aom_equation_system_t *combined_eqns =
        &noise_model->combined_state[c].strength_solver.eqns;
    double diff = 0;
    double total_weight = 0;
    for (int j = 0; j < latest_eqns->n; ++j) {
      double weight = 0;
      for (int i = 0; i < latest_eqns->n; ++i) {
        weight += latest_eqns->A[i * latest_eqns->n + j];
      }
      weight = sqrt(weight);
      diff += weight * fabs(latest_eqns->x[j] - combined_eqns->x[j]);
      total_weight += weight;
    }
    if (diff * dx / total_weight > kStrengthThreshold) return 1;
  }
  return 0;
}

static int ar_equation_system_solve(aom_noise_state_t *state, int is_chroma) {
  const int ret = equation_system_solve(&state->eqns);
  state->ar_gain = 1.0;
  if (!ret) return ret;

  // Update the AR gain from the equation system as it will be used to fit
  // the noise strength as a function of intensity.  In the Yule-Walker
  // equations, the diagonal should be the variance of the correlated noise.
  // In the case of the least squares estimate, there will be some variability
  // in the diagonal. So use the mean of the diagonal as the estimate of
  // overall variance (this works for least squares or Yule-Walker formulation).
  double var = 0;
  const int n = state->eqns.n;
  for (int i = 0; i < (state->eqns.n - is_chroma); ++i) {
    var += state->eqns.A[i * n + i] / state->num_observations;
  }
  var /= (n - is_chroma);

  // Keep track of E(Y^2) = <b, x> + E(X^2)
  // In the case that we are using chroma and have an estimate of correlation
  // with luma we adjust that estimate slightly to remove the correlated bits by
  // subtracting out the last column of a scaled by our correlation estimate
  // from b. E(y^2) = <b - A(:, end)*x(end), x>
  double sum_covar = 0;
  for (int i = 0; i < state->eqns.n - is_chroma; ++i) {
    double bi = state->eqns.b[i];
    if (is_chroma) {
      bi -= state->eqns.A[i * n + (n - 1)] * state->eqns.x[n - 1];
    }
    sum_covar += (bi * state->eqns.x[i]) / state->num_observations;
  }
  // Now, get an estimate of the variance of uncorrelated noise signal and use
  // it to determine the gain of the AR filter.
  const double noise_var = AOMMAX(var - sum_covar, 1e-6);
  state->ar_gain = AOMMAX(1, sqrt(AOMMAX(var / noise_var, 1e-6)));
  return ret;
}

aom_noise_status_t aom_noise_model_update(
    aom_noise_model_t *const noise_model, const uint8_t *const data[3],
    const uint8_t *const denoised[3], int w, int h, int stride[3],
    int chroma_sub_log2[2], const uint8_t *const flat_blocks, int block_size) {
  const int num_blocks_w = (w + block_size - 1) / block_size;
  const int num_blocks_h = (h + block_size - 1) / block_size;
  int y_model_different = 0;
  int num_blocks = 0;
  int i = 0, channel = 0;

  if (block_size <= 1) {
    fprintf(stderr, "block_size = %d must be > 1\n", block_size);
    return AOM_NOISE_STATUS_INVALID_ARGUMENT;
  }

  if (block_size < noise_model->params.lag * 2 + 1) {
    fprintf(stderr, "block_size = %d must be >= %d\n", block_size,
            noise_model->params.lag * 2 + 1);
    return AOM_NOISE_STATUS_INVALID_ARGUMENT;
  }

  // Clear the latest equation system
  for (i = 0; i < 3; ++i) {
    equation_system_clear(&noise_model->latest_state[i].eqns);
    noise_model->latest_state[i].num_observations = 0;
    noise_strength_solver_clear(&noise_model->latest_state[i].strength_solver);
  }

  // Check that we have enough flat blocks
  for (i = 0; i < num_blocks_h * num_blocks_w; ++i) {
    if (flat_blocks[i]) {
      num_blocks++;
    }
  }

  if (num_blocks <= 1) {
    fprintf(stderr, "Not enough flat blocks to update noise estimate\n");
    return AOM_NOISE_STATUS_INSUFFICIENT_FLAT_BLOCKS;
  }

  for (channel = 0; channel < 3; ++channel) {
    int no_subsampling[2] = { 0, 0 };
    const uint8_t *alt_data = channel > 0 ? data[0] : 0;
    const uint8_t *alt_denoised = channel > 0 ? denoised[0] : 0;
    int *sub = channel > 0 ? chroma_sub_log2 : no_subsampling;
    const int is_chroma = channel != 0;
    if (!data[channel] || !denoised[channel]) break;
    if (!add_block_observations(noise_model, channel, data[channel],
                                denoised[channel], w, h, stride[channel], sub,
                                alt_data, alt_denoised, stride[0], flat_blocks,
                                block_size, num_blocks_w, num_blocks_h)) {
      fprintf(stderr, "Adding block observation failed\n");
      return AOM_NOISE_STATUS_INTERNAL_ERROR;
    }

    if (!ar_equation_system_solve(&noise_model->latest_state[channel],
                                  is_chroma)) {
      if (is_chroma) {
        set_chroma_coefficient_fallback_soln(
            &noise_model->latest_state[channel].eqns);
      } else {
        fprintf(stderr, "Solving latest noise equation system failed %d!\n",
                channel);
        return AOM_NOISE_STATUS_INTERNAL_ERROR;
      }
    }

    add_noise_std_observations(
        noise_model, channel, noise_model->latest_state[channel].eqns.x,
        data[channel], denoised[channel], w, h, stride[channel], sub, alt_data,
        stride[0], flat_blocks, block_size, num_blocks_w, num_blocks_h);

    if (!aom_noise_strength_solver_solve(
            &noise_model->latest_state[channel].strength_solver)) {
      fprintf(stderr, "Solving latest noise strength failed!\n");
      return AOM_NOISE_STATUS_INTERNAL_ERROR;
    }

    // Check noise characteristics and return if error.
    if (channel == 0 &&
        noise_model->combined_state[channel].strength_solver.num_equations >
            0 &&
        is_noise_model_different(noise_model)) {
      y_model_different = 1;
    }

    // Don't update the combined stats if the y model is different.
    if (y_model_different) continue;

    noise_model->combined_state[channel].num_observations +=
        noise_model->latest_state[channel].num_observations;
    equation_system_add(&noise_model->combined_state[channel].eqns,
                        &noise_model->latest_state[channel].eqns);
    if (!ar_equation_system_solve(&noise_model->combined_state[channel],
                                  is_chroma)) {
      if (is_chroma) {
        set_chroma_coefficient_fallback_soln(
            &noise_model->combined_state[channel].eqns);
      } else {
        fprintf(stderr, "Solving combined noise equation system failed %d!\n",
                channel);
        return AOM_NOISE_STATUS_INTERNAL_ERROR;
      }
    }

    noise_strength_solver_add(
        &noise_model->combined_state[channel].strength_solver,
        &noise_model->latest_state[channel].strength_solver);

    if (!aom_noise_strength_solver_solve(
            &noise_model->combined_state[channel].strength_solver)) {
      fprintf(stderr, "Solving combined noise strength failed!\n");
      return AOM_NOISE_STATUS_INTERNAL_ERROR;
    }
  }

  return y_model_different ? AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE
                           : AOM_NOISE_STATUS_OK;
}

void aom_noise_model_save_latest(aom_noise_model_t *noise_model) {
  for (int c = 0; c < 3; c++) {
    equation_system_copy(&noise_model->combined_state[c].eqns,
                         &noise_model->latest_state[c].eqns);
    equation_system_copy(&noise_model->combined_state[c].strength_solver.eqns,
                         &noise_model->latest_state[c].strength_solver.eqns);
    noise_model->combined_state[c].strength_solver.num_equations =
        noise_model->latest_state[c].strength_solver.num_equations;
    noise_model->combined_state[c].num_observations =
        noise_model->latest_state[c].num_observations;
    noise_model->combined_state[c].ar_gain =
        noise_model->latest_state[c].ar_gain;
  }
}

int aom_noise_model_get_grain_parameters(aom_noise_model_t *const noise_model,
                                         aom_film_grain_t *film_grain) {
  if (noise_model->params.lag > 3) {
    fprintf(stderr, "params.lag = %d > 3\n", noise_model->params.lag);
    return 0;
  }
  memset(film_grain, 0, sizeof(*film_grain));

  film_grain->apply_grain = 1;
  film_grain->update_parameters = 1;

  film_grain->ar_coeff_lag = noise_model->params.lag;

  // Convert the scaling functions to 8 bit values
  aom_noise_strength_lut_t scaling_points[3];
  aom_noise_strength_solver_fit_piecewise(
      &noise_model->combined_state[0].strength_solver, 14, scaling_points + 0);
  aom_noise_strength_solver_fit_piecewise(
      &noise_model->combined_state[1].strength_solver, 10, scaling_points + 1);
  aom_noise_strength_solver_fit_piecewise(
      &noise_model->combined_state[2].strength_solver, 10, scaling_points + 2);

  // Both the domain and the range of the scaling functions in the film_grain
  // are normalized to 8-bit (e.g., they are implicitly scaled during grain
  // synthesis).
  const double strength_divisor = 1 << (noise_model->params.bit_depth - 8);
  double max_scaling_value = 1e-4;
  for (int c = 0; c < 3; ++c) {
    for (int i = 0; i < scaling_points[c].num_points; ++i) {
      scaling_points[c].points[i][0] =
          AOMMIN(255, scaling_points[c].points[i][0] / strength_divisor);
      scaling_points[c].points[i][1] =
          AOMMIN(255, scaling_points[c].points[i][1] / strength_divisor);
      max_scaling_value =
          AOMMAX(scaling_points[c].points[i][1], max_scaling_value);
    }
  }

  // Scaling_shift values are in the range [8,11]
  const int max_scaling_value_log2 =
      clamp((int)floor(log2(max_scaling_value) + 1), 2, 5);
  film_grain->scaling_shift = 5 + (8 - max_scaling_value_log2);

  const double scale_factor = 1 << (8 - max_scaling_value_log2);
  film_grain->num_y_points = scaling_points[0].num_points;
  film_grain->num_cb_points = scaling_points[1].num_points;
  film_grain->num_cr_points = scaling_points[2].num_points;

  int(*film_grain_scaling[3])[2] = {
    film_grain->scaling_points_y,
    film_grain->scaling_points_cb,
    film_grain->scaling_points_cr,
  };
  for (int c = 0; c < 3; c++) {
    for (int i = 0; i < scaling_points[c].num_points; ++i) {
      film_grain_scaling[c][i][0] = (int)(scaling_points[c].points[i][0] + 0.5);
      film_grain_scaling[c][i][1] = clamp(
          (int)(scale_factor * scaling_points[c].points[i][1] + 0.5), 0, 255);
    }
  }
  aom_noise_strength_lut_free(scaling_points + 0);
  aom_noise_strength_lut_free(scaling_points + 1);
  aom_noise_strength_lut_free(scaling_points + 2);

  // Convert the ar_coeffs into 8-bit values
  const int n_coeff = noise_model->combined_state[0].eqns.n;
  double max_coeff = 1e-4, min_coeff = -1e-4;
  double y_corr[2] = { 0, 0 };
  double avg_luma_strength = 0;
  for (int c = 0; c < 3; c++) {
    aom_equation_system_t *eqns = &noise_model->combined_state[c].eqns;
    for (int i = 0; i < n_coeff; ++i) {
      max_coeff = AOMMAX(max_coeff, eqns->x[i]);
      min_coeff = AOMMIN(min_coeff, eqns->x[i]);
    }
    // Since the correlation between luma/chroma was computed in an already
    // scaled space, we adjust it in the un-scaled space.
    aom_noise_strength_solver_t *solver =
        &noise_model->combined_state[c].strength_solver;
    // Compute a weighted average of the strength for the channel.
    double average_strength = 0, total_weight = 0;
    for (int i = 0; i < solver->eqns.n; ++i) {
      double w = 0;
      for (int j = 0; j < solver->eqns.n; ++j) {
        w += solver->eqns.A[i * solver->eqns.n + j];
      }
      w = sqrt(w);
      average_strength += solver->eqns.x[i] * w;
      total_weight += w;
    }
    if (total_weight == 0)
      average_strength = 1;
    else
      average_strength /= total_weight;
    if (c == 0) {
      avg_luma_strength = average_strength;
    } else {
      y_corr[c - 1] = avg_luma_strength * eqns->x[n_coeff] / average_strength;
      max_coeff = AOMMAX(max_coeff, y_corr[c - 1]);
      min_coeff = AOMMIN(min_coeff, y_corr[c - 1]);
    }
  }
  // Shift value: AR coeffs range (values 6-9)
  // 6: [-2, 2),  7: [-1, 1), 8: [-0.5, 0.5), 9: [-0.25, 0.25)
  film_grain->ar_coeff_shift =
      clamp(7 - (int)AOMMAX(1 + floor(log2(max_coeff)), ceil(log2(-min_coeff))),
            6, 9);
  double scale_ar_coeff = 1 << film_grain->ar_coeff_shift;
  int *ar_coeffs[3] = {
    film_grain->ar_coeffs_y,
    film_grain->ar_coeffs_cb,
    film_grain->ar_coeffs_cr,
  };
  for (int c = 0; c < 3; ++c) {
    aom_equation_system_t *eqns = &noise_model->combined_state[c].eqns;
    for (int i = 0; i < n_coeff; ++i) {
      ar_coeffs[c][i] =
          clamp((int)round(scale_ar_coeff * eqns->x[i]), -128, 127);
    }
    if (c > 0) {
      ar_coeffs[c][n_coeff] =
          clamp((int)round(scale_ar_coeff * y_corr[c - 1]), -128, 127);
    }
  }

  // At the moment, the noise modeling code assumes that the chroma scaling
  // functions are a function of luma.
  film_grain->cb_mult = 128;       // 8 bits
  film_grain->cb_luma_mult = 192;  // 8 bits
  film_grain->cb_offset = 256;     // 9 bits

  film_grain->cr_mult = 128;       // 8 bits
  film_grain->cr_luma_mult = 192;  // 8 bits
  film_grain->cr_offset = 256;     // 9 bits

  film_grain->chroma_scaling_from_luma = 0;
  film_grain->grain_scale_shift = 0;
  film_grain->overlap_flag = 1;
  return 1;
}

static void pointwise_multiply(const float *a, float *b, int n) {
  for (int i = 0; i < n; ++i) {
    b[i] *= a[i];
  }
}

static float *get_half_cos_window(int block_size) {
  float *window_function =
      (float *)aom_malloc(block_size * block_size * sizeof(*window_function));
  for (int y = 0; y < block_size; ++y) {
    const double cos_yd = cos((.5 + y) * PI / block_size - PI / 2);
    for (int x = 0; x < block_size; ++x) {
      const double cos_xd = cos((.5 + x) * PI / block_size - PI / 2);
      window_function[y * block_size + x] = (float)(cos_yd * cos_xd);
    }
  }
  return window_function;
}

#define DITHER_AND_QUANTIZE(INT_TYPE, suffix)                               \
  static void dither_and_quantize_##suffix(                                 \
      float *result, int result_stride, INT_TYPE *denoised, int w, int h,   \
      int stride, int chroma_sub_w, int chroma_sub_h, int block_size,       \
      float block_normalization) {                                          \
    for (int y = 0; y < (h >> chroma_sub_h); ++y) {                         \
      for (int x = 0; x < (w >> chroma_sub_w); ++x) {                       \
        const int result_idx =                                              \
            (y + (block_size >> chroma_sub_h)) * result_stride + x +        \
            (block_size >> chroma_sub_w);                                   \
        INT_TYPE new_val = (INT_TYPE)AOMMIN(                                \
            AOMMAX(result[result_idx] * block_normalization + 0.5f, 0),     \
            block_normalization);                                           \
        const float err =                                                   \
            -(((float)new_val) / block_normalization - result[result_idx]); \
        denoised[y * stride + x] = new_val;                                 \
        if (x + 1 < (w >> chroma_sub_w)) {                                  \
          result[result_idx + 1] += err * 7.0f / 16.0f;                     \
        }                                                                   \
        if (y + 1 < (h >> chroma_sub_h)) {                                  \
          if (x > 0) {                                                      \
            result[result_idx + result_stride - 1] += err * 3.0f / 16.0f;   \
          }                                                                 \
          result[result_idx + result_stride] += err * 5.0f / 16.0f;         \
          if (x + 1 < (w >> chroma_sub_w)) {                                \
            result[result_idx + result_stride + 1] += err * 1.0f / 16.0f;   \
          }                                                                 \
        }                                                                   \
      }                                                                     \
    }                                                                       \
  }

DITHER_AND_QUANTIZE(uint8_t, lowbd);
DITHER_AND_QUANTIZE(uint16_t, highbd);

int aom_wiener_denoise_2d(const uint8_t *const data[3], uint8_t *denoised[3],
                          int w, int h, int stride[3], int chroma_sub[2],
                          float *noise_psd[3], int block_size, int bit_depth,
                          int use_highbd) {
  float *plane = NULL, *block = NULL, *window_full = NULL,
        *window_chroma = NULL;
  double *block_d = NULL, *plane_d = NULL;
  struct aom_noise_tx_t *tx_full = NULL;
  struct aom_noise_tx_t *tx_chroma = NULL;
  const int num_blocks_w = (w + block_size - 1) / block_size;
  const int num_blocks_h = (h + block_size - 1) / block_size;
  const int result_stride = (num_blocks_w + 2) * block_size;
  const int result_height = (num_blocks_h + 2) * block_size;
  float *result = NULL;
  int init_success = 1;
  aom_flat_block_finder_t block_finder_full;
  aom_flat_block_finder_t block_finder_chroma;
  const float kBlockNormalization = (float)((1 << bit_depth) - 1);
  if (chroma_sub[0] != chroma_sub[1]) {
    fprintf(stderr,
            "aom_wiener_denoise_2d doesn't handle different chroma "
            "subsampling");
    return 0;
  }
  init_success &= aom_flat_block_finder_init(&block_finder_full, block_size,
                                             bit_depth, use_highbd);
  result = (float *)aom_malloc((num_blocks_h + 2) * block_size * result_stride *
                               sizeof(*result));
  plane = (float *)aom_malloc(block_size * block_size * sizeof(*plane));
  block =
      (float *)aom_memalign(32, 2 * block_size * block_size * sizeof(*block));
  block_d = (double *)aom_malloc(block_size * block_size * sizeof(*block_d));
  plane_d = (double *)aom_malloc(block_size * block_size * sizeof(*plane_d));
  window_full = get_half_cos_window(block_size);
  tx_full = aom_noise_tx_malloc(block_size);

  if (chroma_sub[0] != 0) {
    init_success &= aom_flat_block_finder_init(&block_finder_chroma,
                                               block_size >> chroma_sub[0],
                                               bit_depth, use_highbd);
    window_chroma = get_half_cos_window(block_size >> chroma_sub[0]);
    tx_chroma = aom_noise_tx_malloc(block_size >> chroma_sub[0]);
  } else {
    window_chroma = window_full;
    tx_chroma = tx_full;
  }

  init_success &= (tx_full != NULL) && (tx_chroma != NULL) && (plane != NULL) &&
                  (plane_d != NULL) && (block != NULL) && (block_d != NULL) &&
                  (window_full != NULL) && (window_chroma != NULL) &&
                  (result != NULL);
  for (int c = init_success ? 0 : 3; c < 3; ++c) {
    float *window_function = c == 0 ? window_full : window_chroma;
    aom_flat_block_finder_t *block_finder = &block_finder_full;
    const int chroma_sub_h = c > 0 ? chroma_sub[1] : 0;
    const int chroma_sub_w = c > 0 ? chroma_sub[0] : 0;
    struct aom_noise_tx_t *tx =
        (c > 0 && chroma_sub[0] > 0) ? tx_chroma : tx_full;
    if (!data[c] || !denoised[c]) continue;
    if (c > 0 && chroma_sub[0] != 0) {
      block_finder = &block_finder_chroma;
    }
    memset(result, 0, sizeof(*result) * result_stride * result_height);
    // Do overlapped block processing (half overlapped). The block rows can
    // easily be done in parallel
    for (int offsy = 0; offsy < (block_size >> chroma_sub_h);
         offsy += (block_size >> chroma_sub_h) / 2) {
      for (int offsx = 0; offsx < (block_size >> chroma_sub_w);
           offsx += (block_size >> chroma_sub_w) / 2) {
        // Pad the boundary when processing each block-set.
        for (int by = -1; by < num_blocks_h; ++by) {
          for (int bx = -1; bx < num_blocks_w; ++bx) {
            const int pixels_per_block =
                (block_size >> chroma_sub_w) * (block_size >> chroma_sub_h);
            aom_flat_block_finder_extract_block(
                block_finder, data[c], w >> chroma_sub_w, h >> chroma_sub_h,
                stride[c], bx * (block_size >> chroma_sub_w) + offsx,
                by * (block_size >> chroma_sub_h) + offsy, plane_d, block_d);
            for (int j = 0; j < pixels_per_block; ++j) {
              block[j] = (float)block_d[j];
              plane[j] = (float)plane_d[j];
            }
            pointwise_multiply(window_function, block, pixels_per_block);
            aom_noise_tx_forward(tx, block);
            aom_noise_tx_filter(tx, noise_psd[c]);
            aom_noise_tx_inverse(tx, block);

            // Apply window function to the plane approximation (we will apply
            // it to the sum of plane + block when composing the results).
            pointwise_multiply(window_function, plane, pixels_per_block);

            for (int y = 0; y < (block_size >> chroma_sub_h); ++y) {
              const int y_result =
                  y + (by + 1) * (block_size >> chroma_sub_h) + offsy;
              for (int x = 0; x < (block_size >> chroma_sub_w); ++x) {
                const int x_result =
                    x + (bx + 1) * (block_size >> chroma_sub_w) + offsx;
                result[y_result * result_stride + x_result] +=
                    (block[y * (block_size >> chroma_sub_w) + x] +
                     plane[y * (block_size >> chroma_sub_w) + x]) *
                    window_function[y * (block_size >> chroma_sub_w) + x];
              }
            }
          }
        }
      }
    }
    if (use_highbd) {
      dither_and_quantize_highbd(result, result_stride, (uint16_t *)denoised[c],
                                 w, h, stride[c], chroma_sub_w, chroma_sub_h,
                                 block_size, kBlockNormalization);
    } else {
      dither_and_quantize_lowbd(result, result_stride, denoised[c], w, h,
                                stride[c], chroma_sub_w, chroma_sub_h,
                                block_size, kBlockNormalization);
    }
  }
  aom_free(result);
  aom_free(plane);
  aom_free(block);
  aom_free(plane_d);
  aom_free(block_d);
  aom_free(window_full);

  aom_noise_tx_free(tx_full);

  aom_flat_block_finder_free(&block_finder_full);
  if (chroma_sub[0] != 0) {
    aom_flat_block_finder_free(&block_finder_chroma);
    aom_free(window_chroma);
    aom_noise_tx_free(tx_chroma);
  }
  return init_success;
}

struct aom_denoise_and_model_t {
  int block_size;
  int bit_depth;
  float noise_level;

  // Size of current denoised buffer and flat_block buffer
  int width;
  int height;
  int y_stride;
  int uv_stride;
  int num_blocks_w;
  int num_blocks_h;

  // Buffers for image and noise_psd allocated on the fly
  float *noise_psd[3];
  uint8_t *denoised[3];
  uint8_t *flat_blocks;

  aom_flat_block_finder_t flat_block_finder;
  aom_noise_model_t noise_model;
};

struct aom_denoise_and_model_t *aom_denoise_and_model_alloc(int bit_depth,
                                                            int block_size,
                                                            float noise_level) {
  struct aom_denoise_and_model_t *ctx =
      (struct aom_denoise_and_model_t *)aom_malloc(
          sizeof(struct aom_denoise_and_model_t));
  if (!ctx) {
    fprintf(stderr, "Unable to allocate denoise_and_model struct\n");
    return NULL;
  }
  memset(ctx, 0, sizeof(*ctx));

  ctx->block_size = block_size;
  ctx->noise_level = noise_level;
  ctx->bit_depth = bit_depth;

  ctx->noise_psd[0] =
      aom_malloc(sizeof(*ctx->noise_psd[0]) * block_size * block_size);
  ctx->noise_psd[1] =
      aom_malloc(sizeof(*ctx->noise_psd[1]) * block_size * block_size);
  ctx->noise_psd[2] =
      aom_malloc(sizeof(*ctx->noise_psd[2]) * block_size * block_size);
  if (!ctx->noise_psd[0] || !ctx->noise_psd[1] || !ctx->noise_psd[2]) {
    fprintf(stderr, "Unable to allocate noise PSD buffers\n");
    aom_denoise_and_model_free(ctx);
    return NULL;
  }
  return ctx;
}

void aom_denoise_and_model_free(struct aom_denoise_and_model_t *ctx) {
  aom_free(ctx->flat_blocks);
  for (int i = 0; i < 3; ++i) {
    aom_free(ctx->denoised[i]);
    aom_free(ctx->noise_psd[i]);
  }
  aom_noise_model_free(&ctx->noise_model);
  aom_flat_block_finder_free(&ctx->flat_block_finder);
  aom_free(ctx);
}

static int denoise_and_model_realloc_if_necessary(
    struct aom_denoise_and_model_t *ctx, YV12_BUFFER_CONFIG *sd) {
  if (ctx->width == sd->y_width && ctx->height == sd->y_height &&
      ctx->y_stride == sd->y_stride && ctx->uv_stride == sd->uv_stride)
    return 1;
  const int use_highbd = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
  const int block_size = ctx->block_size;

  ctx->width = sd->y_width;
  ctx->height = sd->y_height;
  ctx->y_stride = sd->y_stride;
  ctx->uv_stride = sd->uv_stride;

  for (int i = 0; i < 3; ++i) {
    aom_free(ctx->denoised[i]);
    ctx->denoised[i] = NULL;
  }
  aom_free(ctx->flat_blocks);
  ctx->flat_blocks = NULL;

  ctx->denoised[0] = aom_malloc((sd->y_stride * sd->y_height) << use_highbd);
  ctx->denoised[1] = aom_malloc((sd->uv_stride * sd->uv_height) << use_highbd);
  ctx->denoised[2] = aom_malloc((sd->uv_stride * sd->uv_height) << use_highbd);
  if (!ctx->denoised[0] || !ctx->denoised[1] || !ctx->denoised[2]) {
    fprintf(stderr, "Unable to allocate denoise buffers\n");
    return 0;
  }
  ctx->num_blocks_w = (sd->y_width + ctx->block_size - 1) / ctx->block_size;
  ctx->num_blocks_h = (sd->y_height + ctx->block_size - 1) / ctx->block_size;
  ctx->flat_blocks = aom_malloc(ctx->num_blocks_w * ctx->num_blocks_h);

  aom_flat_block_finder_free(&ctx->flat_block_finder);
  if (!aom_flat_block_finder_init(&ctx->flat_block_finder, ctx->block_size,
                                  ctx->bit_depth, use_highbd)) {
    fprintf(stderr, "Unable to init flat block finder\n");
    return 0;
  }

  const aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 3,
                                            ctx->bit_depth, use_highbd };
  aom_noise_model_free(&ctx->noise_model);
  if (!aom_noise_model_init(&ctx->noise_model, params)) {
    fprintf(stderr, "Unable to init noise model\n");
    return 0;
  }

  // Simply use a flat PSD (although we could use the flat blocks to estimate
  // PSD) those to estimate an actual noise PSD)
  const float y_noise_level =
      aom_noise_psd_get_default_value(ctx->block_size, ctx->noise_level);
  const float uv_noise_level = aom_noise_psd_get_default_value(
      ctx->block_size >> sd->subsampling_x, ctx->noise_level);
  for (int i = 0; i < block_size * block_size; ++i) {
    ctx->noise_psd[0][i] = y_noise_level;
    ctx->noise_psd[1][i] = ctx->noise_psd[2][i] = uv_noise_level;
  }
  return 1;
}

int aom_denoise_and_model_run(struct aom_denoise_and_model_t *ctx,
                              YV12_BUFFER_CONFIG *sd,
                              aom_film_grain_t *film_grain) {
  const int block_size = ctx->block_size;
  const int use_highbd = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
  uint8_t *raw_data[3] = {
    use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->y_buffer) : sd->y_buffer,
    use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->u_buffer) : sd->u_buffer,
    use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->v_buffer) : sd->v_buffer,
  };
  const uint8_t *const data[3] = { raw_data[0], raw_data[1], raw_data[2] };
  int strides[3] = { sd->y_stride, sd->uv_stride, sd->uv_stride };
  int chroma_sub_log2[2] = { sd->subsampling_x, sd->subsampling_y };

  if (!denoise_and_model_realloc_if_necessary(ctx, sd)) {
    fprintf(stderr, "Unable to realloc buffers\n");
    return 0;
  }

  aom_flat_block_finder_run(&ctx->flat_block_finder, data[0], sd->y_width,
                            sd->y_height, strides[0], ctx->flat_blocks);

  if (!aom_wiener_denoise_2d(data, ctx->denoised, sd->y_width, sd->y_height,
                             strides, chroma_sub_log2, ctx->noise_psd,
                             block_size, ctx->bit_depth, use_highbd)) {
    fprintf(stderr, "Unable to denoise image\n");
    return 0;
  }

  const aom_noise_status_t status = aom_noise_model_update(
      &ctx->noise_model, data, (const uint8_t *const *)ctx->denoised,
      sd->y_width, sd->y_height, strides, chroma_sub_log2, ctx->flat_blocks,
      block_size);
  int have_noise_estimate = 0;
  if (status == AOM_NOISE_STATUS_OK) {
    have_noise_estimate = 1;
  } else if (status == AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE) {
    aom_noise_model_save_latest(&ctx->noise_model);
    have_noise_estimate = 1;
  } else {
    // Unable to update noise model; proceed if we have a previous estimate.
    have_noise_estimate =
        (ctx->noise_model.combined_state[0].strength_solver.num_equations > 0);
  }

  film_grain->apply_grain = 0;
  if (have_noise_estimate) {
    if (!aom_noise_model_get_grain_parameters(&ctx->noise_model, film_grain)) {
      fprintf(stderr, "Unable to get grain parameters.\n");
      return 0;
    }
    if (!film_grain->random_seed) {
      film_grain->random_seed = 1071;
    }
    memcpy(raw_data[0], ctx->denoised[0],
           (strides[0] * sd->y_height) << use_highbd);
    memcpy(raw_data[1], ctx->denoised[1],
           (strides[1] * sd->uv_height) << use_highbd);
    memcpy(raw_data[2], ctx->denoised[2],
           (strides[2] * sd->uv_height) << use_highbd);
  }
  return 1;
}