summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/memory/scoped_ptr.h
blob: 282a014869b6f12231df0b4c753506c5f5494a06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Scopers help you manage ownership of a pointer, helping you easily manage a
// pointer within a scope, and automatically destroying the pointer at the end
// of a scope.  There are two main classes you will use, which correspond to the
// operators new/delete and new[]/delete[].
//
// Example usage (scoped_ptr<T>):
//   {
//     scoped_ptr<Foo> foo(new Foo("wee"));
//   }  // foo goes out of scope, releasing the pointer with it.
//
//   {
//     scoped_ptr<Foo> foo;          // No pointer managed.
//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
//     foo->Method();                // Foo::Method() called.
//     foo.get()->Method();          // Foo::Method() called.
//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
//                                   // manages a pointer.
//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
//                                   // manages a pointer.
//   }  // foo wasn't managing a pointer, so nothing was destroyed.
//
// Example usage (scoped_ptr<T[]>):
//   {
//     scoped_ptr<Foo[]> foo(new Foo[100]);
//     foo.get()->Method();  // Foo::Method on the 0th element.
//     foo[10].Method();     // Foo::Method on the 10th element.
//   }
//
// These scopers also implement part of the functionality of C++11 unique_ptr
// in that they are "movable but not copyable."  You can use the scopers in
// the parameter and return types of functions to signify ownership transfer
// in to and out of a function.  When calling a function that has a scoper
// as the argument type, it must be called with an rvalue of a scoper, which
// can be created by using std::move(), or the result of another function that
// generates a temporary; passing by copy will NOT work.  Here is an example
// using scoped_ptr:
//
//   void TakesOwnership(scoped_ptr<Foo> arg) {
//     // Do something with arg.
//   }
//   scoped_ptr<Foo> CreateFoo() {
//     // No need for calling std::move() for returning a move-only value, or
//     // when you already have an rvalue as we do here.
//     return scoped_ptr<Foo>(new Foo("new"));
//   }
//   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
//     return arg;
//   }
//
//   {
//     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
//     TakesOwnership(std::move(ptr));       // ptr no longer owns Foo("yay").
//     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
//     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
//         PassThru(std::move(ptr2));        // ptr2 is correspondingly nullptr.
//   }
//
// Notice that if you do not call std::move() when returning from PassThru(), or
// when invoking TakesOwnership(), the code will not compile because scopers
// are not copyable; they only implement move semantics which require calling
// the std::move() function to signify a destructive transfer of state.
// CreateFoo() is different though because we are constructing a temporary on
// the return line and thus can avoid needing to call std::move().
//
// The conversion move-constructor properly handles upcast in initialization,
// i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
//
//   scoped_ptr<Foo> foo(new Foo());
//   scoped_ptr<FooParent> parent(std::move(foo));

#ifndef BASE_MEMORY_SCOPED_PTR_H_
#define BASE_MEMORY_SCOPED_PTR_H_

// This is an implementation designed to match the anticipated future TR2
// implementation of the scoped_ptr class.

#include <assert.h>
#include <stddef.h>
#include <stdlib.h>

#include <iosfwd>
#include <memory>
#include <type_traits>
#include <utility>

#include "base/compiler_specific.h"
#include "base/macros.h"
#include "base/move.h"
#include "base/template_util.h"

namespace base {

namespace subtle {
class RefCountedBase;
class RefCountedThreadSafeBase;
}  // namespace subtle

// Function object which invokes 'free' on its parameter, which must be
// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
//
// scoped_ptr<int, base::FreeDeleter> foo_ptr(
//     static_cast<int*>(malloc(sizeof(int))));
struct FreeDeleter {
  inline void operator()(void* ptr) const {
    free(ptr);
  }
};

namespace internal {

template <typename T> struct IsNotRefCounted {
  enum {
    value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
        !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
            value
  };
};

// Minimal implementation of the core logic of scoped_ptr, suitable for
// reuse in both scoped_ptr and its specializations.
template <class T, class D>
class scoped_ptr_impl {
 public:
  explicit scoped_ptr_impl(T* p) : data_(p) {}

  // Initializer for deleters that have data parameters.
  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}

  // Templated constructor that destructively takes the value from another
  // scoped_ptr_impl.
  template <typename U, typename V>
  scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
      : data_(other->release(), other->get_deleter()) {
    // We do not support move-only deleters.  We could modify our move
    // emulation to have base::subtle::move() and base::subtle::forward()
    // functions that are imperfect emulations of their C++11 equivalents,
    // but until there's a requirement, just assume deleters are copyable.
  }

  template <typename U, typename V>
  void TakeState(scoped_ptr_impl<U, V>* other) {
    // See comment in templated constructor above regarding lack of support
    // for move-only deleters.
    reset(other->release());
    get_deleter() = other->get_deleter();
  }

  ~scoped_ptr_impl() {
    // Match libc++, which calls reset() in its destructor.
    // Use nullptr as the new value for three reasons:
    // 1. libc++ does it.
    // 2. Avoids infinitely recursing into destructors if two classes are owned
    //    in a reference cycle (see ScopedPtrTest.ReferenceCycle).
    // 3. If |this| is accessed in the future, in a use-after-free bug, attempts
    //    to dereference |this|'s pointer should cause either a failure or a
    //    segfault closer to the problem. If |this| wasn't reset to nullptr,
    //    the access would cause the deleted memory to be read or written
    //    leading to other more subtle issues.
    reset(nullptr);
  }

  void reset(T* p) {
    // Match C++11's definition of unique_ptr::reset(), which requires changing
    // the pointer before invoking the deleter on the old pointer. This prevents
    // |this| from being accessed after the deleter is run, which may destroy
    // |this|.
    T* old = data_.ptr;
    data_.ptr = p;
    if (old != nullptr)
      static_cast<D&>(data_)(old);
  }

  T* get() const { return data_.ptr; }

  D& get_deleter() { return data_; }
  const D& get_deleter() const { return data_; }

  void swap(scoped_ptr_impl& p2) {
    // Standard swap idiom: 'using std::swap' ensures that std::swap is
    // present in the overload set, but we call swap unqualified so that
    // any more-specific overloads can be used, if available.
    using std::swap;
    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
    swap(data_.ptr, p2.data_.ptr);
  }

  T* release() {
    T* old_ptr = data_.ptr;
    data_.ptr = nullptr;
    return old_ptr;
  }

 private:
  // Needed to allow type-converting constructor.
  template <typename U, typename V> friend class scoped_ptr_impl;

  // Use the empty base class optimization to allow us to have a D
  // member, while avoiding any space overhead for it when D is an
  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
  // discussion of this technique.
  struct Data : public D {
    explicit Data(T* ptr_in) : ptr(ptr_in) {}
    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
    T* ptr;
  };

  Data data_;

  DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
};

}  // namespace internal

}  // namespace base

// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
// automatically deletes the pointer it holds (if any).
// That is, scoped_ptr<T> owns the T object that it points to.
// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
// dereference it, you get the thread safety guarantees of T.
//
// The size of scoped_ptr is small. On most compilers, when using the
// std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters
// will increase the size proportional to whatever state they need to have. See
// comments inside scoped_ptr_impl<> for details.
//
// Current implementation targets having a strict subset of  C++11's
// unique_ptr<> features. Known deficiencies include not supporting move-only
// deleteres, function pointers as deleters, and deleters with reference
// types.
template <class T, class D = std::default_delete<T>>
class scoped_ptr {
  DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)

  static_assert(!std::is_array<T>::value,
                "scoped_ptr doesn't support array with size");
  static_assert(base::internal::IsNotRefCounted<T>::value,
                "T is a refcounted type and needs a scoped_refptr");

 public:
  // The element and deleter types.
  using element_type = T;
  using deleter_type = D;

  // Constructor.  Defaults to initializing with nullptr.
  scoped_ptr() : impl_(nullptr) {}

  // Constructor.  Takes ownership of p.
  explicit scoped_ptr(element_type* p) : impl_(p) {}

  // Constructor.  Allows initialization of a stateful deleter.
  scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}

  // Constructor.  Allows construction from a nullptr.
  scoped_ptr(std::nullptr_t) : impl_(nullptr) {}

  // Move constructor.
  //
  // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and
  // not just the conversion constructor) in order to warn on pessimizing moves.
  // The requirements for the move constructor are specified in C++11
  // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As
  // we don't support reference (or move-only) deleters, the post conditions are
  // trivially true: we always copy construct the deleter from other's deleter.
  scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}

  // Conversion constructor.  Allows construction from a scoped_ptr rvalue for a
  // convertible type and deleter.
  //
  // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only
  // participate in overload resolution if all the following are true:
  // - U is implicitly convertible to T: this is important for 2 reasons:
  //     1. So type traits don't incorrectly return true, e.g.
  //          std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value
  //        should be false.
  //     2. To make sure code like this compiles:
  //        void F(scoped_ptr<int>);
  //        void F(scoped_ptr<Base>);
  //        // Ambiguous since both conversion constructors match.
  //        F(scoped_ptr<Derived>());
  // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to
  //   scoped_ptr<T>.
  // - D is a reference type and E is the same type, or D is not a reference
  //   type and E is implicitly convertible to D: again, we don't support
  //   reference deleters, so we only worry about the latter requirement.
  template <typename U,
            typename E,
            typename std::enable_if<!std::is_array<U>::value &&
                                    std::is_convertible<U*, T*>::value &&
                                    std::is_convertible<E, D>::value>::type* =
                nullptr>
  scoped_ptr(scoped_ptr<U, E>&& other)
      : impl_(&other.impl_) {}

  // operator=.
  //
  // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to
  // require a move assignment operator to trigger the pessimizing move warning:
  // in this case, the warning triggers when moving a temporary. For consistency
  // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3
  // defines several requirements around this: like the move constructor, the
  // requirements are simplified by the fact that we don't support move-only or
  // reference deleters.
  scoped_ptr& operator=(scoped_ptr&& rhs) {
    impl_.TakeState(&rhs.impl_);
    return *this;
  }

  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
  // type and deleter.
  //
  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
  // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the
  // requirement for this operator, but like the conversion constructor, the
  // requirements are greatly simplified by not supporting move-only or
  // reference deleters.
  template <typename U,
            typename E,
            typename std::enable_if<!std::is_array<U>::value &&
                                    std::is_convertible<U*, T*>::value &&
                                    // Note that this really should be
                                    // std::is_assignable, but <type_traits>
                                    // appears to be missing this on some
                                    // platforms. This is close enough (though
                                    // it's not the same).
                                    std::is_convertible<D, E>::value>::type* =
                nullptr>
  scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) {
    impl_.TakeState(&rhs.impl_);
    return *this;
  }

  // operator=.  Allows assignment from a nullptr. Deletes the currently owned
  // object, if any.
  scoped_ptr& operator=(std::nullptr_t) {
    reset();
    return *this;
  }

  // Reset.  Deletes the currently owned object, if any.
  // Then takes ownership of a new object, if given.
  void reset(element_type* p = nullptr) { impl_.reset(p); }

  // Accessors to get the owned object.
  // operator* and operator-> will assert() if there is no current object.
  element_type& operator*() const {
    assert(impl_.get() != nullptr);
    return *impl_.get();
  }
  element_type* operator->() const  {
    assert(impl_.get() != nullptr);
    return impl_.get();
  }
  element_type* get() const { return impl_.get(); }

  // Access to the deleter.
  deleter_type& get_deleter() { return impl_.get_deleter(); }
  const deleter_type& get_deleter() const { return impl_.get_deleter(); }

  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
  // implicitly convertible to a real bool (which is dangerous).
  //
  // Note that this trick is only safe when the == and != operators
  // are declared explicitly, as otherwise "scoped_ptr1 ==
  // scoped_ptr2" will compile but do the wrong thing (i.e., convert
  // to Testable and then do the comparison).
 private:
  typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
      scoped_ptr::*Testable;

 public:
  operator Testable() const {
    return impl_.get() ? &scoped_ptr::impl_ : nullptr;
  }

  // Swap two scoped pointers.
  void swap(scoped_ptr& p2) {
    impl_.swap(p2.impl_);
  }

  // Release a pointer.
  // The return value is the current pointer held by this object. If this object
  // holds a nullptr, the return value is nullptr. After this operation, this
  // object will hold a nullptr, and will not own the object any more.
  element_type* release() WARN_UNUSED_RESULT {
    return impl_.release();
  }

 private:
  // Needed to reach into |impl_| in the constructor.
  template <typename U, typename V> friend class scoped_ptr;
  base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;

  // Forbidden for API compatibility with std::unique_ptr.
  explicit scoped_ptr(int disallow_construction_from_null);
};

template <class T, class D>
class scoped_ptr<T[], D> {
  DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)

 public:
  // The element and deleter types.
  using element_type = T;
  using deleter_type = D;

  // Constructor.  Defaults to initializing with nullptr.
  scoped_ptr() : impl_(nullptr) {}

  // Constructor. Stores the given array. Note that the argument's type
  // must exactly match T*. In particular:
  // - it cannot be a pointer to a type derived from T, because it is
  //   inherently unsafe in the general case to access an array through a
  //   pointer whose dynamic type does not match its static type (eg., if
  //   T and the derived types had different sizes access would be
  //   incorrectly calculated). Deletion is also always undefined
  //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
  // - it cannot be const-qualified differently from T per unique_ptr spec
  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
  //   to work around this may use const_cast<const T*>().
  explicit scoped_ptr(element_type* array) : impl_(array) {}

  // Constructor.  Allows construction from a nullptr.
  scoped_ptr(std::nullptr_t) : impl_(nullptr) {}

  // Constructor.  Allows construction from a scoped_ptr rvalue.
  scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}

  // operator=.  Allows assignment from a scoped_ptr rvalue.
  scoped_ptr& operator=(scoped_ptr&& rhs) {
    impl_.TakeState(&rhs.impl_);
    return *this;
  }

  // operator=.  Allows assignment from a nullptr. Deletes the currently owned
  // array, if any.
  scoped_ptr& operator=(std::nullptr_t) {
    reset();
    return *this;
  }

  // Reset.  Deletes the currently owned array, if any.
  // Then takes ownership of a new object, if given.
  void reset(element_type* array = nullptr) { impl_.reset(array); }

  // Accessors to get the owned array.
  element_type& operator[](size_t i) const {
    assert(impl_.get() != nullptr);
    return impl_.get()[i];
  }
  element_type* get() const { return impl_.get(); }

  // Access to the deleter.
  deleter_type& get_deleter() { return impl_.get_deleter(); }
  const deleter_type& get_deleter() const { return impl_.get_deleter(); }

  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
  // implicitly convertible to a real bool (which is dangerous).
 private:
  typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
      scoped_ptr::*Testable;

 public:
  operator Testable() const {
    return impl_.get() ? &scoped_ptr::impl_ : nullptr;
  }

  // Swap two scoped pointers.
  void swap(scoped_ptr& p2) {
    impl_.swap(p2.impl_);
  }

  // Release a pointer.
  // The return value is the current pointer held by this object. If this object
  // holds a nullptr, the return value is nullptr. After this operation, this
  // object will hold a nullptr, and will not own the object any more.
  element_type* release() WARN_UNUSED_RESULT {
    return impl_.release();
  }

 private:
  // Force element_type to be a complete type.
  enum { type_must_be_complete = sizeof(element_type) };

  // Actually hold the data.
  base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;

  // Disable initialization from any type other than element_type*, by
  // providing a constructor that matches such an initialization, but is
  // private and has no definition. This is disabled because it is not safe to
  // call delete[] on an array whose static type does not match its dynamic
  // type.
  template <typename U> explicit scoped_ptr(U* array);
  explicit scoped_ptr(int disallow_construction_from_null);

  // Disable reset() from any type other than element_type*, for the same
  // reasons as the constructor above.
  template <typename U> void reset(U* array);
  void reset(int disallow_reset_from_null);
};

// Free functions
template <class T, class D>
void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
  p1.swap(p2);
}

template <class T1, class D1, class T2, class D2>
bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
  return p1.get() == p2.get();
}
template <class T, class D>
bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) {
  return p.get() == nullptr;
}
template <class T, class D>
bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) {
  return p.get() == nullptr;
}

template <class T1, class D1, class T2, class D2>
bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
  return !(p1 == p2);
}
template <class T, class D>
bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) {
  return !(p == nullptr);
}
template <class T, class D>
bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) {
  return !(p == nullptr);
}

template <class T1, class D1, class T2, class D2>
bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
  return p1.get() < p2.get();
}
template <class T, class D>
bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) {
  return p.get() < nullptr;
}
template <class T, class D>
bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) {
  return nullptr < p.get();
}

template <class T1, class D1, class T2, class D2>
bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
  return p2 < p1;
}
template <class T, class D>
bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) {
  return nullptr < p;
}
template <class T, class D>
bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) {
  return p < nullptr;
}

template <class T1, class D1, class T2, class D2>
bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
  return !(p1 > p2);
}
template <class T, class D>
bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) {
  return !(p > nullptr);
}
template <class T, class D>
bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) {
  return !(nullptr > p);
}

template <class T1, class D1, class T2, class D2>
bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
  return !(p1 < p2);
}
template <class T, class D>
bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) {
  return !(p < nullptr);
}
template <class T, class D>
bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) {
  return !(nullptr < p);
}

// A function to convert T* into scoped_ptr<T>
// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
template <typename T>
scoped_ptr<T> make_scoped_ptr(T* ptr) {
  return scoped_ptr<T>(ptr);
}

template <typename T>
std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) {
  return out << p.get();
}

#endif  // BASE_MEMORY_SCOPED_PTR_H_