1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* PQG parameter generation/verification. Based on FIPS 186-3.
*/
#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif
#include "prerr.h"
#include "secerr.h"
#include "prtypes.h"
#include "blapi.h"
#include "secitem.h"
#include "mpi.h"
#include "mpprime.h"
#include "mplogic.h"
#include "secmpi.h"
#define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */
typedef enum {
FIPS186_1_TYPE, /* Probablistic */
FIPS186_3_TYPE, /* Probablistic */
FIPS186_3_ST_TYPE /* Shawe-Taylor provable */
} pqgGenType;
/*
* These test iterations are quite a bit larger than we previously had.
* This is because FIPS 186-3 is worried about the primes in PQG generation.
* It may be possible to purposefully construct composites which more
* iterations of Miller-Rabin than the for your normal randomly selected
* numbers.There are 3 ways to counter this: 1) use one of the cool provably
* prime algorithms (which would require a lot more work than DSA-2 deservers.
* 2) add a Lucas primality test (which requires coding a Lucas primality test,
* or 3) use a larger M-R test count. I chose the latter. It increases the time
* that it takes to prove the selected prime, but it shouldn't increase the
* overall time to run the algorithm (non-primes should still faile M-R
* realively quickly). If you want to get that last bit of performance,
* implement Lucas and adjust these two functions. See FIPS 186-3 Appendix C
* and F for more information.
*/
static int
prime_testcount_p(int L, int N)
{
switch (L) {
case 1024:
return 40;
case 2048:
return 56;
case 3072:
return 64;
default:
break;
}
return 50; /* L = 512-960 */
}
/* The q numbers are different if you run M-R followd by Lucas. I created
* a separate function so if someone wanted to add the Lucas check, they
* could do so fairly easily */
static int
prime_testcount_q(int L, int N)
{
return prime_testcount_p(L, N);
}
/*
* generic function to make sure our input matches DSA2 requirements
* this gives us one place to go if we need to bump the requirements in the
* future.
*/
static SECStatus
pqg_validate_dsa2(unsigned int L, unsigned int N)
{
switch (L) {
case 1024:
if (N != DSA1_Q_BITS) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
break;
case 2048:
if ((N != 224) && (N != 256)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
break;
case 3072:
if (N != 256) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
break;
default:
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
return SECSuccess;
}
static unsigned int
pqg_get_default_N(unsigned int L)
{
unsigned int N = 0;
switch (L) {
case 1024:
N = DSA1_Q_BITS;
break;
case 2048:
N = 224;
break;
case 3072:
N = 256;
break;
default:
PORT_SetError(SEC_ERROR_INVALID_ARGS);
break; /* N already set to zero */
}
return N;
}
/*
* Select the lowest hash algorithm usable
*/
static HASH_HashType
getFirstHash(unsigned int L, unsigned int N)
{
if (N < 224) {
return HASH_AlgSHA1;
}
if (N < 256) {
return HASH_AlgSHA224;
}
if (N < 384) {
return HASH_AlgSHA256;
}
if (N < 512) {
return HASH_AlgSHA384;
}
return HASH_AlgSHA512;
}
/*
* find the next usable hash algorthim
*/
static HASH_HashType
getNextHash(HASH_HashType hashtype)
{
switch (hashtype) {
case HASH_AlgSHA1:
hashtype = HASH_AlgSHA224;
break;
case HASH_AlgSHA224:
hashtype = HASH_AlgSHA256;
break;
case HASH_AlgSHA256:
hashtype = HASH_AlgSHA384;
break;
case HASH_AlgSHA384:
hashtype = HASH_AlgSHA512;
break;
case HASH_AlgSHA512:
default:
hashtype = HASH_AlgTOTAL;
break;
}
return hashtype;
}
static unsigned int
HASH_ResultLen(HASH_HashType type)
{
const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
PORT_Assert(hash_obj != NULL);
if (hash_obj == NULL) {
/* type is always a valid HashType. Thus a null hash_obj must be a bug */
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return 0;
}
PORT_Assert(hash_obj->length != 0);
return hash_obj->length;
}
static SECStatus
HASH_HashBuf(HASH_HashType type, unsigned char *dest,
const unsigned char *src, PRUint32 src_len)
{
const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
void *hashcx = NULL;
unsigned int dummy;
if (hash_obj == NULL) {
return SECFailure;
}
hashcx = hash_obj->create();
if (hashcx == NULL) {
return SECFailure;
}
hash_obj->begin(hashcx);
hash_obj->update(hashcx, src, src_len);
hash_obj->end(hashcx, dest, &dummy, hash_obj->length);
hash_obj->destroy(hashcx, PR_TRUE);
return SECSuccess;
}
unsigned int
PQG_GetLength(const SECItem *obj)
{
unsigned int len = obj->len;
if (obj->data == NULL) {
return 0;
}
if (len > 1 && obj->data[0] == 0) {
len--;
}
return len;
}
SECStatus
PQG_Check(const PQGParams *params)
{
unsigned int L, N;
SECStatus rv = SECSuccess;
if (params == NULL) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
L = PQG_GetLength(¶ms->prime) * PR_BITS_PER_BYTE;
N = PQG_GetLength(¶ms->subPrime) * PR_BITS_PER_BYTE;
if (L < 1024) {
int j;
/* handle DSA1 pqg parameters with less thatn 1024 bits*/
if (N != DSA1_Q_BITS) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
j = PQG_PBITS_TO_INDEX(L);
if (j < 0) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
rv = SECFailure;
}
} else {
/* handle DSA2 parameters (includes DSA1, 1024 bits) */
rv = pqg_validate_dsa2(L, N);
}
return rv;
}
HASH_HashType
PQG_GetHashType(const PQGParams *params)
{
unsigned int L, N;
if (params == NULL) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return HASH_AlgNULL;
}
L = PQG_GetLength(¶ms->prime) * PR_BITS_PER_BYTE;
N = PQG_GetLength(¶ms->subPrime) * PR_BITS_PER_BYTE;
return getFirstHash(L, N);
}
/* Get a seed for generating P and Q. If in testing mode, copy in the
** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the
** global random number generator.
*/
static SECStatus
getPQseed(SECItem *seed, PLArenaPool *arena)
{
SECStatus rv;
if (!seed->data) {
seed->data = (unsigned char *)PORT_ArenaZAlloc(arena, seed->len);
}
if (!seed->data) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len);
/*
* NIST CMVP disallows a sequence of 20 bytes with the most
* significant byte equal to 0. Perhaps they interpret
* "a sequence of at least 160 bits" as "a number >= 2^159".
* So we always set the most significant bit to 1. (bug 334533)
*/
seed->data[0] |= 0x80;
return rv;
}
/* Generate a candidate h value. If in testing mode, use the h value
** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes
** from the global random number generator.
*/
static SECStatus
generate_h_candidate(SECItem *hit, mp_int *H)
{
SECStatus rv = SECSuccess;
mp_err err = MP_OKAY;
#ifdef FIPS_186_1_A5_TEST
memset(hit->data, 0, hit->len);
hit->data[hit->len - 1] = 0x02;
#else
rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len);
#endif
if (rv)
return SECFailure;
err = mp_read_unsigned_octets(H, hit->data, hit->len);
if (err) {
MP_TO_SEC_ERROR(err);
return SECFailure;
}
return SECSuccess;
}
static SECStatus
addToSeed(const SECItem *seed,
unsigned long addend,
int seedlen, /* g in 186-1 */
SECItem *seedout)
{
mp_int s, sum, modulus, tmp;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
MP_DIGITS(&s) = 0;
MP_DIGITS(&sum) = 0;
MP_DIGITS(&modulus) = 0;
MP_DIGITS(&tmp) = 0;
CHECK_MPI_OK(mp_init(&s));
CHECK_MPI_OK(mp_init(&sum));
CHECK_MPI_OK(mp_init(&modulus));
SECITEM_TO_MPINT(*seed, &s); /* s = seed */
/* seed += addend */
if (addend < MP_DIGIT_MAX) {
CHECK_MPI_OK(mp_add_d(&s, (mp_digit)addend, &s));
} else {
CHECK_MPI_OK(mp_init(&tmp));
CHECK_MPI_OK(mp_set_ulong(&tmp, addend));
CHECK_MPI_OK(mp_add(&s, &tmp, &s));
}
/*sum = s mod 2**seedlen */
CHECK_MPI_OK(mp_div_2d(&s, (mp_digit)seedlen, NULL, &sum));
if (seedout->data != NULL) {
SECITEM_ZfreeItem(seedout, PR_FALSE);
}
MPINT_TO_SECITEM(&sum, seedout, NULL);
cleanup:
mp_clear(&s);
mp_clear(&sum);
mp_clear(&modulus);
mp_clear(&tmp);
if (err) {
MP_TO_SEC_ERROR(err);
return SECFailure;
}
return rv;
}
/* Compute Hash[(SEED + addend) mod 2**g]
** Result is placed in shaOutBuf.
** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 and
** step 11.2 of FIPS 186-3 Appendix A.1.1.2 .
*/
static SECStatus
addToSeedThenHash(HASH_HashType hashtype,
const SECItem *seed,
unsigned long addend,
int seedlen, /* g in 186-1 */
unsigned char *hashOutBuf)
{
SECItem str = { 0, 0, 0 };
SECStatus rv;
rv = addToSeed(seed, addend, seedlen, &str);
if (rv != SECSuccess) {
return rv;
}
rv = HASH_HashBuf(hashtype, hashOutBuf, str.data, str.len); /* hash result */
if (str.data)
SECITEM_ZfreeItem(&str, PR_FALSE);
return rv;
}
/*
** Perform steps 2 and 3 of FIPS 186-1, appendix 2.2.
** Generate Q from seed.
*/
static SECStatus
makeQfromSeed(
unsigned int g, /* input. Length of seed in bits. */
const SECItem *seed, /* input. */
mp_int *Q) /* output. */
{
unsigned char sha1[SHA1_LENGTH];
unsigned char sha2[SHA1_LENGTH];
unsigned char U[SHA1_LENGTH];
SECStatus rv = SECSuccess;
mp_err err = MP_OKAY;
int i;
/* ******************************************************************
** Step 2.
** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]."
**/
CHECK_SEC_OK(SHA1_HashBuf(sha1, seed->data, seed->len));
CHECK_SEC_OK(addToSeedThenHash(HASH_AlgSHA1, seed, 1, g, sha2));
for (i = 0; i < SHA1_LENGTH; ++i)
U[i] = sha1[i] ^ sha2[i];
/* ******************************************************************
** Step 3.
** "Form Q from U by setting the most signficant bit (the 2**159 bit)
** and the least signficant bit to 1. In terms of boolean operations,
** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160."
*/
U[0] |= 0x80; /* U is MSB first */
U[SHA1_LENGTH - 1] |= 0x01;
err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH);
cleanup:
memset(U, 0, SHA1_LENGTH);
memset(sha1, 0, SHA1_LENGTH);
memset(sha2, 0, SHA1_LENGTH);
if (err) {
MP_TO_SEC_ERROR(err);
return SECFailure;
}
return rv;
}
/*
** Perform steps 6 and 7 of FIPS 186-3, appendix A.1.1.2.
** Generate Q from seed.
*/
static SECStatus
makeQ2fromSeed(
HASH_HashType hashtype, /* selected Hashing algorithm */
unsigned int N, /* input. Length of q in bits. */
const SECItem *seed, /* input. */
mp_int *Q) /* output. */
{
unsigned char U[HASH_LENGTH_MAX];
SECStatus rv = SECSuccess;
mp_err err = MP_OKAY;
int N_bytes = N / PR_BITS_PER_BYTE; /* length of N in bytes rather than bits */
int hashLen = HASH_ResultLen(hashtype);
int offset = 0;
/* ******************************************************************
** Step 6.
** "Compute U = hash[SEED] mod 2**N-1]."
**/
CHECK_SEC_OK(HASH_HashBuf(hashtype, U, seed->data, seed->len));
/* mod 2**N . Step 7 will explicitly set the top bit to 1, so no need
* to handle mod 2**N-1 */
if (hashLen > N_bytes) {
offset = hashLen - N_bytes;
}
/* ******************************************************************
** Step 7.
** computed_q = 2**(N-1) + U + 1 - (U mod 2)
**
** This is the same as:
** computed_q = 2**(N-1) | U | 1;
*/
U[offset] |= 0x80; /* U is MSB first */
U[hashLen - 1] |= 0x01;
err = mp_read_unsigned_octets(Q, &U[offset], N_bytes);
cleanup:
memset(U, 0, HASH_LENGTH_MAX);
if (err) {
MP_TO_SEC_ERROR(err);
return SECFailure;
}
return rv;
}
/*
** Perform steps from FIPS 186-3, Appendix A.1.2.1 and Appendix C.6
**
** This generates a provable prime from two smaller prime. The resulting
** prime p will have q0 as a multiple of p-1. q0 can be 1.
**
** This implments steps 4 thorough 22 of FIPS 186-3 A.1.2.1 and
** steps 16 through 34 of FIPS 186-2 C.6
*/
static SECStatus
makePrimefromPrimesShaweTaylor(
HASH_HashType hashtype, /* selected Hashing algorithm */
unsigned int length, /* input. Length of prime in bits. */
unsigned int seedlen, /* input seed length in bits */
mp_int *c0, /* seed prime */
mp_int *q, /* sub prime, can be 1 */
mp_int *prime, /* output. */
SECItem *prime_seed, /* input/output. */
unsigned int *prime_gen_counter) /* input/output. */
{
mp_int c;
mp_int c0_2;
mp_int t;
mp_int a;
mp_int z;
mp_int two_length_minus_1;
SECStatus rv = SECFailure;
int hashlen = HASH_ResultLen(hashtype);
int outlen = hashlen * PR_BITS_PER_BYTE;
int offset;
unsigned char bit, mask;
/* x needs to hold roundup(L/outlen)*outlen.
* This can be no larger than L+outlen-1, So we set it's size to
* our max L + max outlen and know we are safe */
unsigned char x[DSA_MAX_P_BITS / 8 + HASH_LENGTH_MAX];
mp_err err = MP_OKAY;
int i;
int iterations;
int old_counter;
MP_DIGITS(&c) = 0;
MP_DIGITS(&c0_2) = 0;
MP_DIGITS(&t) = 0;
MP_DIGITS(&a) = 0;
MP_DIGITS(&z) = 0;
MP_DIGITS(&two_length_minus_1) = 0;
CHECK_MPI_OK(mp_init(&c));
CHECK_MPI_OK(mp_init(&c0_2));
CHECK_MPI_OK(mp_init(&t));
CHECK_MPI_OK(mp_init(&a));
CHECK_MPI_OK(mp_init(&z));
CHECK_MPI_OK(mp_init(&two_length_minus_1));
/*
** There is a slight mapping of variable names depending on which
** FIPS 186 steps are being carried out. The mapping is as follows:
** variable A.1.2.1 C.6
** c0 p0 c0
** q q 1
** c p c
** c0_2 2*p0*q 2*c0
** length L length
** prime_seed pseed prime_seed
** prime_gen_counter pgen_counter prime_gen_counter
**
** Also note: or iterations variable is actually iterations+1, since
** iterations+1 works better in C.
*/
/* Step 4/16 iterations = ceiling(length/outlen)-1 */
iterations = (length + outlen - 1) / outlen; /* NOTE: iterations +1 */
/* Step 5/17 old_counter = prime_gen_counter */
old_counter = *prime_gen_counter;
/*
** Comment: Generate a pseudorandom integer x in the interval
** [2**(length-1), 2**length].
**
** Step 6/18 x = 0
*/
PORT_Memset(x, 0, sizeof(x));
/*
** Step 7/19 for i = 0 to iterations do
** x = x + (HASH(prime_seed + i) * 2^(i*outlen))
*/
for (i = 0; i < iterations; i++) {
/* is bigger than prime_seed should get to */
CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, i,
seedlen, &x[(iterations - i - 1) * hashlen]));
}
/* Step 8/20 prime_seed = prime_seed + iterations + 1 */
CHECK_SEC_OK(addToSeed(prime_seed, iterations, seedlen, prime_seed));
/*
** Step 9/21 x = 2 ** (length-1) + x mod 2 ** (length-1)
**
** This step mathematically sets the high bit and clears out
** all the other bits higher than length. 'x' is stored
** in the x array, MSB first. The above formula gives us an 'x'
** which is length bytes long and has the high bit set. We also know
** that length <= iterations*outlen since
** iterations=ceiling(length/outlen). First we find the offset in
** bytes into the array where the high bit is.
*/
offset = (outlen * iterations - length) / PR_BITS_PER_BYTE;
/* now we want to set the 'high bit', since length may not be a
* multiple of 8,*/
bit = 1 << ((length - 1) & 0x7); /* select the proper bit in the byte */
/* we need to zero out the rest of the bits in the byte above */
mask = (bit - 1);
/* now we set it */
x[offset] = (mask & x[offset]) | bit;
/*
** Comment: Generate a candidate prime c in the interval
** [2**(length-1), 2**length].
**
** Step 10 t = ceiling(x/(2q(p0)))
** Step 22 t = ceiling(x/(2(c0)))
*/
CHECK_MPI_OK(mp_read_unsigned_octets(&t, &x[offset],
hashlen * iterations - offset)); /* t = x */
CHECK_MPI_OK(mp_mul(c0, q, &c0_2)); /* c0_2 is now c0*q */
CHECK_MPI_OK(mp_add(&c0_2, &c0_2, &c0_2)); /* c0_2 is now 2*q*c0 */
CHECK_MPI_OK(mp_add(&t, &c0_2, &t)); /* t = x+2*q*c0 */
CHECK_MPI_OK(mp_sub_d(&t, (mp_digit)1, &t)); /* t = x+2*q*c0 -1 */
/* t = floor((x+2qc0-1)/2qc0) = ceil(x/2qc0) */
CHECK_MPI_OK(mp_div(&t, &c0_2, &t, NULL));
/*
** step 11: if (2tqp0 +1 > 2**length), then t = ceiling(2**(length-1)/2qp0)
** step 12: t = 2tqp0 +1.
**
** step 23: if (2tc0 +1 > 2**length), then t = ceiling(2**(length-1)/2c0)
** step 24: t = 2tc0 +1.
*/
CHECK_MPI_OK(mp_2expt(&two_length_minus_1, length - 1));
step_23:
CHECK_MPI_OK(mp_mul(&t, &c0_2, &c)); /* c = t*2qc0 */
CHECK_MPI_OK(mp_add_d(&c, (mp_digit)1, &c)); /* c= 2tqc0 + 1*/
if (mpl_significant_bits(&c) > length) { /* if c > 2**length */
CHECK_MPI_OK(mp_sub_d(&c0_2, (mp_digit)1, &t)); /* t = 2qc0-1 */
/* t = 2**(length-1) + 2qc0 -1 */
CHECK_MPI_OK(mp_add(&two_length_minus_1, &t, &t));
/* t = floor((2**(length-1)+2qc0 -1)/2qco)
* = ceil(2**(length-2)/2qc0) */
CHECK_MPI_OK(mp_div(&t, &c0_2, &t, NULL));
CHECK_MPI_OK(mp_mul(&t, &c0_2, &c));
CHECK_MPI_OK(mp_add_d(&c, (mp_digit)1, &c)); /* c= 2tqc0 + 1*/
}
/* Step 13/25 prime_gen_counter = prime_gen_counter + 1*/
(*prime_gen_counter)++;
/*
** Comment: Test the candidate prime c for primality; first pick an
** integer a between 2 and c-2.
**
** Step 14/26 a=0
*/
PORT_Memset(x, 0, sizeof(x)); /* use x for a */
/*
** Step 15/27 for i = 0 to iterations do
** a = a + (HASH(prime_seed + i) * 2^(i*outlen))
**
** NOTE: we reuse the x array for 'a' initially.
*/
for (i = 0; i < iterations; i++) {
CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, i,
seedlen, &x[(iterations - i - 1) * hashlen]));
}
/* Step 16/28 prime_seed = prime_seed + iterations + 1 */
CHECK_SEC_OK(addToSeed(prime_seed, iterations, seedlen, prime_seed));
/* Step 17/29 a = 2 + (a mod (c-3)). */
CHECK_MPI_OK(mp_read_unsigned_octets(&a, x, iterations * hashlen));
CHECK_MPI_OK(mp_sub_d(&c, (mp_digit)3, &z)); /* z = c -3 */
CHECK_MPI_OK(mp_mod(&a, &z, &a)); /* a = a mod c -3 */
CHECK_MPI_OK(mp_add_d(&a, (mp_digit)2, &a)); /* a = 2 + a mod c -3 */
/*
** Step 18 z = a**(2tq) mod p.
** Step 30 z = a**(2t) mod c.
*/
CHECK_MPI_OK(mp_mul(&t, q, &z)); /* z = tq */
CHECK_MPI_OK(mp_add(&z, &z, &z)); /* z = 2tq */
CHECK_MPI_OK(mp_exptmod(&a, &z, &c, &z)); /* z = a**(2tq) mod c */
/*
** Step 19 if (( 1 == GCD(z-1,p)) and ( 1 == z**p0 mod p )), then
** Step 31 if (( 1 == GCD(z-1,c)) and ( 1 == z**c0 mod c )), then
*/
CHECK_MPI_OK(mp_sub_d(&z, (mp_digit)1, &a));
CHECK_MPI_OK(mp_gcd(&a, &c, &a));
if (mp_cmp_d(&a, (mp_digit)1) == 0) {
CHECK_MPI_OK(mp_exptmod(&z, c0, &c, &a));
if (mp_cmp_d(&a, (mp_digit)1) == 0) {
/* Step 31.1 prime = c */
CHECK_MPI_OK(mp_copy(&c, prime));
/*
** Step 31.2 return Success, prime, prime_seed,
** prime_gen_counter
*/
rv = SECSuccess;
goto cleanup;
}
}
/*
** Step 20/32 If (prime_gen_counter > 4 * length + old_counter then
** return (FAILURE, 0, 0, 0).
** NOTE: the test is reversed, so we fall through on failure to the
** cleanup routine
*/
if (*prime_gen_counter < (4 * length + old_counter)) {
/* Step 21/33 t = t + 1 */
CHECK_MPI_OK(mp_add_d(&t, (mp_digit)1, &t));
/* Step 22/34 Go to step 23/11 */
goto step_23;
}
/* if (prime_gencont > (4*length + old_counter), fall through to failure */
rv = SECFailure; /* really is already set, but paranoia is good */
cleanup:
mp_clear(&c);
mp_clear(&c0_2);
mp_clear(&t);
mp_clear(&a);
mp_clear(&z);
mp_clear(&two_length_minus_1);
PORT_Memset(x, 0, sizeof(x));
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
if (rv == SECFailure) {
mp_zero(prime);
if (prime_seed->data) {
SECITEM_FreeItem(prime_seed, PR_FALSE);
}
*prime_gen_counter = 0;
}
return rv;
}
/*
** Perform steps from FIPS 186-3, Appendix C.6
**
** This generates a provable prime from a seed
*/
static SECStatus
makePrimefromSeedShaweTaylor(
HASH_HashType hashtype, /* selected Hashing algorithm */
unsigned int length, /* input. Length of prime in bits. */
const SECItem *input_seed, /* input. */
mp_int *prime, /* output. */
SECItem *prime_seed, /* output. */
unsigned int *prime_gen_counter) /* output. */
{
mp_int c;
mp_int c0;
mp_int one;
SECStatus rv = SECFailure;
int hashlen = HASH_ResultLen(hashtype);
int outlen = hashlen * PR_BITS_PER_BYTE;
int offset;
int seedlen = input_seed->len * 8; /*seedlen is in bits */
unsigned char bit, mask;
unsigned char x[HASH_LENGTH_MAX * 2];
mp_digit dummy;
mp_err err = MP_OKAY;
int i;
MP_DIGITS(&c) = 0;
MP_DIGITS(&c0) = 0;
MP_DIGITS(&one) = 0;
CHECK_MPI_OK(mp_init(&c));
CHECK_MPI_OK(mp_init(&c0));
CHECK_MPI_OK(mp_init(&one));
/* Step 1. if length < 2 then return (FAILURE, 0, 0, 0) */
if (length < 2) {
rv = SECFailure;
goto cleanup;
}
/* Step 2. if length >= 33 then goto step 14 */
if (length >= 33) {
mp_zero(&one);
CHECK_MPI_OK(mp_add_d(&one, (mp_digit)1, &one));
/* Step 14 (status, c0, prime_seed, prime_gen_counter) =
** (ST_Random_Prime((ceil(length/2)+1, input_seed)
*/
rv = makePrimefromSeedShaweTaylor(hashtype, (length + 1) / 2 + 1,
input_seed, &c0, prime_seed, prime_gen_counter);
/* Step 15 if FAILURE is returned, return (FAILURE, 0, 0, 0). */
if (rv != SECSuccess) {
goto cleanup;
}
/* Steps 16-34 */
rv = makePrimefromPrimesShaweTaylor(hashtype, length, seedlen, &c0, &one,
prime, prime_seed, prime_gen_counter);
goto cleanup; /* we're done, one way or the other */
}
/* Step 3 prime_seed = input_seed */
CHECK_SEC_OK(SECITEM_CopyItem(NULL, prime_seed, input_seed));
/* Step 4 prime_gen_count = 0 */
*prime_gen_counter = 0;
step_5:
/* Step 5 c = Hash(prime_seed) xor Hash(prime_seed+1). */
CHECK_SEC_OK(HASH_HashBuf(hashtype, x, prime_seed->data, prime_seed->len));
CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, 1, seedlen, &x[hashlen]));
for (i = 0; i < hashlen; i++) {
x[i] = x[i] ^ x[i + hashlen];
}
/* Step 6 c = 2**length-1 + c mod 2**length-1 */
/* This step mathematically sets the high bit and clears out
** all the other bits higher than length. Right now c is stored
** in the x array, MSB first. The above formula gives us a c which
** is length bytes long and has the high bit set. We also know that
** length < outlen since the smallest outlen is 160 bits and the largest
** length at this point is 32 bits. So first we find the offset in bytes
** into the array where the high bit is.
*/
offset = (outlen - length) / PR_BITS_PER_BYTE;
/* now we want to set the 'high bit'. We have to calculate this since
* length may not be a multiple of 8.*/
bit = 1 << ((length - 1) & 0x7); /* select the proper bit in the byte */
/* we need to zero out the rest of the bits in the byte above */
mask = (bit - 1);
/* now we set it */
x[offset] = (mask & x[offset]) | bit;
/* Step 7 c = c*floor(c/2) + 1 */
/* set the low bit. much easier to find (the end of the array) */
x[hashlen - 1] |= 1;
/* now that we've set our bits, we can create our candidate "c" */
CHECK_MPI_OK(mp_read_unsigned_octets(&c, &x[offset], hashlen - offset));
/* Step 8 prime_gen_counter = prime_gen_counter + 1 */
(*prime_gen_counter)++;
/* Step 9 prime_seed = prime_seed + 2 */
CHECK_SEC_OK(addToSeed(prime_seed, 2, seedlen, prime_seed));
/* Step 10 Perform deterministic primality test on c. For example, since
** c is small, it's primality can be tested by trial division, See
** See Appendic C.7.
**
** We in fact test with trial division. mpi has a built int trial divider
** that divides all divisors up to 2^16.
*/
if (prime_tab[prime_tab_size - 1] < 0xFFF1) {
/* we aren't testing all the primes between 0 and 2^16, we really
* can't use this construction. Just fail. */
rv = SECFailure;
goto cleanup;
}
dummy = prime_tab_size;
err = mpp_divis_primes(&c, &dummy);
/* Step 11 if c is prime then */
if (err == MP_NO) {
/* Step 11.1 prime = c */
CHECK_MPI_OK(mp_copy(&c, prime));
/* Step 11.2 return SUCCESS prime, prime_seed, prime_gen_counter */
err = MP_OKAY;
rv = SECSuccess;
goto cleanup;
} else if (err != MP_YES) {
goto cleanup; /* function failed, bail out */
} else {
/* reset mp_err */
err = MP_OKAY;
}
/*
** Step 12 if (prime_gen_counter > (4*len))
** then return (FAILURE, 0, 0, 0))
** Step 13 goto step 5
*/
if (*prime_gen_counter <= (4 * length)) {
goto step_5;
}
/* if (prime_gencont > 4*length), fall through to failure */
rv = SECFailure; /* really is already set, but paranoia is good */
cleanup:
mp_clear(&c);
mp_clear(&c0);
mp_clear(&one);
PORT_Memset(x, 0, sizeof(x));
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
if (rv == SECFailure) {
mp_zero(prime);
if (prime_seed->data) {
SECITEM_FreeItem(prime_seed, PR_FALSE);
}
*prime_gen_counter = 0;
}
return rv;
}
/*
* Find a Q and algorithm from Seed.
*/
static SECStatus
findQfromSeed(
unsigned int L, /* input. Length of p in bits. */
unsigned int N, /* input. Length of q in bits. */
unsigned int g, /* input. Length of seed in bits. */
const SECItem *seed, /* input. */
mp_int *Q, /* input. */
mp_int *Q_, /* output. */
unsigned int *qseed_len, /* output */
HASH_HashType *hashtypePtr, /* output. Hash uses */
pqgGenType *typePtr, /* output. Generation Type used */
unsigned int *qgen_counter) /* output. q_counter */
{
HASH_HashType hashtype = HASH_AlgNULL;
SECItem firstseed = { 0, 0, 0 };
SECItem qseed = { 0, 0, 0 };
SECStatus rv;
*qseed_len = 0; /* only set if FIPS186_3_ST_TYPE */
/* handle legacy small DSA first can only be FIPS186_1_TYPE */
if (L < 1024) {
rv = makeQfromSeed(g, seed, Q_);
if ((rv == SECSuccess) && (mp_cmp(Q, Q_) == 0)) {
*hashtypePtr = HASH_AlgSHA1;
*typePtr = FIPS186_1_TYPE;
return SECSuccess;
}
return SECFailure;
}
/* 1024 could use FIPS186_1 or FIPS186_3 algorithms, we need to try
* them both */
if (L == 1024) {
rv = makeQfromSeed(g, seed, Q_);
if (rv == SECSuccess) {
if (mp_cmp(Q, Q_) == 0) {
*hashtypePtr = HASH_AlgSHA1;
*typePtr = FIPS186_1_TYPE;
return SECSuccess;
}
}
/* fall through for FIPS186_3 types */
}
/* at this point we know we aren't using FIPS186_1, start trying FIPS186_3
* with appropriate hash types */
for (hashtype = getFirstHash(L, N); hashtype != HASH_AlgTOTAL;
hashtype = getNextHash(hashtype)) {
rv = makeQ2fromSeed(hashtype, N, seed, Q_);
if (rv != SECSuccess) {
continue;
}
if (mp_cmp(Q, Q_) == 0) {
*hashtypePtr = hashtype;
*typePtr = FIPS186_3_TYPE;
return SECSuccess;
}
}
/*
* OK finally try FIPS186_3 Shawe-Taylor
*/
firstseed = *seed;
firstseed.len = seed->len / 3;
for (hashtype = getFirstHash(L, N); hashtype != HASH_AlgTOTAL;
hashtype = getNextHash(hashtype)) {
unsigned int count;
rv = makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, Q_,
&qseed, &count);
if (rv != SECSuccess) {
continue;
}
if (mp_cmp(Q, Q_) == 0) {
/* check qseed as well... */
int offset = seed->len - qseed.len;
if ((offset < 0) ||
(PORT_Memcmp(&seed->data[offset], qseed.data, qseed.len) != 0)) {
/* we found q, but the seeds don't match. This isn't an
* accident, someone has been tweeking with the seeds, just
* fail a this point. */
SECITEM_FreeItem(&qseed, PR_FALSE);
return SECFailure;
}
*qseed_len = qseed.len;
*hashtypePtr = hashtype;
*typePtr = FIPS186_3_ST_TYPE;
*qgen_counter = count;
SECITEM_FreeItem(&qseed, PR_FALSE);
return SECSuccess;
}
SECITEM_FreeItem(&qseed, PR_FALSE);
}
/* no hash algorithms found which match seed to Q, fail */
return SECFailure;
}
/*
** Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2.
** which are the same as steps 11.1-11.5 of FIPS 186-2, App A.1.1.2
** Generate P from Q, seed, L, and offset.
*/
static SECStatus
makePfromQandSeed(
HASH_HashType hashtype, /* selected Hashing algorithm */
unsigned int L, /* Length of P in bits. Per FIPS 186. */
unsigned int N, /* Length of Q in bits. Per FIPS 186. */
unsigned int offset, /* Per FIPS 186, App 2.2. & 186-3 App A.1.1.2 */
unsigned int seedlen, /* input. Length of seed in bits. (g in 186-1)*/
const SECItem *seed, /* input. */
const mp_int *Q, /* input. */
mp_int *P) /* output. */
{
unsigned int j; /* Per FIPS 186-3 App. A.1.1.2 (k in 186-1)*/
unsigned int n; /* Per FIPS 186, appendix 2.2. */
mp_digit b; /* Per FIPS 186, appendix 2.2. */
unsigned int outlen; /* Per FIPS 186-3 App. A.1.1.2 */
unsigned int hashlen; /* outlen in bytes */
unsigned char V_j[HASH_LENGTH_MAX];
mp_int W, X, c, twoQ, V_n, tmp;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
/* Initialize bignums */
MP_DIGITS(&W) = 0;
MP_DIGITS(&X) = 0;
MP_DIGITS(&c) = 0;
MP_DIGITS(&twoQ) = 0;
MP_DIGITS(&V_n) = 0;
MP_DIGITS(&tmp) = 0;
CHECK_MPI_OK(mp_init(&W));
CHECK_MPI_OK(mp_init(&X));
CHECK_MPI_OK(mp_init(&c));
CHECK_MPI_OK(mp_init(&twoQ));
CHECK_MPI_OK(mp_init(&tmp));
CHECK_MPI_OK(mp_init(&V_n));
hashlen = HASH_ResultLen(hashtype);
outlen = hashlen * PR_BITS_PER_BYTE;
PORT_Assert(outlen > 0);
/* L - 1 = n*outlen + b */
n = (L - 1) / outlen;
b = (L - 1) % outlen;
/* ******************************************************************
** Step 11.1 (Step 7 in 186-1)
** "for j = 0 ... n let
** V_j = SHA[(SEED + offset + j) mod 2**seedlen]."
**
** Step 11.2 (Step 8 in 186-1)
** "W = V_0 + (V_1 * 2**outlen) + ... + (V_n-1 * 2**((n-1)*outlen))
** + ((V_n mod 2**b) * 2**(n*outlen))
*/
for (j = 0; j < n; ++j) { /* Do the first n terms of V_j */
/* Do step 11.1 for iteration j.
** V_j = HASH[(seed + offset + j) mod 2**g]
*/
CHECK_SEC_OK(addToSeedThenHash(hashtype, seed, offset + j, seedlen, V_j));
/* Do step 11.2 for iteration j.
** W += V_j * 2**(j*outlen)
*/
OCTETS_TO_MPINT(V_j, &tmp, hashlen); /* get bignum V_j */
CHECK_MPI_OK(mpl_lsh(&tmp, &tmp, j * outlen)); /* tmp=V_j << j*outlen */
CHECK_MPI_OK(mp_add(&W, &tmp, &W)); /* W += tmp */
}
/* Step 11.2, continued.
** [W += ((V_n mod 2**b) * 2**(n*outlen))]
*/
CHECK_SEC_OK(addToSeedThenHash(hashtype, seed, offset + n, seedlen, V_j));
OCTETS_TO_MPINT(V_j, &V_n, hashlen); /* get bignum V_n */
CHECK_MPI_OK(mp_div_2d(&V_n, b, NULL, &tmp)); /* tmp = V_n mod 2**b */
CHECK_MPI_OK(mpl_lsh(&tmp, &tmp, n * outlen)); /* tmp = tmp << n*outlen */
CHECK_MPI_OK(mp_add(&W, &tmp, &W)); /* W += tmp */
/* Step 11.3, (Step 8 in 186-1)
** "X = W + 2**(L-1).
** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
*/
CHECK_MPI_OK(mpl_set_bit(&X, (mp_size)(L - 1), 1)); /* X = 2**(L-1) */
CHECK_MPI_OK(mp_add(&X, &W, &X)); /* X += W */
/*************************************************************
** Step 11.4. (Step 9 in 186-1)
** "c = X mod 2q"
*/
CHECK_MPI_OK(mp_mul_2(Q, &twoQ)); /* 2q */
CHECK_MPI_OK(mp_mod(&X, &twoQ, &c)); /* c = X mod 2q */
/*************************************************************
** Step 11.5. (Step 9 in 186-1)
** "p = X - (c - 1).
** Note that p is congruent to 1 mod 2q."
*/
CHECK_MPI_OK(mp_sub_d(&c, 1, &c)); /* c -= 1 */
CHECK_MPI_OK(mp_sub(&X, &c, P)); /* P = X - c */
cleanup:
mp_clear(&W);
mp_clear(&X);
mp_clear(&c);
mp_clear(&twoQ);
mp_clear(&V_n);
mp_clear(&tmp);
if (err) {
MP_TO_SEC_ERROR(err);
return SECFailure;
}
return rv;
}
/*
** Generate G from h, P, and Q.
*/
static SECStatus
makeGfromH(const mp_int *P, /* input. */
const mp_int *Q, /* input. */
mp_int *H, /* input and output. */
mp_int *G, /* output. */
PRBool *passed)
{
mp_int exp, pm1;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
*passed = PR_FALSE;
MP_DIGITS(&exp) = 0;
MP_DIGITS(&pm1) = 0;
CHECK_MPI_OK(mp_init(&exp));
CHECK_MPI_OK(mp_init(&pm1));
CHECK_MPI_OK(mp_sub_d(P, 1, &pm1)); /* P - 1 */
if (mp_cmp(H, &pm1) >= 0) /* H >= P-1 */
CHECK_MPI_OK(mp_sub(H, &pm1, H)); /* H = H mod (P-1) */
/* Let b = 2**n (smallest power of 2 greater than P).
** Since P-1 >= b/2, and H < b, quotient(H/(P-1)) = 0 or 1
** so the above operation safely computes H mod (P-1)
*/
/* Check for H = to 0 or 1. Regen H if so. (Regen means return error). */
if (mp_cmp_d(H, 1) <= 0) {
rv = SECFailure;
goto cleanup;
}
/* Compute G, according to the equation G = (H ** ((P-1)/Q)) mod P */
CHECK_MPI_OK(mp_div(&pm1, Q, &exp, NULL)); /* exp = (P-1)/Q */
CHECK_MPI_OK(mp_exptmod(H, &exp, P, G)); /* G = H ** exp mod P */
/* Check for G == 0 or G == 1, return error if so. */
if (mp_cmp_d(G, 1) <= 0) {
rv = SECFailure;
goto cleanup;
}
*passed = PR_TRUE;
cleanup:
mp_clear(&exp);
mp_clear(&pm1);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
/*
** Generate G from seed, index, P, and Q.
*/
static SECStatus
makeGfromIndex(HASH_HashType hashtype,
const mp_int *P, /* input. */
const mp_int *Q, /* input. */
const SECItem *seed, /* input. */
unsigned char index, /* input. */
mp_int *G) /* input/output */
{
mp_int e, pm1, W;
unsigned int count;
unsigned char data[HASH_LENGTH_MAX];
unsigned int len;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
const SECHashObject *hashobj = NULL;
void *hashcx = NULL;
MP_DIGITS(&e) = 0;
MP_DIGITS(&pm1) = 0;
MP_DIGITS(&W) = 0;
CHECK_MPI_OK(mp_init(&e));
CHECK_MPI_OK(mp_init(&pm1));
CHECK_MPI_OK(mp_init(&W));
/* initialize our hash stuff */
hashobj = HASH_GetRawHashObject(hashtype);
if (hashobj == NULL) {
/* shouldn't happen */
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
rv = SECFailure;
goto cleanup;
}
hashcx = hashobj->create();
if (hashcx == NULL) {
rv = SECFailure;
goto cleanup;
}
CHECK_MPI_OK(mp_sub_d(P, 1, &pm1)); /* P - 1 */
/* Step 3 e = (p-1)/q */
CHECK_MPI_OK(mp_div(&pm1, Q, &e, NULL)); /* e = (P-1)/Q */
/* Steps 4, 5, and 6 */
/* count is a 16 bit value in the spec. We actually represent count
* as more than 16 bits so we can easily detect the 16 bit overflow */
#define MAX_COUNT 0x10000
for (count = 1; count < MAX_COUNT; count++) {
/* step 7
* U = domain_param_seed || "ggen" || index || count
* step 8
* W = HASH(U)
*/
hashobj->begin(hashcx);
hashobj->update(hashcx, seed->data, seed->len);
hashobj->update(hashcx, (unsigned char *)"ggen", 4);
hashobj->update(hashcx, &index, 1);
data[0] = (count >> 8) & 0xff;
data[1] = count & 0xff;
hashobj->update(hashcx, data, 2);
hashobj->end(hashcx, data, &len, sizeof(data));
OCTETS_TO_MPINT(data, &W, len);
/* step 9. g = W**e mod p */
CHECK_MPI_OK(mp_exptmod(&W, &e, P, G));
/* step 10. if (g < 2) then goto step 5 */
/* NOTE: this weird construct is to keep the flow according to the spec.
* the continue puts us back to step 5 of the for loop */
if (mp_cmp_d(G, 2) < 0) {
continue;
}
break; /* step 11 follows step 10 if the test condition is false */
}
if (count >= MAX_COUNT) {
rv = SECFailure; /* last part of step 6 */
}
/* step 11.
* return valid G */
cleanup:
PORT_Memset(data, 0, sizeof(data));
if (hashcx) {
hashobj->destroy(hashcx, PR_TRUE);
}
mp_clear(&e);
mp_clear(&pm1);
mp_clear(&W);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
/* This code uses labels and gotos, so that it can follow the numbered
** steps in the algorithms from FIPS 186-3 appendix A.1.1.2 very closely,
** and so that the correctness of this code can be easily verified.
** So, please forgive the ugly c code.
**/
static SECStatus
pqg_ParamGen(unsigned int L, unsigned int N, pqgGenType type,
unsigned int seedBytes, PQGParams **pParams, PQGVerify **pVfy)
{
unsigned int n; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
unsigned int seedlen; /* Per FIPS 186-3 app A.1.1.2 (was 'g' 186-1)*/
unsigned int counter; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
unsigned int offset; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
unsigned int outlen; /* Per FIPS 186-3, appendix A.1.1.2. */
unsigned int maxCount;
HASH_HashType hashtype = HASH_AlgNULL;
SECItem *seed; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
PLArenaPool *arena = NULL;
PQGParams *params = NULL;
PQGVerify *verify = NULL;
PRBool passed;
SECItem hit = { 0, 0, 0 };
SECItem firstseed = { 0, 0, 0 };
SECItem qseed = { 0, 0, 0 };
SECItem pseed = { 0, 0, 0 };
mp_int P, Q, G, H, l, p0;
mp_err err = MP_OKAY;
SECStatus rv = SECFailure;
int iterations = 0;
/* Step 1. L and N already checked by caller*/
/* Step 2. if (seedlen < N) return INVALID; */
if (seedBytes < N / PR_BITS_PER_BYTE || !pParams || !pVfy) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* Initialize bignums */
MP_DIGITS(&P) = 0;
MP_DIGITS(&Q) = 0;
MP_DIGITS(&G) = 0;
MP_DIGITS(&H) = 0;
MP_DIGITS(&l) = 0;
MP_DIGITS(&p0) = 0;
CHECK_MPI_OK(mp_init(&P));
CHECK_MPI_OK(mp_init(&Q));
CHECK_MPI_OK(mp_init(&G));
CHECK_MPI_OK(mp_init(&H));
CHECK_MPI_OK(mp_init(&l));
CHECK_MPI_OK(mp_init(&p0));
/* parameters have been passed in, only generate G */
if (*pParams != NULL) {
/* we only support G index generation if generating separate from PQ */
if ((*pVfy == NULL) || (type == FIPS186_1_TYPE) ||
((*pVfy)->h.len != 1) || ((*pVfy)->h.data == NULL) ||
((*pVfy)->seed.data == NULL) || ((*pVfy)->seed.len == 0)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
params = *pParams;
verify = *pVfy;
/* fill in P Q, */
SECITEM_TO_MPINT((*pParams)->prime, &P);
SECITEM_TO_MPINT((*pParams)->subPrime, &Q);
hashtype = getFirstHash(L, N);
CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, &(*pVfy)->seed,
(*pVfy)->h.data[0], &G));
MPINT_TO_SECITEM(&G, &(*pParams)->base, (*pParams)->arena);
goto cleanup;
}
/* Initialize an arena for the params. */
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
if (!arena) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams));
if (!params) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
PORT_FreeArena(arena, PR_TRUE);
return SECFailure;
}
params->arena = arena;
/* Initialize an arena for the verify. */
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
if (!arena) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
PORT_FreeArena(params->arena, PR_TRUE);
return SECFailure;
}
verify = (PQGVerify *)PORT_ArenaZAlloc(arena, sizeof(PQGVerify));
if (!verify) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
PORT_FreeArena(arena, PR_TRUE);
PORT_FreeArena(params->arena, PR_TRUE);
return SECFailure;
}
verify->arena = arena;
seed = &verify->seed;
arena = NULL;
/* Select Hash and Compute lengths. */
/* getFirstHash gives us the smallest acceptable hash for this key
* strength */
hashtype = getFirstHash(L, N);
outlen = HASH_ResultLen(hashtype) * PR_BITS_PER_BYTE;
/* Step 3: n = Ceil(L/outlen)-1; (same as n = Floor((L-1)/outlen)) */
n = (L - 1) / outlen;
/* Step 4: (skipped since we don't use b): b = L -1 - (n*outlen); */
seedlen = seedBytes * PR_BITS_PER_BYTE; /* bits in seed */
step_5:
/* ******************************************************************
** Step 5. (Step 1 in 186-1)
** "Choose an abitrary sequence of at least N bits and call it SEED.
** Let g be the length of SEED in bits."
*/
if (++iterations > MAX_ITERATIONS) { /* give up after a while */
PORT_SetError(SEC_ERROR_NEED_RANDOM);
goto cleanup;
}
seed->len = seedBytes;
CHECK_SEC_OK(getPQseed(seed, verify->arena));
/* ******************************************************************
** Step 6. (Step 2 in 186-1)
**
** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]. (186-1)"
** "Compute U = HASH[SEED] 2**(N-1). (186-3)"
**
** Step 7. (Step 3 in 186-1)
** "Form Q from U by setting the most signficant bit (the 2**159 bit)
** and the least signficant bit to 1. In terms of boolean operations,
** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160. (186-1)"
**
** "q = 2**(N-1) + U + 1 - (U mod 2) (186-3)
**
** Note: Both formulations are the same for U < 2**(N-1) and N=160
**
** If using Shawe-Taylor, We do the entire A.1.2.1.2 setps in the block
** FIPS186_3_ST_TYPE.
*/
if (type == FIPS186_1_TYPE) {
CHECK_SEC_OK(makeQfromSeed(seedlen, seed, &Q));
} else if (type == FIPS186_3_TYPE) {
CHECK_SEC_OK(makeQ2fromSeed(hashtype, N, seed, &Q));
} else {
/* FIPS186_3_ST_TYPE */
unsigned int qgen_counter, pgen_counter;
/* Step 1 (L,N) already checked for acceptability */
firstseed = *seed;
qgen_counter = 0;
/* Step 2. Use N and firstseed to generate random prime q
* using Apendix C.6 */
CHECK_SEC_OK(makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, &Q,
&qseed, &qgen_counter));
/* Step 3. Use floor(L/2+1) and qseed to generate random prime p0
* using Appendix C.6 */
pgen_counter = 0;
CHECK_SEC_OK(makePrimefromSeedShaweTaylor(hashtype, (L + 1) / 2 + 1,
&qseed, &p0, &pseed, &pgen_counter));
/* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */
CHECK_SEC_OK(makePrimefromPrimesShaweTaylor(hashtype, L, seedBytes * 8,
&p0, &Q, &P, &pseed, &pgen_counter));
/* combine all the seeds */
if ((qseed.len > firstseed.len) || (pseed.len > firstseed.len)) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); /* shouldn't happen */
goto cleanup;
}
/* If the seed overflows, then pseed and qseed may have leading zeros which the mpl code clamps.
* we want to make sure those are added back in so the individual seed lengths are predictable from
* the overall seed length */
seed->len = firstseed.len * 3;
seed->data = PORT_ArenaZAlloc(verify->arena, seed->len);
if (seed->data == NULL) {
goto cleanup;
}
PORT_Memcpy(seed->data, firstseed.data, firstseed.len);
PORT_Memcpy(seed->data + 2 * firstseed.len - pseed.len, pseed.data, pseed.len);
PORT_Memcpy(seed->data + 3 * firstseed.len - qseed.len, qseed.data, qseed.len);
counter = (qgen_counter << 16) | pgen_counter;
/* we've generated both P and Q now, skip to generating G */
goto generate_G;
}
/* ******************************************************************
** Step 8. (Step 4 in 186-1)
** "Use a robust primality testing algorithm to test whether q is prime."
**
** Appendix 2.1 states that a Rabin test with at least 50 iterations
** "will give an acceptable probability of error."
*/
/*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/
err = mpp_pprime(&Q, prime_testcount_q(L, N));
passed = (err == MP_YES) ? SECSuccess : SECFailure;
/* ******************************************************************
** Step 9. (Step 5 in 186-1) "If q is not prime, goto step 5 (1 in 186-1)."
*/
if (passed != SECSuccess)
goto step_5;
/* ******************************************************************
** Step 10.
** offset = 1;
**( Step 6b 186-1)"Let counter = 0 and offset = 2."
*/
offset = (type == FIPS186_1_TYPE) ? 2 : 1;
/*
** Step 11. (Step 6a,13a,14 in 186-1)
** For counter - 0 to (4L-1) do
**
*/
maxCount = L >= 1024 ? (4 * L - 1) : 4095;
for (counter = 0; counter <= maxCount; counter++) {
/* ******************************************************************
** Step 11.1 (Step 7 in 186-1)
** "for j = 0 ... n let
** V_j = HASH[(SEED + offset + j) mod 2**seedlen]."
**
** Step 11.2 (Step 8 in 186-1)
** "W = V_0 + V_1*2**outlen+...+ V_n-1 * 2**((n-1)*outlen) +
** ((Vn* mod 2**b)*2**(n*outlen))"
** Step 11.3 (Step 8 in 186-1)
** "X = W + 2**(L-1)
** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
**
** Step 11.4 (Step 9 in 186-1).
** "c = X mod 2q"
**
** Step 11.5 (Step 9 in 186-1).
** " p = X - (c - 1).
** Note that p is congruent to 1 mod 2q."
*/
CHECK_SEC_OK(makePfromQandSeed(hashtype, L, N, offset, seedlen,
seed, &Q, &P));
/*************************************************************
** Step 11.6. (Step 10 in 186-1)
** "if p < 2**(L-1), then goto step 11.9. (step 13 in 186-1)"
*/
CHECK_MPI_OK(mpl_set_bit(&l, (mp_size)(L - 1), 1)); /* l = 2**(L-1) */
if (mp_cmp(&P, &l) < 0)
goto step_11_9;
/************************************************************
** Step 11.7 (step 11 in 186-1)
** "Perform a robust primality test on p."
*/
/*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/
err = mpp_pprime(&P, prime_testcount_p(L, N));
passed = (err == MP_YES) ? SECSuccess : SECFailure;
/* ******************************************************************
** Step 11.8. "If p is determined to be primed return VALID
** values of p, q, seed and counter."
*/
if (passed == SECSuccess)
break;
step_11_9:
/* ******************************************************************
** Step 11.9. "offset = offset + n + 1."
*/
offset += n + 1;
}
/* ******************************************************************
** Step 12. "goto step 5."
**
** NOTE: if counter <= maxCount, then we exited the loop at Step 11.8
** and now need to return p,q, seed, and counter.
*/
if (counter > maxCount)
goto step_5;
generate_G:
/* ******************************************************************
** returning p, q, seed and counter
*/
if (type == FIPS186_1_TYPE) {
/* Generate g, This is called the "Unverifiable Generation of g
* in FIPA186-3 Appedix A.2.1. For compatibility we maintain
* this version of the code */
SECITEM_AllocItem(NULL, &hit, L / 8); /* h is no longer than p */
if (!hit.data)
goto cleanup;
do {
/* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */
CHECK_SEC_OK(generate_h_candidate(&hit, &H));
CHECK_SEC_OK(makeGfromH(&P, &Q, &H, &G, &passed));
} while (passed != PR_TRUE);
MPINT_TO_SECITEM(&H, &verify->h, verify->arena);
} else {
unsigned char index = 1; /* default to 1 */
verify->h.data = (unsigned char *)PORT_ArenaZAlloc(verify->arena, 1);
if (verify->h.data == NULL) {
goto cleanup;
}
verify->h.len = 1;
verify->h.data[0] = index;
/* Generate g, using the FIPS 186-3 Appendix A.23 */
CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, seed, index, &G));
}
/* All generation is done. Now, save the PQG params. */
MPINT_TO_SECITEM(&P, ¶ms->prime, params->arena);
MPINT_TO_SECITEM(&Q, ¶ms->subPrime, params->arena);
MPINT_TO_SECITEM(&G, ¶ms->base, params->arena);
verify->counter = counter;
*pParams = params;
*pVfy = verify;
cleanup:
if (pseed.data) {
PORT_Free(pseed.data);
}
if (qseed.data) {
PORT_Free(qseed.data);
}
mp_clear(&P);
mp_clear(&Q);
mp_clear(&G);
mp_clear(&H);
mp_clear(&l);
mp_clear(&p0);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
if (rv) {
if (params) {
PORT_FreeArena(params->arena, PR_TRUE);
}
if (verify) {
PORT_FreeArena(verify->arena, PR_TRUE);
}
}
if (hit.data) {
SECITEM_FreeItem(&hit, PR_FALSE);
}
return rv;
}
SECStatus
PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy)
{
unsigned int L; /* Length of P in bits. Per FIPS 186. */
unsigned int seedBytes;
if (j > 8 || !pParams || !pVfy) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
L = 512 + (j * 64); /* bits in P */
seedBytes = L / 8;
return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
pParams, pVfy);
}
SECStatus
PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes,
PQGParams **pParams, PQGVerify **pVfy)
{
unsigned int L; /* Length of P in bits. Per FIPS 186. */
if (j > 8 || !pParams || !pVfy) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
L = 512 + (j * 64); /* bits in P */
return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
pParams, pVfy);
}
SECStatus
PQG_ParamGenV2(unsigned int L, unsigned int N, unsigned int seedBytes,
PQGParams **pParams, PQGVerify **pVfy)
{
if (N == 0) {
N = pqg_get_default_N(L);
}
if (seedBytes == 0) {
/* seedBytes == L/8 for probable primes, N/8 for Shawe-Taylor Primes */
seedBytes = N / 8;
}
if (pqg_validate_dsa2(L, N) != SECSuccess) {
/* error code already set */
return SECFailure;
}
return pqg_ParamGen(L, N, FIPS186_3_ST_TYPE, seedBytes, pParams, pVfy);
}
/*
* verify can use vfy structures returned from either FIPS186-1 or
* FIPS186-2, and can handle differences in selected Hash functions to
* generate the parameters.
*/
SECStatus
PQG_VerifyParams(const PQGParams *params,
const PQGVerify *vfy, SECStatus *result)
{
SECStatus rv = SECSuccess;
unsigned int g, n, L, N, offset, outlen;
mp_int p0, P, Q, G, P_, Q_, G_, r, h;
mp_err err = MP_OKAY;
int j;
unsigned int counter_max = 0; /* handle legacy L < 1024 */
unsigned int qseed_len;
unsigned int qgen_counter_ = 0;
SECItem pseed_ = { 0, 0, 0 };
HASH_HashType hashtype = HASH_AlgNULL;
pqgGenType type = FIPS186_1_TYPE;
#define CHECKPARAM(cond) \
if (!(cond)) { \
*result = SECFailure; \
goto cleanup; \
}
if (!params || !vfy || !result) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* always need at least p, q, and seed for any meaningful check */
if ((params->prime.len == 0) || (params->subPrime.len == 0) ||
(vfy->seed.len == 0)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* we want to either check PQ or G or both. If we don't have G, make
* sure we have count so we can check P. */
if ((params->base.len == 0) && (vfy->counter == -1)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
MP_DIGITS(&p0) = 0;
MP_DIGITS(&P) = 0;
MP_DIGITS(&Q) = 0;
MP_DIGITS(&G) = 0;
MP_DIGITS(&P_) = 0;
MP_DIGITS(&Q_) = 0;
MP_DIGITS(&G_) = 0;
MP_DIGITS(&r) = 0;
MP_DIGITS(&h) = 0;
CHECK_MPI_OK(mp_init(&p0));
CHECK_MPI_OK(mp_init(&P));
CHECK_MPI_OK(mp_init(&Q));
CHECK_MPI_OK(mp_init(&G));
CHECK_MPI_OK(mp_init(&P_));
CHECK_MPI_OK(mp_init(&Q_));
CHECK_MPI_OK(mp_init(&G_));
CHECK_MPI_OK(mp_init(&r));
CHECK_MPI_OK(mp_init(&h));
*result = SECSuccess;
SECITEM_TO_MPINT(params->prime, &P);
SECITEM_TO_MPINT(params->subPrime, &Q);
/* if G isn't specified, just check P and Q */
if (params->base.len != 0) {
SECITEM_TO_MPINT(params->base, &G);
}
/* 1. Check (L,N) pair */
N = mpl_significant_bits(&Q);
L = mpl_significant_bits(&P);
if (L < 1024) {
/* handle DSA1 pqg parameters with less thatn 1024 bits*/
CHECKPARAM(N == DSA1_Q_BITS);
j = PQG_PBITS_TO_INDEX(L);
CHECKPARAM(j >= 0 && j <= 8);
counter_max = 4096;
} else {
/* handle DSA2 parameters (includes DSA1, 1024 bits) */
CHECKPARAM(pqg_validate_dsa2(L, N) == SECSuccess);
counter_max = 4 * L;
}
/* 3. G < P */
if (params->base.len != 0) {
CHECKPARAM(mp_cmp(&G, &P) < 0);
}
/* 4. P % Q == 1 */
CHECK_MPI_OK(mp_mod(&P, &Q, &r));
CHECKPARAM(mp_cmp_d(&r, 1) == 0);
/* 5. Q is prime */
CHECKPARAM(mpp_pprime(&Q, prime_testcount_q(L, N)) == MP_YES);
/* 6. P is prime */
CHECKPARAM(mpp_pprime(&P, prime_testcount_p(L, N)) == MP_YES);
/* Steps 7-12 are done only if the optional PQGVerify is supplied. */
/* continue processing P */
/* 7. counter < 4*L */
/* 8. g >= N and g < 2*L (g is length of seed in bits) */
/* step 7 and 8 are delayed until we determine which type of generation
* was used */
/* 9. Q generated from SEED matches Q in PQGParams. */
/* This function checks all possible hash and generation types to
* find a Q_ which matches Q. */
g = vfy->seed.len * 8;
CHECKPARAM(findQfromSeed(L, N, g, &vfy->seed, &Q, &Q_, &qseed_len,
&hashtype, &type, &qgen_counter_) == SECSuccess);
CHECKPARAM(mp_cmp(&Q, &Q_) == 0);
/* now we can do steps 7 & 8*/
if ((type == FIPS186_1_TYPE) || (type == FIPS186_3_TYPE)) {
CHECKPARAM((vfy->counter == -1) || (vfy->counter < counter_max));
CHECKPARAM(g >= N && g < counter_max / 2);
}
if (type == FIPS186_3_ST_TYPE) {
SECItem qseed = { 0, 0, 0 };
SECItem pseed = { 0, 0, 0 };
unsigned int first_seed_len;
unsigned int pgen_counter_ = 0;
unsigned int qgen_counter = (vfy->counter >> 16) & 0xffff;
unsigned int pgen_counter = (vfy->counter) & 0xffff;
/* extract pseed and qseed from domain_parameter_seed, which is
* first_seed || pseed || qseed. qseed is first_seed + small_integer
* mod the length of first_seed. pseed is qseed + small_integer mod
* the length of first_seed. This means most of the time
* first_seed.len == qseed.len == pseed.len. Rarely qseed.len and/or
* pseed.len will be smaller because mpi clamps them. pqgGen
* automatically adds the zero pad back though, so we can depend
* domain_parameter_seed.len to be a multiple of three. We only have
* to deal with the fact that the returned seeds from our functions
* could be shorter.
* first_seed.len = domain_parameter_seed.len/3
* We can now find the offsets;
* first_seed.data = domain_parameter_seed.data + 0
* pseed.data = domain_parameter_seed.data + first_seed.len
* qseed.data = domain_parameter_seed.data
* + domain_paramter_seed.len - qseed.len
* We deal with pseed possibly having zero pad in the pseed check later.
*/
first_seed_len = vfy->seed.len / 3;
CHECKPARAM(qseed_len < vfy->seed.len);
CHECKPARAM(first_seed_len * 8 > N - 1);
CHECKPARAM(first_seed_len * 8 < counter_max / 2);
CHECKPARAM(first_seed_len >= qseed_len);
qseed.len = qseed_len;
qseed.data = vfy->seed.data + vfy->seed.len - qseed.len;
pseed.len = first_seed_len;
pseed.data = vfy->seed.data + first_seed_len;
/*
* now complete FIPS 186-3 A.1.2.1.2. Step 1 was completed
* above in our initial checks, Step 2 was completed by
* findQfromSeed */
/* Step 3 (status, c0, prime_seed, prime_gen_counter) =
** (ST_Random_Prime((ceil(length/2)+1, input_seed)
*/
CHECK_SEC_OK(makePrimefromSeedShaweTaylor(hashtype, (L + 1) / 2 + 1,
&qseed, &p0, &pseed_, &pgen_counter_));
/* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */
CHECK_SEC_OK(makePrimefromPrimesShaweTaylor(hashtype, L, first_seed_len * 8,
&p0, &Q_, &P_, &pseed_, &pgen_counter_));
CHECKPARAM(mp_cmp(&P, &P_) == 0);
/* make sure pseed wasn't tampered with (since it is part of
* calculating G) */
if (pseed.len > pseed_.len) {
/* handle the case of zero pad for pseed */
int extra = pseed.len - pseed_.len;
int i;
for (i = 0; i < extra; i++) {
if (pseed.data[i] != 0) {
*result = SECFailure;
goto cleanup;
}
}
pseed.data += extra;
pseed.len -= extra;
/* the rest is handled in the normal compare below */
}
CHECKPARAM(SECITEM_CompareItem(&pseed, &pseed_) == SECEqual);
if (vfy->counter != -1) {
CHECKPARAM(pgen_counter < counter_max);
CHECKPARAM(qgen_counter < counter_max);
CHECKPARAM((pgen_counter_ == pgen_counter));
CHECKPARAM((qgen_counter_ == qgen_counter));
}
} else if (vfy->counter == -1) {
/* If counter is set to -1, we are really only verifying G, skip
* the remainder of the checks for P */
CHECKPARAM(type != FIPS186_1_TYPE); /* we only do this for DSA2 */
} else {
/* 10. P generated from (L, counter, g, SEED, Q) matches P
* in PQGParams. */
outlen = HASH_ResultLen(hashtype) * PR_BITS_PER_BYTE;
PORT_Assert(outlen > 0);
n = (L - 1) / outlen;
offset = vfy->counter * (n + 1) + ((type == FIPS186_1_TYPE) ? 2 : 1);
CHECK_SEC_OK(makePfromQandSeed(hashtype, L, N, offset, g, &vfy->seed,
&Q, &P_));
CHECKPARAM(mp_cmp(&P, &P_) == 0);
}
/* now check G, skip if don't have a g */
if (params->base.len == 0)
goto cleanup;
/* first Always check that G is OK FIPS186-3 A.2.2 & A.2.4*/
/* 1. 2 < G < P-1 */
/* P is prime, p-1 == zero 1st bit */
CHECK_MPI_OK(mpl_set_bit(&P, 0, 0));
CHECKPARAM(mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) < 0);
CHECK_MPI_OK(mpl_set_bit(&P, 0, 1)); /* set it back */
/* 2. verify g**q mod p == 1 */
CHECK_MPI_OK(mp_exptmod(&G, &Q, &P, &h)); /* h = G ** Q mod P */
CHECKPARAM(mp_cmp_d(&h, 1) == 0);
/* no h, the above is the best we can do */
if (vfy->h.len == 0) {
if (type != FIPS186_1_TYPE) {
*result = SECWouldBlock;
}
goto cleanup;
}
/*
* If h is one byte and FIPS186-3 was used to generate Q (we've verified
* Q was generated from seed already, then we assume that FIPS 186-3
* appendix A.2.3 was used to generate G. Otherwise we assume A.2.1 was
* used to generate G.
*/
if ((vfy->h.len == 1) && (type != FIPS186_1_TYPE)) {
/* A.2.3 */
CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, &vfy->seed,
vfy->h.data[0], &G_));
CHECKPARAM(mp_cmp(&G, &G_) == 0);
} else {
int passed;
/* A.2.1 */
SECITEM_TO_MPINT(vfy->h, &h);
/* 11. 1 < h < P-1 */
/* P is prime, p-1 == zero 1st bit */
CHECK_MPI_OK(mpl_set_bit(&P, 0, 0));
CHECKPARAM(mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P));
CHECK_MPI_OK(mpl_set_bit(&P, 0, 1)); /* set it back */
/* 12. G generated from h matches G in PQGParams. */
CHECK_SEC_OK(makeGfromH(&P, &Q, &h, &G_, &passed));
CHECKPARAM(passed && mp_cmp(&G, &G_) == 0);
}
cleanup:
mp_clear(&p0);
mp_clear(&P);
mp_clear(&Q);
mp_clear(&G);
mp_clear(&P_);
mp_clear(&Q_);
mp_clear(&G_);
mp_clear(&r);
mp_clear(&h);
if (pseed_.data) {
SECITEM_FreeItem(&pseed_, PR_FALSE);
}
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
return rv;
}
/**************************************************************************
* Free the PQGParams struct and the things it points to. *
**************************************************************************/
void
PQG_DestroyParams(PQGParams *params)
{
if (params == NULL)
return;
if (params->arena != NULL) {
PORT_FreeArena(params->arena, PR_FALSE); /* don't zero it */
} else {
SECITEM_FreeItem(¶ms->prime, PR_FALSE); /* don't free prime */
SECITEM_FreeItem(¶ms->subPrime, PR_FALSE); /* don't free subPrime */
SECITEM_FreeItem(¶ms->base, PR_FALSE); /* don't free base */
PORT_Free(params);
}
}
/**************************************************************************
* Free the PQGVerify struct and the things it points to. *
**************************************************************************/
void
PQG_DestroyVerify(PQGVerify *vfy)
{
if (vfy == NULL)
return;
if (vfy->arena != NULL) {
PORT_FreeArena(vfy->arena, PR_FALSE); /* don't zero it */
} else {
SECITEM_FreeItem(&vfy->seed, PR_FALSE); /* don't free seed */
SECITEM_FreeItem(&vfy->h, PR_FALSE); /* don't free h */
PORT_Free(vfy);
}
}
|