summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/mpi/mpi-priv.h
blob: 9447a818f37e9835e833dc7ebe808c2661e193c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
 *  mpi-priv.h  - Private header file for MPI
 *  Arbitrary precision integer arithmetic library
 *
 *  NOTE WELL: the content of this header file is NOT part of the "public"
 *  API for the MPI library, and may change at any time.
 *  Application programs that use libmpi should NOT include this header file.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef _MPI_PRIV_H_
#define _MPI_PRIV_H_ 1

#include "mpi.h"
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#if MP_DEBUG
#include <stdio.h>

#define DIAG(T, V)           \
    {                        \
        fprintf(stderr, T);  \
        mp_print(V, stderr); \
        fputc('\n', stderr); \
    }
#else
#define DIAG(T, V)
#endif

/* If we aren't using a wired-in logarithm table, we need to include
   the math library to get the log() function
 */

/* {{{ s_logv_2[] - log table for 2 in various bases */

#if MP_LOGTAB
/*
  A table of the logs of 2 for various bases (the 0 and 1 entries of
  this table are meaningless and should not be referenced).

  This table is used to compute output lengths for the mp_toradix()
  function.  Since a number n in radix r takes up about log_r(n)
  digits, we estimate the output size by taking the least integer
  greater than log_r(n), where:

  log_r(n) = log_2(n) * log_r(2)

  This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
  which are the output bases supported.
 */

extern const float s_logv_2[];
#define LOG_V_2(R) s_logv_2[(R)]

#else

/*
   If MP_LOGTAB is not defined, use the math library to compute the
   logarithms on the fly.  Otherwise, use the table.
   Pick which works best for your system.
 */

#include <math.h>
#define LOG_V_2(R) (log(2.0) / log(R))

#endif /* if MP_LOGTAB */

/* }}} */

/* {{{ Digit arithmetic macros */

/*
  When adding and multiplying digits, the results can be larger than
  can be contained in an mp_digit.  Thus, an mp_word is used.  These
  macros mask off the upper and lower digits of the mp_word (the
  mp_word may be more than 2 mp_digits wide, but we only concern
  ourselves with the low-order 2 mp_digits)
 */

#define CARRYOUT(W) (mp_digit)((W) >> DIGIT_BIT)
#define ACCUM(W) (mp_digit)(W)

#define MP_MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MP_MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MP_HOWMANY(a, b) (((a) + (b)-1) / (b))
#define MP_ROUNDUP(a, b) (MP_HOWMANY(a, b) * (b))

/* }}} */

/* {{{ Comparison constants */

#define MP_LT -1
#define MP_EQ 0
#define MP_GT 1

/* }}} */

/* {{{ private function declarations */

void s_mp_setz(mp_digit *dp, mp_size count);                     /* zero digits           */
void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
void *s_mp_alloc(size_t nb, size_t ni);                          /* general allocator     */
void s_mp_free(void *ptr);                                       /* general free function */

mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
mp_err s_mp_pad(mp_int *mp, mp_size min);  /* left pad with zeroes    */

void s_mp_clamp(mp_int *mp); /* clip leading zeroes     */

void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place   */

mp_err s_mp_lshd(mp_int *mp, mp_size p);    /* left-shift by p digits  */
void s_mp_rshd(mp_int *mp, mp_size p);      /* right-shift by p digits */
mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */
void s_mp_div_2d(mp_int *mp, mp_digit d);   /* divide by 2^d in place  */
void s_mp_mod_2d(mp_int *mp, mp_digit d);   /* modulo 2^d in place     */
void s_mp_div_2(mp_int *mp);                /* divide by 2 in place    */
mp_err s_mp_mul_2(mp_int *mp);              /* multiply by 2 in place  */
mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
/* normalize for division  */
mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
/* unsigned digit divide   */
mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
/* Barrett reduction       */
mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition      */
mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract      */
mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
/* a += b * RADIX^offset   */
mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply      */
#if MP_SQUARE
mp_err s_mp_sqr(mp_int *a); /* magnitude square        */
#else
#define s_mp_sqr(a) s_mp_mul(a, a)
#endif
mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err s_mp_2expt(mp_int *a, mp_digit k);       /* a = 2^k                 */
int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
int s_mp_cmp_d(const mp_int *a, mp_digit d);    /* magnitude digit compare */
int s_mp_ispow2(const mp_int *v);               /* is v a power of 2?      */
int s_mp_ispow2d(mp_digit d);                   /* is d a power of 2?      */

int s_mp_tovalue(char ch, int r);                /* convert ch to value    */
char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
int s_mp_outlen(int bits, int r);                /* output length in bytes */
mp_digit s_mp_invmod_radix(mp_digit P);          /* returns (P ** -1) mod RADIX */
mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c);
mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c);
mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);

#ifdef NSS_USE_COMBA
PR_STATIC_ASSERT(sizeof(mp_digit) == 8);
#define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))

void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);

void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);

#endif /* end NSS_USE_COMBA */

/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
#if defined(__OS2__) && defined(__IBMC__)
#define MPI_ASM_DECL __cdecl
#else
#define MPI_ASM_DECL
#endif

#ifdef MPI_AMD64

mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit *, mp_digit *, mp_size, mp_digit);
mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit *, const mp_digit *, mp_size, mp_digit);

/* c = a * b */
#define s_mpv_mul_d(a, a_len, b, c) \
    ((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)

/* c += a * b */
#define s_mpv_mul_d_add(a, a_len, b, c) \
    ((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)

#else

void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
                              mp_digit b, mp_digit *c);
void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
                                  mp_digit b, mp_digit *c);

#endif

void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
                                       mp_size a_len, mp_digit b,
                                       mp_digit *c);
void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
                                     mp_size a_len,
                                     mp_digit *sqrs);

mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
                                    mp_digit divisor, mp_digit *quot, mp_digit *rem);

/* c += a * b * (MP_RADIX ** offset);  */
/* Callers of this macro should be aware that the return type might vary;
 * it should be treated as a void function. */
#define s_mp_mul_d_add_offset(a, b, c, off) \
    s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off)

typedef struct {
    mp_int N;         /* modulus N */
    mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
} mp_mont_modulus;

mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
                     mp_mont_modulus *mmm);
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);

/*
 * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
 * if a cache exists, or zero if there is no cache. If more than one
 * cache line exists, it should return the smallest line size (which is
 * usually the L1 cache).
 *
 * mp_modexp uses this information to make sure that private key information
 * isn't being leaked through the cache.
 *
 * see mpcpucache.c for the implementation.
 */
unsigned long s_mpi_getProcessorLineSize();

/* }}} */
#endif