1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Thanks to Thomas Pornin for the ideas how to implement the constat time
* binary multiplication. */
#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif
#include "blapii.h"
#include "blapit.h"
#include "blapi.h"
#include "gcm.h"
#include "ctr.h"
#include "secerr.h"
#include "prtypes.h"
#include "pkcs11t.h"
#include <limits.h>
/* old gcc doesn't support some poly64x2_t intrinsic */
#if defined(__aarch64__) && defined(IS_LITTLE_ENDIAN) && \
(defined(__clang__) || defined(__GNUC__) && __GNUC__ > 6)
#define USE_ARM_GCM
#elif defined(__arm__) && defined(IS_LITTLE_ENDIAN) && \
!defined(NSS_DISABLE_ARM32_NEON)
/* We don't test on big endian platform, so disable this on big endian. */
#define USE_ARM_GCM
#endif
/* Forward declarations */
SECStatus gcm_HashInit_hw(gcmHashContext *ghash);
SECStatus gcm_HashWrite_hw(gcmHashContext *ghash, unsigned char *outbuf);
SECStatus gcm_HashMult_hw(gcmHashContext *ghash, const unsigned char *buf,
unsigned int count);
SECStatus gcm_HashZeroX_hw(gcmHashContext *ghash);
SECStatus gcm_HashMult_sftw(gcmHashContext *ghash, const unsigned char *buf,
unsigned int count);
SECStatus gcm_HashMult_sftw32(gcmHashContext *ghash, const unsigned char *buf,
unsigned int count);
/* Stub definitions for the above *_hw functions, which shouldn't be
* used unless NSS_X86_OR_X64 is defined */
#if !defined(NSS_X86_OR_X64) && !defined(USE_ARM_GCM) && !defined(USE_PPC_CRYPTO)
SECStatus
gcm_HashWrite_hw(gcmHashContext *ghash, unsigned char *outbuf)
{
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
SECStatus
gcm_HashMult_hw(gcmHashContext *ghash, const unsigned char *buf,
unsigned int count)
{
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
SECStatus
gcm_HashInit_hw(gcmHashContext *ghash)
{
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
SECStatus
gcm_HashZeroX_hw(gcmHashContext *ghash)
{
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
#endif /* !NSS_X86_OR_X64 && !USE_ARM_GCM && !USE_PPC_CRYPTO */
uint64_t
get64(const unsigned char *bytes)
{
return ((uint64_t)bytes[0]) << 56 |
((uint64_t)bytes[1]) << 48 |
((uint64_t)bytes[2]) << 40 |
((uint64_t)bytes[3]) << 32 |
((uint64_t)bytes[4]) << 24 |
((uint64_t)bytes[5]) << 16 |
((uint64_t)bytes[6]) << 8 |
((uint64_t)bytes[7]);
}
/* Initialize a gcmHashContext */
SECStatus
gcmHash_InitContext(gcmHashContext *ghash, const unsigned char *H, PRBool sw)
{
SECStatus rv = SECSuccess;
ghash->cLen = 0;
ghash->bufLen = 0;
PORT_Memset(ghash->counterBuf, 0, sizeof(ghash->counterBuf));
ghash->h_low = get64(H + 8);
ghash->h_high = get64(H);
#ifdef USE_ARM_GCM
#if defined(__aarch64__)
if (arm_pmull_support() && !sw) {
#else
if (arm_neon_support() && !sw) {
#endif
#elif defined(USE_PPC_CRYPTO)
if (ppc_crypto_support() && !sw) {
#else
if (clmul_support() && !sw) {
#endif
rv = gcm_HashInit_hw(ghash);
} else {
/* We fall back to the software implementation if we can't use / don't
* want to use pclmul. */
#ifdef HAVE_INT128_SUPPORT
ghash->ghash_mul = gcm_HashMult_sftw;
#else
ghash->ghash_mul = gcm_HashMult_sftw32;
#endif
ghash->x_high = ghash->x_low = 0;
ghash->hw = PR_FALSE;
}
return rv;
}
#ifdef HAVE_INT128_SUPPORT
/* Binary multiplication x * y = r_high << 64 | r_low. */
void
bmul(uint64_t x, uint64_t y, uint64_t *r_high, uint64_t *r_low)
{
uint128_t x1, x2, x3, x4, x5;
uint128_t y1, y2, y3, y4, y5;
uint128_t r, z;
uint128_t m1 = (uint128_t)0x2108421084210842 << 64 | 0x1084210842108421;
uint128_t m2 = (uint128_t)0x4210842108421084 << 64 | 0x2108421084210842;
uint128_t m3 = (uint128_t)0x8421084210842108 << 64 | 0x4210842108421084;
uint128_t m4 = (uint128_t)0x0842108421084210 << 64 | 0x8421084210842108;
uint128_t m5 = (uint128_t)0x1084210842108421 << 64 | 0x0842108421084210;
x1 = x & m1;
y1 = y & m1;
x2 = x & m2;
y2 = y & m2;
x3 = x & m3;
y3 = y & m3;
x4 = x & m4;
y4 = y & m4;
x5 = x & m5;
y5 = y & m5;
z = (x1 * y1) ^ (x2 * y5) ^ (x3 * y4) ^ (x4 * y3) ^ (x5 * y2);
r = z & m1;
z = (x1 * y2) ^ (x2 * y1) ^ (x3 * y5) ^ (x4 * y4) ^ (x5 * y3);
r |= z & m2;
z = (x1 * y3) ^ (x2 * y2) ^ (x3 * y1) ^ (x4 * y5) ^ (x5 * y4);
r |= z & m3;
z = (x1 * y4) ^ (x2 * y3) ^ (x3 * y2) ^ (x4 * y1) ^ (x5 * y5);
r |= z & m4;
z = (x1 * y5) ^ (x2 * y4) ^ (x3 * y3) ^ (x4 * y2) ^ (x5 * y1);
r |= z & m5;
*r_high = (uint64_t)(r >> 64);
*r_low = (uint64_t)r;
}
SECStatus
gcm_HashMult_sftw(gcmHashContext *ghash, const unsigned char *buf,
unsigned int count)
{
uint64_t ci_low, ci_high;
size_t i;
uint64_t z2_low, z2_high, z0_low, z0_high, z1a_low, z1a_high;
uint128_t z_high = 0, z_low = 0;
ci_low = ghash->x_low;
ci_high = ghash->x_high;
for (i = 0; i < count; i++, buf += 16) {
ci_low ^= get64(buf + 8);
ci_high ^= get64(buf);
/* Do binary mult ghash->X = C * ghash->H (Karatsuba). */
bmul(ci_high, ghash->h_high, &z2_high, &z2_low);
bmul(ci_low, ghash->h_low, &z0_high, &z0_low);
bmul(ci_high ^ ci_low, ghash->h_high ^ ghash->h_low, &z1a_high, &z1a_low);
z1a_high ^= z2_high ^ z0_high;
z1a_low ^= z2_low ^ z0_low;
z_high = ((uint128_t)z2_high << 64) | (z2_low ^ z1a_high);
z_low = (((uint128_t)z0_high << 64) | z0_low) ^ (((uint128_t)z1a_low) << 64);
/* Shift one (multiply by x) as gcm spec is stupid. */
z_high = (z_high << 1) | (z_low >> 127);
z_low <<= 1;
/* Reduce */
z_low ^= (z_low << 127) ^ (z_low << 126) ^ (z_low << 121);
z_high ^= z_low ^ (z_low >> 1) ^ (z_low >> 2) ^ (z_low >> 7);
ci_low = (uint64_t)z_high;
ci_high = (uint64_t)(z_high >> 64);
}
ghash->x_low = ci_low;
ghash->x_high = ci_high;
return SECSuccess;
}
#else
/* Binary multiplication x * y = r_high << 32 | r_low. */
void
bmul32(uint32_t x, uint32_t y, uint32_t *r_high, uint32_t *r_low)
{
uint32_t x0, x1, x2, x3;
uint32_t y0, y1, y2, y3;
uint32_t m1 = (uint32_t)0x11111111;
uint32_t m2 = (uint32_t)0x22222222;
uint32_t m4 = (uint32_t)0x44444444;
uint32_t m8 = (uint32_t)0x88888888;
uint64_t z0, z1, z2, z3;
uint64_t z;
x0 = x & m1;
x1 = x & m2;
x2 = x & m4;
x3 = x & m8;
y0 = y & m1;
y1 = y & m2;
y2 = y & m4;
y3 = y & m8;
z0 = ((uint64_t)x0 * y0) ^ ((uint64_t)x1 * y3) ^
((uint64_t)x2 * y2) ^ ((uint64_t)x3 * y1);
z1 = ((uint64_t)x0 * y1) ^ ((uint64_t)x1 * y0) ^
((uint64_t)x2 * y3) ^ ((uint64_t)x3 * y2);
z2 = ((uint64_t)x0 * y2) ^ ((uint64_t)x1 * y1) ^
((uint64_t)x2 * y0) ^ ((uint64_t)x3 * y3);
z3 = ((uint64_t)x0 * y3) ^ ((uint64_t)x1 * y2) ^
((uint64_t)x2 * y1) ^ ((uint64_t)x3 * y0);
z0 &= ((uint64_t)m1 << 32) | m1;
z1 &= ((uint64_t)m2 << 32) | m2;
z2 &= ((uint64_t)m4 << 32) | m4;
z3 &= ((uint64_t)m8 << 32) | m8;
z = z0 | z1 | z2 | z3;
*r_high = (uint32_t)(z >> 32);
*r_low = (uint32_t)z;
}
SECStatus
gcm_HashMult_sftw32(gcmHashContext *ghash, const unsigned char *buf,
unsigned int count)
{
size_t i;
uint64_t ci_low, ci_high;
uint64_t z_high_h, z_high_l, z_low_h, z_low_l;
uint32_t ci_high_h, ci_high_l, ci_low_h, ci_low_l;
uint32_t b_a_h, b_a_l, a_a_h, a_a_l, b_b_h, b_b_l;
uint32_t a_b_h, a_b_l, b_c_h, b_c_l, a_c_h, a_c_l, c_c_h, c_c_l;
uint32_t ci_highXlow_h, ci_highXlow_l, c_a_h, c_a_l, c_b_h, c_b_l;
uint32_t h_high_h = (uint32_t)(ghash->h_high >> 32);
uint32_t h_high_l = (uint32_t)ghash->h_high;
uint32_t h_low_h = (uint32_t)(ghash->h_low >> 32);
uint32_t h_low_l = (uint32_t)ghash->h_low;
uint32_t h_highXlow_h = h_high_h ^ h_low_h;
uint32_t h_highXlow_l = h_high_l ^ h_low_l;
uint32_t h_highX_xored = h_highXlow_h ^ h_highXlow_l;
for (i = 0; i < count; i++, buf += 16) {
ci_low = ghash->x_low ^ get64(buf + 8);
ci_high = ghash->x_high ^ get64(buf);
ci_low_h = (uint32_t)(ci_low >> 32);
ci_low_l = (uint32_t)ci_low;
ci_high_h = (uint32_t)(ci_high >> 32);
ci_high_l = (uint32_t)ci_high;
ci_highXlow_h = ci_high_h ^ ci_low_h;
ci_highXlow_l = ci_high_l ^ ci_low_l;
/* Do binary mult ghash->X = C * ghash->H (recursive Karatsuba). */
bmul32(ci_high_h, h_high_h, &a_a_h, &a_a_l);
bmul32(ci_high_l, h_high_l, &a_b_h, &a_b_l);
bmul32(ci_high_h ^ ci_high_l, h_high_h ^ h_high_l, &a_c_h, &a_c_l);
a_c_h ^= a_a_h ^ a_b_h;
a_c_l ^= a_a_l ^ a_b_l;
a_a_l ^= a_c_h;
a_b_h ^= a_c_l;
/* ci_high * h_high = a_a_h:a_a_l:a_b_h:a_b_l */
bmul32(ci_low_h, h_low_h, &b_a_h, &b_a_l);
bmul32(ci_low_l, h_low_l, &b_b_h, &b_b_l);
bmul32(ci_low_h ^ ci_low_l, h_low_h ^ h_low_l, &b_c_h, &b_c_l);
b_c_h ^= b_a_h ^ b_b_h;
b_c_l ^= b_a_l ^ b_b_l;
b_a_l ^= b_c_h;
b_b_h ^= b_c_l;
/* ci_low * h_low = b_a_h:b_a_l:b_b_h:b_b_l */
bmul32(ci_highXlow_h, h_highXlow_h, &c_a_h, &c_a_l);
bmul32(ci_highXlow_l, h_highXlow_l, &c_b_h, &c_b_l);
bmul32(ci_highXlow_h ^ ci_highXlow_l, h_highX_xored, &c_c_h, &c_c_l);
c_c_h ^= c_a_h ^ c_b_h;
c_c_l ^= c_a_l ^ c_b_l;
c_a_l ^= c_c_h;
c_b_h ^= c_c_l;
/* (ci_high ^ ci_low) * (h_high ^ h_low) = c_a_h:c_a_l:c_b_h:c_b_l */
c_a_h ^= b_a_h ^ a_a_h;
c_a_l ^= b_a_l ^ a_a_l;
c_b_h ^= b_b_h ^ a_b_h;
c_b_l ^= b_b_l ^ a_b_l;
z_high_h = ((uint64_t)a_a_h << 32) | a_a_l;
z_high_l = (((uint64_t)a_b_h << 32) | a_b_l) ^
(((uint64_t)c_a_h << 32) | c_a_l);
z_low_h = (((uint64_t)b_a_h << 32) | b_a_l) ^
(((uint64_t)c_b_h << 32) | c_b_l);
z_low_l = ((uint64_t)b_b_h << 32) | b_b_l;
/* Shift one (multiply by x) as gcm spec is stupid. */
z_high_h = z_high_h << 1 | z_high_l >> 63;
z_high_l = z_high_l << 1 | z_low_h >> 63;
z_low_h = z_low_h << 1 | z_low_l >> 63;
z_low_l <<= 1;
/* Reduce */
z_low_h ^= (z_low_l << 63) ^ (z_low_l << 62) ^ (z_low_l << 57);
z_high_h ^= z_low_h ^ (z_low_h >> 1) ^ (z_low_h >> 2) ^ (z_low_h >> 7);
z_high_l ^= z_low_l ^ (z_low_l >> 1) ^ (z_low_l >> 2) ^ (z_low_l >> 7) ^
(z_low_h << 63) ^ (z_low_h << 62) ^ (z_low_h << 57);
ghash->x_high = z_high_h;
ghash->x_low = z_high_l;
}
return SECSuccess;
}
#endif /* HAVE_INT128_SUPPORT */
static SECStatus
gcm_zeroX(gcmHashContext *ghash)
{
SECStatus rv = SECSuccess;
if (ghash->hw) {
rv = gcm_HashZeroX_hw(ghash);
}
ghash->x_high = ghash->x_low = 0;
return rv;
}
/*
* implement GCM GHASH using the freebl GHASH function. The gcm_HashMult
* function always takes AES_BLOCK_SIZE lengths of data. gcmHash_Update will
* format the data properly.
*/
SECStatus
gcmHash_Update(gcmHashContext *ghash, const unsigned char *buf,
unsigned int len)
{
unsigned int blocks;
SECStatus rv;
ghash->cLen += (len * PR_BITS_PER_BYTE);
/* first deal with the current buffer of data. Try to fill it out so
* we can hash it */
if (ghash->bufLen) {
unsigned int needed = PR_MIN(len, AES_BLOCK_SIZE - ghash->bufLen);
if (needed != 0) {
PORT_Memcpy(ghash->buffer + ghash->bufLen, buf, needed);
}
buf += needed;
len -= needed;
ghash->bufLen += needed;
if (len == 0) {
/* didn't add enough to hash the data, nothing more do do */
return SECSuccess;
}
PORT_Assert(ghash->bufLen == AES_BLOCK_SIZE);
/* hash the buffer and clear it */
rv = ghash->ghash_mul(ghash, ghash->buffer, 1);
PORT_Memset(ghash->buffer, 0, AES_BLOCK_SIZE);
ghash->bufLen = 0;
if (rv != SECSuccess) {
return SECFailure;
}
}
/* now hash any full blocks remaining in the data stream */
blocks = len / AES_BLOCK_SIZE;
if (blocks) {
rv = ghash->ghash_mul(ghash, buf, blocks);
if (rv != SECSuccess) {
return SECFailure;
}
buf += blocks * AES_BLOCK_SIZE;
len -= blocks * AES_BLOCK_SIZE;
}
/* save any remainder in the buffer to be hashed with the next call */
if (len != 0) {
PORT_Memcpy(ghash->buffer, buf, len);
ghash->bufLen = len;
}
return SECSuccess;
}
/*
* write out any partial blocks zero padded through the GHASH engine,
* save the lengths for the final completion of the hash
*/
static SECStatus
gcmHash_Sync(gcmHashContext *ghash)
{
int i;
SECStatus rv;
/* copy the previous counter to the upper block */
PORT_Memcpy(ghash->counterBuf, &ghash->counterBuf[GCM_HASH_LEN_LEN],
GCM_HASH_LEN_LEN);
/* copy the current counter in the lower block */
for (i = 0; i < GCM_HASH_LEN_LEN; i++) {
ghash->counterBuf[GCM_HASH_LEN_LEN + i] =
(ghash->cLen >> ((GCM_HASH_LEN_LEN - 1 - i) * PR_BITS_PER_BYTE)) & 0xff;
}
ghash->cLen = 0;
/* now zero fill the buffer and hash the last block */
if (ghash->bufLen) {
PORT_Memset(ghash->buffer + ghash->bufLen, 0, AES_BLOCK_SIZE - ghash->bufLen);
rv = ghash->ghash_mul(ghash, ghash->buffer, 1);
PORT_Memset(ghash->buffer, 0, AES_BLOCK_SIZE);
ghash->bufLen = 0;
if (rv != SECSuccess) {
return SECFailure;
}
}
return SECSuccess;
}
#define WRITE64(x, bytes) \
(bytes)[0] = (x) >> 56; \
(bytes)[1] = (x) >> 48; \
(bytes)[2] = (x) >> 40; \
(bytes)[3] = (x) >> 32; \
(bytes)[4] = (x) >> 24; \
(bytes)[5] = (x) >> 16; \
(bytes)[6] = (x) >> 8; \
(bytes)[7] = (x);
/*
* This does the final sync, hashes the lengths, then returns
* "T", the hashed output.
*/
SECStatus
gcmHash_Final(gcmHashContext *ghash, unsigned char *outbuf,
unsigned int *outlen, unsigned int maxout)
{
unsigned char T[MAX_BLOCK_SIZE];
SECStatus rv;
rv = gcmHash_Sync(ghash);
if (rv != SECSuccess) {
goto cleanup;
}
rv = ghash->ghash_mul(ghash, ghash->counterBuf,
(GCM_HASH_LEN_LEN * 2) / AES_BLOCK_SIZE);
if (rv != SECSuccess) {
goto cleanup;
}
if (ghash->hw) {
rv = gcm_HashWrite_hw(ghash, T);
if (rv != SECSuccess) {
goto cleanup;
}
} else {
WRITE64(ghash->x_low, T + 8);
WRITE64(ghash->x_high, T);
}
if (maxout > AES_BLOCK_SIZE) {
maxout = AES_BLOCK_SIZE;
}
PORT_Memcpy(outbuf, T, maxout);
*outlen = maxout;
rv = SECSuccess;
cleanup:
PORT_Memset(T, 0, sizeof(T));
return rv;
}
SECStatus
gcmHash_Reset(gcmHashContext *ghash, const unsigned char *AAD,
unsigned int AADLen)
{
SECStatus rv;
// Limit AADLen in accordance with SP800-38D
if (sizeof(AADLen) >= 8 && AADLen > (1ULL << 61) - 1) {
PORT_SetError(SEC_ERROR_INPUT_LEN);
return SECFailure;
}
ghash->cLen = 0;
PORT_Memset(ghash->counterBuf, 0, GCM_HASH_LEN_LEN * 2);
ghash->bufLen = 0;
rv = gcm_zeroX(ghash);
if (rv != SECSuccess) {
return rv;
}
/* now kick things off by hashing the Additional Authenticated Data */
if (AADLen != 0) {
rv = gcmHash_Update(ghash, AAD, AADLen);
if (rv != SECSuccess) {
return SECFailure;
}
rv = gcmHash_Sync(ghash);
if (rv != SECSuccess) {
return SECFailure;
}
}
return SECSuccess;
}
/**************************************************************************
* Now implement the GCM using gcmHash and CTR *
**************************************************************************/
/* state to handle the full GCM operation (hash and counter) */
struct GCMContextStr {
gcmHashContext *ghash_context;
CTRContext ctr_context;
freeblCipherFunc cipher;
void *cipher_context;
unsigned long tagBits;
unsigned char tagKey[MAX_BLOCK_SIZE];
PRBool ctr_context_init;
gcmIVContext gcm_iv;
};
SECStatus gcm_InitCounter(GCMContext *gcm, const unsigned char *iv,
unsigned int ivLen, unsigned int tagBits,
const unsigned char *aad, unsigned int aadLen);
GCMContext *
GCM_CreateContext(void *context, freeblCipherFunc cipher,
const unsigned char *params)
{
GCMContext *gcm = NULL;
gcmHashContext *ghash = NULL;
unsigned char H[MAX_BLOCK_SIZE];
unsigned int tmp;
const CK_NSS_GCM_PARAMS *gcmParams = (const CK_NSS_GCM_PARAMS *)params;
SECStatus rv;
#ifdef DISABLE_HW_GCM
const PRBool sw = PR_TRUE;
#else
const PRBool sw = PR_FALSE;
#endif
gcm = PORT_ZNew(GCMContext);
if (gcm == NULL) {
return NULL;
}
gcm->cipher = cipher;
gcm->cipher_context = context;
ghash = PORT_ZNewAligned(gcmHashContext, 16, mem);
/* first plug in the ghash context */
gcm->ghash_context = ghash;
PORT_Memset(H, 0, AES_BLOCK_SIZE);
rv = (*cipher)(context, H, &tmp, AES_BLOCK_SIZE, H, AES_BLOCK_SIZE, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
goto loser;
}
rv = gcmHash_InitContext(ghash, H, sw);
if (rv != SECSuccess) {
goto loser;
}
gcm_InitIVContext(&gcm->gcm_iv);
gcm->ctr_context_init = PR_FALSE;
/* if gcmPara/ms is NULL, then we are creating an PKCS #11 MESSAGE
* style context, in which we initialize the key once, then do separate
* iv/aad's for each message. In that case we only initialize the key
* and ghash. We initialize the counter in each separate message */
if (gcmParams == NULL) {
/* OK we are finished with init, if we are doing MESSAGE interface,
* return from here */
return gcm;
}
rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen,
gcmParams->ulTagBits, gcmParams->pAAD,
gcmParams->ulAADLen);
if (rv != SECSuccess) {
goto loser;
}
gcm->ctr_context_init = PR_TRUE;
return gcm;
loser:
if (ghash && ghash->mem) {
PORT_Free(ghash->mem);
}
if (gcm) {
PORT_Free(gcm);
}
return NULL;
}
SECStatus
gcm_InitCounter(GCMContext *gcm, const unsigned char *iv, unsigned int ivLen,
unsigned int tagBits, const unsigned char *aad,
unsigned int aadLen)
{
gcmHashContext *ghash = gcm->ghash_context;
unsigned int tmp;
PRBool freeCtr = PR_FALSE;
CK_AES_CTR_PARAMS ctrParams;
SECStatus rv;
/* Verify our parameters here */
if (ivLen == 0) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
goto loser;
}
if (tagBits != 128 && tagBits != 120 &&
tagBits != 112 && tagBits != 104 &&
tagBits != 96 && tagBits != 64 &&
tagBits != 32) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
goto loser;
}
/* fill in the Counter context */
ctrParams.ulCounterBits = 32;
PORT_Memset(ctrParams.cb, 0, sizeof(ctrParams.cb));
if (ivLen == 12) {
PORT_Memcpy(ctrParams.cb, iv, ivLen);
ctrParams.cb[AES_BLOCK_SIZE - 1] = 1;
} else {
rv = gcmHash_Reset(ghash, NULL, 0);
if (rv != SECSuccess) {
goto loser;
}
rv = gcmHash_Update(ghash, iv, ivLen);
if (rv != SECSuccess) {
goto loser;
}
rv = gcmHash_Final(ghash, ctrParams.cb, &tmp, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
goto loser;
}
}
rv = CTR_InitContext(&gcm->ctr_context, gcm->cipher_context, gcm->cipher,
(unsigned char *)&ctrParams);
if (rv != SECSuccess) {
goto loser;
}
freeCtr = PR_TRUE;
/* fill in the gcm structure */
gcm->tagBits = tagBits; /* save for final step */
/* calculate the final tag key. NOTE: gcm->tagKey is zero to start with.
* if this assumption changes, we would need to explicitly clear it here */
PORT_Memset(gcm->tagKey, 0, sizeof(gcm->tagKey));
rv = CTR_Update(&gcm->ctr_context, gcm->tagKey, &tmp, AES_BLOCK_SIZE,
gcm->tagKey, AES_BLOCK_SIZE, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
goto loser;
}
/* finally mix in the AAD data */
rv = gcmHash_Reset(ghash, aad, aadLen);
if (rv != SECSuccess) {
goto loser;
}
return SECSuccess;
loser:
if (freeCtr) {
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
}
return SECFailure;
}
void
GCM_DestroyContext(GCMContext *gcm, PRBool freeit)
{
/* these two are statically allocated and will be freed when we free
* gcm. call their destroy functions to free up any locally
* allocated data (like mp_int's) */
if (gcm->ctr_context_init) {
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
}
PORT_Free(gcm->ghash_context->mem);
PORT_Memset(&gcm->tagBits, 0, sizeof(gcm->tagBits));
PORT_Memset(gcm->tagKey, 0, sizeof(gcm->tagKey));
if (freeit) {
PORT_Free(gcm);
}
}
static SECStatus
gcm_GetTag(GCMContext *gcm, unsigned char *outbuf,
unsigned int *outlen, unsigned int maxout)
{
unsigned int tagBytes;
unsigned int extra;
unsigned int i;
SECStatus rv;
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
extra = tagBytes * PR_BITS_PER_BYTE - gcm->tagBits;
if (outbuf == NULL) {
*outlen = tagBytes;
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
if (maxout < tagBytes) {
*outlen = tagBytes;
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
maxout = tagBytes;
rv = gcmHash_Final(gcm->ghash_context, outbuf, outlen, maxout);
if (rv != SECSuccess) {
return SECFailure;
}
for (i = 0; i < *outlen; i++) {
outbuf[i] ^= gcm->tagKey[i];
}
/* mask off any extra bits we got */
if (extra) {
outbuf[tagBytes - 1] &= ~((1 << extra) - 1);
}
return SECSuccess;
}
/*
* See The Galois/Counter Mode of Operation, McGrew and Viega.
* GCM is basically counter mode with a specific initialization and
* built in macing operation.
*/
SECStatus
GCM_EncryptUpdate(GCMContext *gcm, unsigned char *outbuf,
unsigned int *outlen, unsigned int maxout,
const unsigned char *inbuf, unsigned int inlen,
unsigned int blocksize)
{
SECStatus rv;
unsigned int tagBytes;
unsigned int len;
PORT_Assert(blocksize == AES_BLOCK_SIZE);
if (blocksize != AES_BLOCK_SIZE) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (!gcm->ctr_context_init) {
PORT_SetError(SEC_ERROR_NOT_INITIALIZED);
return SECFailure;
}
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
if (UINT_MAX - inlen < tagBytes) {
PORT_SetError(SEC_ERROR_INPUT_LEN);
return SECFailure;
}
if (maxout < inlen + tagBytes) {
*outlen = inlen + tagBytes;
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
rv = CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
inbuf, inlen, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
return SECFailure;
}
rv = gcmHash_Update(gcm->ghash_context, outbuf, *outlen);
if (rv != SECSuccess) {
PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
*outlen = 0;
return SECFailure;
}
rv = gcm_GetTag(gcm, outbuf + *outlen, &len, maxout - *outlen);
if (rv != SECSuccess) {
PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
*outlen = 0;
return SECFailure;
};
*outlen += len;
return SECSuccess;
}
/*
* See The Galois/Counter Mode of Operation, McGrew and Viega.
* GCM is basically counter mode with a specific initialization and
* built in macing operation. NOTE: the only difference between Encrypt
* and Decrypt is when we calculate the mac. That is because the mac must
* always be calculated on the cipher text, not the plain text, so for
* encrypt, we do the CTR update first and for decrypt we do the mac first.
*/
SECStatus
GCM_DecryptUpdate(GCMContext *gcm, unsigned char *outbuf,
unsigned int *outlen, unsigned int maxout,
const unsigned char *inbuf, unsigned int inlen,
unsigned int blocksize)
{
SECStatus rv;
unsigned int tagBytes;
unsigned char tag[MAX_BLOCK_SIZE];
const unsigned char *intag;
unsigned int len;
PORT_Assert(blocksize == AES_BLOCK_SIZE);
if (blocksize != AES_BLOCK_SIZE) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (!gcm->ctr_context_init) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
/* get the authentication block */
if (inlen < tagBytes) {
PORT_SetError(SEC_ERROR_INPUT_LEN);
return SECFailure;
}
inlen -= tagBytes;
intag = inbuf + inlen;
/* verify the block */
rv = gcmHash_Update(gcm->ghash_context, inbuf, inlen);
if (rv != SECSuccess) {
return SECFailure;
}
rv = gcm_GetTag(gcm, tag, &len, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
return SECFailure;
}
/* Don't decrypt if we can't authenticate the encrypted data!
* This assumes that if tagBits is not a multiple of 8, intag will
* preserve the masked off missing bits. */
if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) {
/* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */
PORT_SetError(SEC_ERROR_BAD_DATA);
PORT_Memset(tag, 0, sizeof(tag));
return SECFailure;
}
PORT_Memset(tag, 0, sizeof(tag));
/* finish the decryption */
return CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
inbuf, inlen, AES_BLOCK_SIZE);
}
void
gcm_InitIVContext(gcmIVContext *gcmIv)
{
gcmIv->counter = 0;
gcmIv->max_count = 0;
gcmIv->ivGen = CKG_GENERATE;
gcmIv->ivLen = 0;
gcmIv->fixedBits = 0;
}
/*
* generate the IV on the fly and return it to the application.
* This function keeps a counter, which may be used in the IV
* generation, or may be used in simply to make sure we don't
* generate to many IV's from this same key.
* PKCS #11 defines 4 generating values:
* 1) CKG_NO_GENERATE: just use the passed in IV as it.
* 2) CKG_GENERATE: the application doesn't care what generation
* scheme is use (we default to counter in this code).
* 3) CKG_GENERATE_COUNTER: The IV is the value of a counter.
* 4) CKG_GENERATE_RANDOM: The IV is randomly generated.
* We add a fifth rule:
* 5) CKG_GENERATE_COUNTER_XOR: The Counter value is xor'ed with
* the IV.
* The value fixedBits specifies the number of bits that will be passed
* on from the original IV. The counter or the random data is is loaded
* in the remainder of the IV not covered by fixedBits, overwriting any
* data there. In the xor case the counter is xor'ed with the data in the
* IV. In all cases only bits outside of fixedBits is modified.
* The number of IV's we can generate is restricted by the size of the
* variable part of the IV and the generation algorithm used. Because of
* this, we require subsequent calls on this context to use the same
* generator, IV len, and fixed bits as the first call.
*/
SECStatus
gcm_GenerateIV(gcmIVContext *gcmIv, unsigned char *iv, unsigned int ivLen,
unsigned int fixedBits, CK_GENERATOR_FUNCTION ivGen)
{
unsigned int i;
unsigned int flexBits;
unsigned int ivOffset;
unsigned int ivNewCount;
unsigned char ivMask;
unsigned char ivSave;
SECStatus rv;
if (gcmIv->counter != 0) {
/* If we've already generated a message, make sure all subsequent
* messages are using the same generator */
if ((gcmIv->ivGen != ivGen) || (gcmIv->fixedBits != fixedBits) ||
(gcmIv->ivLen != ivLen)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
} else {
/* remember these values */
gcmIv->ivGen = ivGen;
gcmIv->fixedBits = fixedBits;
gcmIv->ivLen = ivLen;
/* now calculate how may bits of IV we have to supply */
flexBits = ivLen * PR_BITS_PER_BYTE; /* bytes->bits */
/* first make sure we aren't going to overflow */
if (flexBits < fixedBits) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
flexBits -= fixedBits;
/* if we are generating a random number reduce the acceptable bits to
* avoid birthday attacks */
if (ivGen == CKG_GENERATE_RANDOM) {
if (flexBits <= GCMIV_RANDOM_BIRTHDAY_BITS) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* see freebl/blapit.h for how we calculate
* GCMIV_RANDOM_BIRTHDAY_BITS */
flexBits -= GCMIV_RANDOM_BIRTHDAY_BITS;
flexBits = flexBits >> 1;
}
if (flexBits == 0) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* Turn those bits into the number of IV's we can safely return */
if (flexBits >= sizeof(gcmIv->max_count) * PR_BITS_PER_BYTE) {
gcmIv->max_count = PR_UINT64(0xffffffffffffffff);
} else {
gcmIv->max_count = PR_UINT64(1) << flexBits;
}
}
/* no generate, accept the IV from the source */
if (ivGen == CKG_NO_GENERATE) {
gcmIv->counter = 1;
return SECSuccess;
}
/* make sure we haven't exceeded the number of IVs we can return
* for this key, generator, and IV size */
if (gcmIv->counter >= gcmIv->max_count) {
/* use a unique error from just bad user input */
PORT_SetError(SEC_ERROR_EXTRA_INPUT);
return SECFailure;
}
/* build to mask to handle the first byte of the IV */
ivOffset = fixedBits / PR_BITS_PER_BYTE;
ivMask = 0xff >> ((8 - (fixedBits & 7)) & 7);
ivNewCount = ivLen - ivOffset;
/* finally generate the IV */
switch (ivGen) {
case CKG_GENERATE: /* default to counter */
case CKG_GENERATE_COUNTER:
iv[ivOffset] = (iv[ivOffset] & ~ivMask) |
(PORT_GET_BYTE_BE(gcmIv->counter, 0, ivNewCount) & ivMask);
for (i = 1; i < ivNewCount; i++) {
iv[ivOffset + i] = PORT_GET_BYTE_BE(gcmIv->counter, i, ivNewCount);
}
break;
/* for TLS 1.3 */
case CKG_GENERATE_COUNTER_XOR:
iv[ivOffset] ^=
(PORT_GET_BYTE_BE(gcmIv->counter, 0, ivNewCount) & ivMask);
for (i = 1; i < ivNewCount; i++) {
iv[ivOffset + i] ^= PORT_GET_BYTE_BE(gcmIv->counter, i, ivNewCount);
}
break;
case CKG_GENERATE_RANDOM:
ivSave = iv[ivOffset] & ~ivMask;
rv = RNG_GenerateGlobalRandomBytes(iv + ivOffset, ivNewCount);
iv[ivOffset] = ivSave | (iv[ivOffset] & ivMask);
if (rv != SECSuccess) {
return rv;
}
break;
}
gcmIv->counter++;
return SECSuccess;
}
SECStatus
GCM_EncryptAEAD(GCMContext *gcm, unsigned char *outbuf,
unsigned int *outlen, unsigned int maxout,
const unsigned char *inbuf, unsigned int inlen,
void *params, unsigned int paramLen,
const unsigned char *aad, unsigned int aadLen,
unsigned int blocksize)
{
SECStatus rv;
unsigned int tagBytes;
unsigned int len;
const CK_GCM_MESSAGE_PARAMS *gcmParams =
(const CK_GCM_MESSAGE_PARAMS *)params;
PORT_Assert(blocksize == AES_BLOCK_SIZE);
if (blocksize != AES_BLOCK_SIZE) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
/* paramLen comes all the way from the application layer, make sure
* it's correct */
if (paramLen != sizeof(CK_GCM_MESSAGE_PARAMS)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* if we were initialized with the C_EncryptInit, we shouldn't be in this
* function */
if (gcm->ctr_context_init) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (maxout < inlen) {
*outlen = inlen;
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
rv = gcm_GenerateIV(&gcm->gcm_iv, gcmParams->pIv, gcmParams->ulIvLen,
gcmParams->ulIvFixedBits, gcmParams->ivGenerator);
if (rv != SECSuccess) {
return SECFailure;
}
rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen,
gcmParams->ulTagBits, aad, aadLen);
if (rv != SECSuccess) {
return SECFailure;
}
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
rv = CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
inbuf, inlen, AES_BLOCK_SIZE);
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
if (rv != SECSuccess) {
return SECFailure;
}
rv = gcmHash_Update(gcm->ghash_context, outbuf, *outlen);
if (rv != SECSuccess) {
PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
*outlen = 0;
return SECFailure;
}
rv = gcm_GetTag(gcm, gcmParams->pTag, &len, tagBytes);
if (rv != SECSuccess) {
PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
*outlen = 0;
return SECFailure;
};
return SECSuccess;
}
SECStatus
GCM_DecryptAEAD(GCMContext *gcm, unsigned char *outbuf,
unsigned int *outlen, unsigned int maxout,
const unsigned char *inbuf, unsigned int inlen,
void *params, unsigned int paramLen,
const unsigned char *aad, unsigned int aadLen,
unsigned int blocksize)
{
SECStatus rv;
unsigned int tagBytes;
unsigned char tag[MAX_BLOCK_SIZE];
const unsigned char *intag;
unsigned int len;
const CK_GCM_MESSAGE_PARAMS *gcmParams =
(const CK_GCM_MESSAGE_PARAMS *)params;
PORT_Assert(blocksize == AES_BLOCK_SIZE);
if (blocksize != AES_BLOCK_SIZE) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
/* paramLen comes all the way from the application layer, make sure
* it's correct */
if (paramLen != sizeof(CK_GCM_MESSAGE_PARAMS)) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* if we were initialized with the C_DecryptInit, we shouldn't be in this
* function */
if (gcm->ctr_context_init) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (maxout < inlen) {
*outlen = inlen;
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen,
gcmParams->ulTagBits, aad, aadLen);
if (rv != SECSuccess) {
return SECFailure;
}
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
intag = gcmParams->pTag;
PORT_Assert(tagBytes != 0);
/* verify the block */
rv = gcmHash_Update(gcm->ghash_context, inbuf, inlen);
if (rv != SECSuccess) {
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
return SECFailure;
}
rv = gcm_GetTag(gcm, tag, &len, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
return SECFailure;
}
/* Don't decrypt if we can't authenticate the encrypted data!
* This assumes that if tagBits is may not be a multiple of 8, intag will
* preserve the masked off missing bits. */
if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) {
/* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
PORT_SetError(SEC_ERROR_BAD_DATA);
PORT_Memset(tag, 0, sizeof(tag));
return SECFailure;
}
PORT_Memset(tag, 0, sizeof(tag));
/* finish the decryption */
rv = CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
inbuf, inlen, AES_BLOCK_SIZE);
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
return rv;
}
|