1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//
// Implement TimeStamp::Now() with POSIX clocks.
//
// The "tick" unit for POSIX clocks is simply a nanosecond, as this is
// the smallest unit of time representable by struct timespec. That
// doesn't mean that a nanosecond is the resolution of TimeDurations
// obtained with this API; see TimeDuration::Resolution;
//
#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>
#include <string.h>
#if defined(__DragonFly__) || defined(__FreeBSD__) \
|| defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/param.h>
#include <sys/sysctl.h>
#endif
#if defined(__DragonFly__) || defined(__FreeBSD__)
#include <sys/user.h>
#endif
#if defined(__NetBSD__)
#undef KERN_PROC
#define KERN_PROC KERN_PROC2
#define KINFO_PROC struct kinfo_proc2
#else
#define KINFO_PROC struct kinfo_proc
#endif
#if defined(__DragonFly__)
#define KP_START_SEC kp_start.tv_sec
#define KP_START_USEC kp_start.tv_usec
#elif defined(__FreeBSD__)
#define KP_START_SEC ki_start.tv_sec
#define KP_START_USEC ki_start.tv_usec
#else
#define KP_START_SEC p_ustart_sec
#define KP_START_USEC p_ustart_usec
#endif
#include "mozilla/Sprintf.h"
#include "mozilla/TimeStamp.h"
#include <pthread.h>
// Estimate of the smallest duration of time we can measure.
static uint64_t sResolution;
static uint64_t sResolutionSigDigs;
static const uint16_t kNsPerUs = 1000;
static const uint64_t kNsPerMs = 1000000;
static const uint64_t kNsPerSec = 1000000000;
static const double kNsPerMsd = 1000000.0;
static const double kNsPerSecd = 1000000000.0;
static uint64_t
TimespecToNs(const struct timespec& aTs)
{
uint64_t baseNs = uint64_t(aTs.tv_sec) * kNsPerSec;
return baseNs + uint64_t(aTs.tv_nsec);
}
static uint64_t
ClockTimeNs()
{
struct timespec ts;
// this can't fail: we know &ts is valid, and TimeStamp::Startup()
// checks that CLOCK_MONOTONIC is supported (and aborts if not)
clock_gettime(CLOCK_MONOTONIC, &ts);
// tv_sec is defined to be relative to an arbitrary point in time,
// but it would be madness for that point in time to be earlier than
// the Epoch. So we can safely assume that even if time_t is 32
// bits, tv_sec won't overflow while the browser is open. Revisit
// this argument if we're still building with 32-bit time_t around
// the year 2037.
return TimespecToNs(ts);
}
static uint64_t
ClockResolutionNs()
{
// NB: why not rely on clock_getres()? Two reasons: (i) it might
// lie, and (ii) it might return an "ideal" resolution that while
// theoretically true, could never be measured in practice. Since
// clock_gettime() likely involves a system call on your platform,
// the "actual" timing resolution shouldn't be lower than syscall
// overhead.
uint64_t start = ClockTimeNs();
uint64_t end = ClockTimeNs();
uint64_t minres = (end - start);
// 10 total trials is arbitrary: what we're trying to avoid by
// looping is getting unlucky and being interrupted by a context
// switch or signal, or being bitten by paging/cache effects
for (int i = 0; i < 9; ++i) {
start = ClockTimeNs();
end = ClockTimeNs();
uint64_t candidate = (start - end);
if (candidate < minres) {
minres = candidate;
}
}
if (0 == minres) {
// measurable resolution is either incredibly low, ~1ns, or very
// high. fall back on clock_getres()
struct timespec ts;
if (0 == clock_getres(CLOCK_MONOTONIC, &ts)) {
minres = TimespecToNs(ts);
}
}
if (0 == minres) {
// clock_getres probably failed. fall back on NSPR's resolution
// assumption
minres = 1 * kNsPerMs;
}
return minres;
}
namespace mozilla {
double
BaseTimeDurationPlatformUtils::ToSeconds(int64_t aTicks)
{
return double(aTicks) / kNsPerSecd;
}
double
BaseTimeDurationPlatformUtils::ToSecondsSigDigits(int64_t aTicks)
{
// don't report a value < mResolution ...
int64_t valueSigDigs = sResolution * (aTicks / sResolution);
// and chop off insignificant digits
valueSigDigs = sResolutionSigDigs * (valueSigDigs / sResolutionSigDigs);
return double(valueSigDigs) / kNsPerSecd;
}
int64_t
BaseTimeDurationPlatformUtils::TicksFromMilliseconds(double aMilliseconds)
{
double result = aMilliseconds * kNsPerMsd;
if (result > INT64_MAX) {
return INT64_MAX;
} else if (result < INT64_MIN) {
return INT64_MIN;
}
return result;
}
int64_t
BaseTimeDurationPlatformUtils::ResolutionInTicks()
{
return static_cast<int64_t>(sResolution);
}
static bool gInitialized = false;
void
TimeStamp::Startup()
{
if (gInitialized) {
return;
}
struct timespec dummy;
if (clock_gettime(CLOCK_MONOTONIC, &dummy) != 0) {
MOZ_CRASH("CLOCK_MONOTONIC is absent!");
}
sResolution = ClockResolutionNs();
// find the number of significant digits in sResolution, for the
// sake of ToSecondsSigDigits()
for (sResolutionSigDigs = 1;
!(sResolutionSigDigs == sResolution ||
10 * sResolutionSigDigs > sResolution);
sResolutionSigDigs *= 10);
gInitialized = true;
return;
}
void
TimeStamp::Shutdown()
{
}
TimeStamp
TimeStamp::Now(bool aHighResolution)
{
return TimeStamp(ClockTimeNs());
}
#ifdef XP_LINUX
// Calculates the amount of jiffies that have elapsed since boot and up to the
// starttime value of a specific process as found in its /proc/*/stat file.
// Returns 0 if an error occurred.
static uint64_t
JiffiesSinceBoot(const char* aFile)
{
char stat[512];
FILE* f = fopen(aFile, "r");
if (!f) {
return 0;
}
int n = fread(&stat, 1, sizeof(stat) - 1, f);
fclose(f);
if (n <= 0) {
return 0;
}
stat[n] = 0;
long long unsigned startTime = 0; // instead of uint64_t to keep GCC quiet
char* s = strrchr(stat, ')');
if (!s) {
return 0;
}
int rv = sscanf(s + 2,
"%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u "
"%*u %*u %*u %*d %*d %*d %*d %*d %*d %llu",
&startTime);
if (rv != 1 || !startTime) {
return 0;
}
return startTime;
}
// Computes the interval that has elapsed between the thread creation and the
// process creation by comparing the starttime fields in the respective
// /proc/*/stat files. The resulting value will be a good approximation of the
// process uptime. This value will be stored at the address pointed by aTime;
// if an error occurred 0 will be stored instead.
static void*
ComputeProcessUptimeThread(void* aTime)
{
uint64_t* uptime = static_cast<uint64_t*>(aTime);
long hz = sysconf(_SC_CLK_TCK);
*uptime = 0;
if (!hz) {
return nullptr;
}
char threadStat[40];
SprintfLiteral(threadStat, "/proc/self/task/%d/stat", (pid_t)syscall(__NR_gettid));
uint64_t threadJiffies = JiffiesSinceBoot(threadStat);
uint64_t selfJiffies = JiffiesSinceBoot("/proc/self/stat");
if (!threadJiffies || !selfJiffies) {
return nullptr;
}
*uptime = ((threadJiffies - selfJiffies) * kNsPerSec) / hz;
return nullptr;
}
// Computes and returns the process uptime in us on Linux & its derivatives.
// Returns 0 if an error was encountered.
uint64_t
TimeStamp::ComputeProcessUptime()
{
uint64_t uptime = 0;
pthread_t uptime_pthread;
if (pthread_create(&uptime_pthread, nullptr, ComputeProcessUptimeThread, &uptime)) {
MOZ_CRASH("Failed to create process uptime thread.");
return 0;
}
pthread_join(uptime_pthread, NULL);
return uptime / kNsPerUs;
}
#elif defined(__DragonFly__) || defined(__FreeBSD__) \
|| defined(__NetBSD__) || defined(__OpenBSD__)
// Computes and returns the process uptime in us on various BSD flavors.
// Returns 0 if an error was encountered.
uint64_t
TimeStamp::ComputeProcessUptime()
{
struct timespec ts;
int rv = clock_gettime(CLOCK_REALTIME, &ts);
if (rv == -1) {
return 0;
}
int mib[] = {
CTL_KERN,
KERN_PROC,
KERN_PROC_PID,
getpid(),
#if defined(__NetBSD__) || defined(__OpenBSD__)
sizeof(KINFO_PROC),
1,
#endif
};
u_int mibLen = sizeof(mib) / sizeof(mib[0]);
KINFO_PROC proc;
size_t bufferSize = sizeof(proc);
rv = sysctl(mib, mibLen, &proc, &bufferSize, nullptr, 0);
if (rv == -1) {
return 0;
}
uint64_t startTime = ((uint64_t)proc.KP_START_SEC * kNsPerSec) +
(proc.KP_START_USEC * kNsPerUs);
uint64_t now = ((uint64_t)ts.tv_sec * kNsPerSec) + ts.tv_nsec;
if (startTime > now) {
return 0;
}
return (now - startTime) / kNsPerUs;
}
#else
uint64_t
TimeStamp::ComputeProcessUptime()
{
return 0;
}
#endif
} // namespace mozilla
|