summaryrefslogtreecommitdiffstats
path: root/media/libaom/src/av1/encoder/ransac.c
blob: 781f528ebfd8b2ab4551ae4f0dce7d9c59782014 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */
#include <memory.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include "av1/encoder/ransac.h"
#include "av1/encoder/mathutils.h"
#include "av1/encoder/random.h"

#define MAX_MINPTS 4
#define MAX_DEGENERATE_ITER 10
#define MINPTS_MULTIPLIER 5

#define INLIER_THRESHOLD 1.0
#define MIN_TRIALS 20

////////////////////////////////////////////////////////////////////////////////
// ransac
typedef int (*IsDegenerateFunc)(double *p);
typedef void (*NormalizeFunc)(double *p, int np, double *T);
typedef void (*DenormalizeFunc)(double *params, double *T1, double *T2);
typedef int (*FindTransformationFunc)(int points, double *points1,
                                      double *points2, double *params);
typedef void (*ProjectPointsDoubleFunc)(double *mat, double *points,
                                        double *proj, const int n,
                                        const int stride_points,
                                        const int stride_proj);

static void project_points_double_translation(double *mat, double *points,
                                              double *proj, const int n,
                                              const int stride_points,
                                              const int stride_proj) {
  int i;
  for (i = 0; i < n; ++i) {
    const double x = *(points++), y = *(points++);
    *(proj++) = x + mat[0];
    *(proj++) = y + mat[1];
    points += stride_points - 2;
    proj += stride_proj - 2;
  }
}

static void project_points_double_rotzoom(double *mat, double *points,
                                          double *proj, const int n,
                                          const int stride_points,
                                          const int stride_proj) {
  int i;
  for (i = 0; i < n; ++i) {
    const double x = *(points++), y = *(points++);
    *(proj++) = mat[2] * x + mat[3] * y + mat[0];
    *(proj++) = -mat[3] * x + mat[2] * y + mat[1];
    points += stride_points - 2;
    proj += stride_proj - 2;
  }
}

static void project_points_double_affine(double *mat, double *points,
                                         double *proj, const int n,
                                         const int stride_points,
                                         const int stride_proj) {
  int i;
  for (i = 0; i < n; ++i) {
    const double x = *(points++), y = *(points++);
    *(proj++) = mat[2] * x + mat[3] * y + mat[0];
    *(proj++) = mat[4] * x + mat[5] * y + mat[1];
    points += stride_points - 2;
    proj += stride_proj - 2;
  }
}

static void normalize_homography(double *pts, int n, double *T) {
  double *p = pts;
  double mean[2] = { 0, 0 };
  double msqe = 0;
  double scale;
  int i;

  assert(n > 0);
  for (i = 0; i < n; ++i, p += 2) {
    mean[0] += p[0];
    mean[1] += p[1];
  }
  mean[0] /= n;
  mean[1] /= n;
  for (p = pts, i = 0; i < n; ++i, p += 2) {
    p[0] -= mean[0];
    p[1] -= mean[1];
    msqe += sqrt(p[0] * p[0] + p[1] * p[1]);
  }
  msqe /= n;
  scale = (msqe == 0 ? 1.0 : sqrt(2) / msqe);
  T[0] = scale;
  T[1] = 0;
  T[2] = -scale * mean[0];
  T[3] = 0;
  T[4] = scale;
  T[5] = -scale * mean[1];
  T[6] = 0;
  T[7] = 0;
  T[8] = 1;
  for (p = pts, i = 0; i < n; ++i, p += 2) {
    p[0] *= scale;
    p[1] *= scale;
  }
}

static void invnormalize_mat(double *T, double *iT) {
  double is = 1.0 / T[0];
  double m0 = -T[2] * is;
  double m1 = -T[5] * is;
  iT[0] = is;
  iT[1] = 0;
  iT[2] = m0;
  iT[3] = 0;
  iT[4] = is;
  iT[5] = m1;
  iT[6] = 0;
  iT[7] = 0;
  iT[8] = 1;
}

static void denormalize_homography(double *params, double *T1, double *T2) {
  double iT2[9];
  double params2[9];
  invnormalize_mat(T2, iT2);
  multiply_mat(params, T1, params2, 3, 3, 3);
  multiply_mat(iT2, params2, params, 3, 3, 3);
}

static void denormalize_affine_reorder(double *params, double *T1, double *T2) {
  double params_denorm[MAX_PARAMDIM];
  params_denorm[0] = params[0];
  params_denorm[1] = params[1];
  params_denorm[2] = params[4];
  params_denorm[3] = params[2];
  params_denorm[4] = params[3];
  params_denorm[5] = params[5];
  params_denorm[6] = params_denorm[7] = 0;
  params_denorm[8] = 1;
  denormalize_homography(params_denorm, T1, T2);
  params[0] = params_denorm[2];
  params[1] = params_denorm[5];
  params[2] = params_denorm[0];
  params[3] = params_denorm[1];
  params[4] = params_denorm[3];
  params[5] = params_denorm[4];
  params[6] = params[7] = 0;
}

static void denormalize_rotzoom_reorder(double *params, double *T1,
                                        double *T2) {
  double params_denorm[MAX_PARAMDIM];
  params_denorm[0] = params[0];
  params_denorm[1] = params[1];
  params_denorm[2] = params[2];
  params_denorm[3] = -params[1];
  params_denorm[4] = params[0];
  params_denorm[5] = params[3];
  params_denorm[6] = params_denorm[7] = 0;
  params_denorm[8] = 1;
  denormalize_homography(params_denorm, T1, T2);
  params[0] = params_denorm[2];
  params[1] = params_denorm[5];
  params[2] = params_denorm[0];
  params[3] = params_denorm[1];
  params[4] = -params[3];
  params[5] = params[2];
  params[6] = params[7] = 0;
}

static void denormalize_translation_reorder(double *params, double *T1,
                                            double *T2) {
  double params_denorm[MAX_PARAMDIM];
  params_denorm[0] = 1;
  params_denorm[1] = 0;
  params_denorm[2] = params[0];
  params_denorm[3] = 0;
  params_denorm[4] = 1;
  params_denorm[5] = params[1];
  params_denorm[6] = params_denorm[7] = 0;
  params_denorm[8] = 1;
  denormalize_homography(params_denorm, T1, T2);
  params[0] = params_denorm[2];
  params[1] = params_denorm[5];
  params[2] = params[5] = 1;
  params[3] = params[4] = 0;
  params[6] = params[7] = 0;
}

static int find_translation(int np, double *pts1, double *pts2, double *mat) {
  int i;
  double sx, sy, dx, dy;
  double sumx, sumy;

  double T1[9], T2[9];
  normalize_homography(pts1, np, T1);
  normalize_homography(pts2, np, T2);

  sumx = 0;
  sumy = 0;
  for (i = 0; i < np; ++i) {
    dx = *(pts2++);
    dy = *(pts2++);
    sx = *(pts1++);
    sy = *(pts1++);

    sumx += dx - sx;
    sumy += dy - sy;
  }
  mat[0] = sumx / np;
  mat[1] = sumy / np;
  denormalize_translation_reorder(mat, T1, T2);
  return 0;
}

static int find_rotzoom(int np, double *pts1, double *pts2, double *mat) {
  const int np2 = np * 2;
  double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 5 + 20));
  double *b = a + np2 * 4;
  double *temp = b + np2;
  int i;
  double sx, sy, dx, dy;

  double T1[9], T2[9];
  normalize_homography(pts1, np, T1);
  normalize_homography(pts2, np, T2);

  for (i = 0; i < np; ++i) {
    dx = *(pts2++);
    dy = *(pts2++);
    sx = *(pts1++);
    sy = *(pts1++);

    a[i * 2 * 4 + 0] = sx;
    a[i * 2 * 4 + 1] = sy;
    a[i * 2 * 4 + 2] = 1;
    a[i * 2 * 4 + 3] = 0;
    a[(i * 2 + 1) * 4 + 0] = sy;
    a[(i * 2 + 1) * 4 + 1] = -sx;
    a[(i * 2 + 1) * 4 + 2] = 0;
    a[(i * 2 + 1) * 4 + 3] = 1;

    b[2 * i] = dx;
    b[2 * i + 1] = dy;
  }
  if (!least_squares(4, a, np2, 4, b, temp, mat)) {
    aom_free(a);
    return 1;
  }
  denormalize_rotzoom_reorder(mat, T1, T2);
  aom_free(a);
  return 0;
}

static int find_affine(int np, double *pts1, double *pts2, double *mat) {
  const int np2 = np * 2;
  double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 7 + 42));
  double *b = a + np2 * 6;
  double *temp = b + np2;
  int i;
  double sx, sy, dx, dy;

  double T1[9], T2[9];
  normalize_homography(pts1, np, T1);
  normalize_homography(pts2, np, T2);

  for (i = 0; i < np; ++i) {
    dx = *(pts2++);
    dy = *(pts2++);
    sx = *(pts1++);
    sy = *(pts1++);

    a[i * 2 * 6 + 0] = sx;
    a[i * 2 * 6 + 1] = sy;
    a[i * 2 * 6 + 2] = 0;
    a[i * 2 * 6 + 3] = 0;
    a[i * 2 * 6 + 4] = 1;
    a[i * 2 * 6 + 5] = 0;
    a[(i * 2 + 1) * 6 + 0] = 0;
    a[(i * 2 + 1) * 6 + 1] = 0;
    a[(i * 2 + 1) * 6 + 2] = sx;
    a[(i * 2 + 1) * 6 + 3] = sy;
    a[(i * 2 + 1) * 6 + 4] = 0;
    a[(i * 2 + 1) * 6 + 5] = 1;

    b[2 * i] = dx;
    b[2 * i + 1] = dy;
  }
  if (!least_squares(6, a, np2, 6, b, temp, mat)) {
    aom_free(a);
    return 1;
  }
  denormalize_affine_reorder(mat, T1, T2);
  aom_free(a);
  return 0;
}

static int get_rand_indices(int npoints, int minpts, int *indices,
                            unsigned int *seed) {
  int i, j;
  int ptr = lcg_rand16(seed) % npoints;
  if (minpts > npoints) return 0;
  indices[0] = ptr;
  ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
  i = 1;
  while (i < minpts) {
    int index = lcg_rand16(seed) % npoints;
    while (index) {
      ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
      for (j = 0; j < i; ++j) {
        if (indices[j] == ptr) break;
      }
      if (j == i) index--;
    }
    indices[i++] = ptr;
  }
  return 1;
}

typedef struct {
  int num_inliers;
  double variance;
  int *inlier_indices;
} RANSAC_MOTION;

// Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise.
static int compare_motions(const void *arg_a, const void *arg_b) {
  const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a;
  const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b;

  if (motion_a->num_inliers > motion_b->num_inliers) return -1;
  if (motion_a->num_inliers < motion_b->num_inliers) return 1;
  if (motion_a->variance < motion_b->variance) return -1;
  if (motion_a->variance > motion_b->variance) return 1;
  return 0;
}

static int is_better_motion(const RANSAC_MOTION *motion_a,
                            const RANSAC_MOTION *motion_b) {
  return compare_motions(motion_a, motion_b) < 0;
}

static void copy_points_at_indices(double *dest, const double *src,
                                   const int *indices, int num_points) {
  for (int i = 0; i < num_points; ++i) {
    const int index = indices[i];
    dest[i * 2] = src[index * 2];
    dest[i * 2 + 1] = src[index * 2 + 1];
  }
}

static const double kInfiniteVariance = 1e12;

static void clear_motion(RANSAC_MOTION *motion, int num_points) {
  motion->num_inliers = 0;
  motion->variance = kInfiniteVariance;
  memset(motion->inlier_indices, 0,
         sizeof(*motion->inlier_indices * num_points));
}

static int ransac(const int *matched_points, int npoints,
                  int *num_inliers_by_motion, double *params_by_motion,
                  int num_desired_motions, const int minpts,
                  IsDegenerateFunc is_degenerate,
                  FindTransformationFunc find_transformation,
                  ProjectPointsDoubleFunc projectpoints) {
  static const double PROBABILITY_REQUIRED = 0.9;
  static const double EPS = 1e-12;

  int N = 10000, trial_count = 0;
  int i = 0;
  int ret_val = 0;

  unsigned int seed = (unsigned int)npoints;

  int indices[MAX_MINPTS] = { 0 };

  double *points1, *points2;
  double *corners1, *corners2;
  double *image1_coord;

  // Store information for the num_desired_motions best transformations found
  // and the worst motion among them, as well as the motion currently under
  // consideration.
  RANSAC_MOTION *motions, *worst_kept_motion = NULL;
  RANSAC_MOTION current_motion;

  // Store the parameters and the indices of the inlier points for the motion
  // currently under consideration.
  double params_this_motion[MAX_PARAMDIM];

  double *cnp1, *cnp2;

  for (i = 0; i < num_desired_motions; ++i) {
    num_inliers_by_motion[i] = 0;
  }
  if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) {
    return 1;
  }

  points1 = (double *)aom_malloc(sizeof(*points1) * npoints * 2);
  points2 = (double *)aom_malloc(sizeof(*points2) * npoints * 2);
  corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2);
  corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2);
  image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2);

  motions =
      (RANSAC_MOTION *)aom_malloc(sizeof(RANSAC_MOTION) * num_desired_motions);
  for (i = 0; i < num_desired_motions; ++i) {
    motions[i].inlier_indices =
        (int *)aom_malloc(sizeof(*motions->inlier_indices) * npoints);
    clear_motion(motions + i, npoints);
  }
  current_motion.inlier_indices =
      (int *)aom_malloc(sizeof(*current_motion.inlier_indices) * npoints);
  clear_motion(&current_motion, npoints);

  worst_kept_motion = motions;

  if (!(points1 && points2 && corners1 && corners2 && image1_coord && motions &&
        current_motion.inlier_indices)) {
    ret_val = 1;
    goto finish_ransac;
  }

  cnp1 = corners1;
  cnp2 = corners2;
  for (i = 0; i < npoints; ++i) {
    *(cnp1++) = *(matched_points++);
    *(cnp1++) = *(matched_points++);
    *(cnp2++) = *(matched_points++);
    *(cnp2++) = *(matched_points++);
  }

  while (N > trial_count) {
    double sum_distance = 0.0;
    double sum_distance_squared = 0.0;

    clear_motion(&current_motion, npoints);

    int degenerate = 1;
    int num_degenerate_iter = 0;

    while (degenerate) {
      num_degenerate_iter++;
      if (!get_rand_indices(npoints, minpts, indices, &seed)) {
        ret_val = 1;
        goto finish_ransac;
      }

      copy_points_at_indices(points1, corners1, indices, minpts);
      copy_points_at_indices(points2, corners2, indices, minpts);

      degenerate = is_degenerate(points1);
      if (num_degenerate_iter > MAX_DEGENERATE_ITER) {
        ret_val = 1;
        goto finish_ransac;
      }
    }

    if (find_transformation(minpts, points1, points2, params_this_motion)) {
      trial_count++;
      continue;
    }

    projectpoints(params_this_motion, corners1, image1_coord, npoints, 2, 2);

    for (i = 0; i < npoints; ++i) {
      double dx = image1_coord[i * 2] - corners2[i * 2];
      double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1];
      double distance = sqrt(dx * dx + dy * dy);

      if (distance < INLIER_THRESHOLD) {
        current_motion.inlier_indices[current_motion.num_inliers++] = i;
        sum_distance += distance;
        sum_distance_squared += distance * distance;
      }
    }

    if (current_motion.num_inliers >= worst_kept_motion->num_inliers &&
        current_motion.num_inliers > 1) {
      int temp;
      double fracinliers, pNoOutliers, mean_distance, dtemp;
      mean_distance = sum_distance / ((double)current_motion.num_inliers);
      current_motion.variance =
          sum_distance_squared / ((double)current_motion.num_inliers - 1.0) -
          mean_distance * mean_distance * ((double)current_motion.num_inliers) /
              ((double)current_motion.num_inliers - 1.0);
      if (is_better_motion(&current_motion, worst_kept_motion)) {
        // This motion is better than the worst currently kept motion. Remember
        // the inlier points and variance. The parameters for each kept motion
        // will be recomputed later using only the inliers.
        worst_kept_motion->num_inliers = current_motion.num_inliers;
        worst_kept_motion->variance = current_motion.variance;
        memcpy(worst_kept_motion->inlier_indices, current_motion.inlier_indices,
               sizeof(*current_motion.inlier_indices) * npoints);

        assert(npoints > 0);
        fracinliers = (double)current_motion.num_inliers / (double)npoints;
        pNoOutliers = 1 - pow(fracinliers, minpts);
        pNoOutliers = fmax(EPS, pNoOutliers);
        pNoOutliers = fmin(1 - EPS, pNoOutliers);
        dtemp = log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers);
        temp = (dtemp > (double)INT32_MAX)
                   ? INT32_MAX
                   : dtemp < (double)INT32_MIN ? INT32_MIN : (int)dtemp;

        if (temp > 0 && temp < N) {
          N = AOMMAX(temp, MIN_TRIALS);
        }

        // Determine the new worst kept motion and its num_inliers and variance.
        for (i = 0; i < num_desired_motions; ++i) {
          if (is_better_motion(worst_kept_motion, &motions[i])) {
            worst_kept_motion = &motions[i];
          }
        }
      }
    }
    trial_count++;
  }

  // Sort the motions, best first.
  qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions);

  // Recompute the motions using only the inliers.
  for (i = 0; i < num_desired_motions; ++i) {
    if (motions[i].num_inliers >= minpts) {
      copy_points_at_indices(points1, corners1, motions[i].inlier_indices,
                             motions[i].num_inliers);
      copy_points_at_indices(points2, corners2, motions[i].inlier_indices,
                             motions[i].num_inliers);

      find_transformation(motions[i].num_inliers, points1, points2,
                          params_by_motion + (MAX_PARAMDIM - 1) * i);
    }
    num_inliers_by_motion[i] = motions[i].num_inliers;
  }

finish_ransac:
  aom_free(points1);
  aom_free(points2);
  aom_free(corners1);
  aom_free(corners2);
  aom_free(image1_coord);
  aom_free(current_motion.inlier_indices);
  for (i = 0; i < num_desired_motions; ++i) {
    aom_free(motions[i].inlier_indices);
  }
  aom_free(motions);

  return ret_val;
}

static int is_collinear3(double *p1, double *p2, double *p3) {
  static const double collinear_eps = 1e-3;
  const double v =
      (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]);
  return fabs(v) < collinear_eps;
}

static int is_degenerate_translation(double *p) {
  return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2;
}

static int is_degenerate_affine(double *p) {
  return is_collinear3(p, p + 2, p + 4);
}

int ransac_translation(int *matched_points, int npoints,
                       int *num_inliers_by_motion, double *params_by_motion,
                       int num_desired_motions) {
  return ransac(matched_points, npoints, num_inliers_by_motion,
                params_by_motion, num_desired_motions, 3,
                is_degenerate_translation, find_translation,
                project_points_double_translation);
}

int ransac_rotzoom(int *matched_points, int npoints, int *num_inliers_by_motion,
                   double *params_by_motion, int num_desired_motions) {
  return ransac(matched_points, npoints, num_inliers_by_motion,
                params_by_motion, num_desired_motions, 3, is_degenerate_affine,
                find_rotzoom, project_points_double_rotzoom);
}

int ransac_affine(int *matched_points, int npoints, int *num_inliers_by_motion,
                  double *params_by_motion, int num_desired_motions) {
  return ransac(matched_points, npoints, num_inliers_by_motion,
                params_by_motion, num_desired_motions, 3, is_degenerate_affine,
                find_affine, project_points_double_affine);
}