summaryrefslogtreecommitdiffstats
path: root/layout/generic/nsGridContainerFrame.cpp
blob: 0af05be5092b18d9d9ed3ae5c0d6f441f1275eff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code is subject to the terms of the Mozilla Public License
 * version 2.0 (the "License"). You can obtain a copy of the License at
 * http://mozilla.org/MPL/2.0/. */

/* rendering object for CSS "display: grid | inline-grid" */

#include "nsGridContainerFrame.h"

#include <limits>
#include <stdlib.h> // for div()
#include "mozilla/CSSAlignUtils.h"
#include "mozilla/dom/GridBinding.h"
#include "mozilla/Function.h"
#include "mozilla/Maybe.h"
#include "mozilla/PodOperations.h" // for PodZero
#include "mozilla/Poison.h"
#include "nsAbsoluteContainingBlock.h"
#include "nsAlgorithm.h" // for clamped()
#include "nsCSSAnonBoxes.h"
#include "nsCSSFrameConstructor.h"
#include "nsDataHashtable.h"
#include "nsDisplayList.h"
#include "nsHashKeys.h"
#include "nsIFrameInlines.h"
#include "nsPresContext.h"
#include "nsReadableUtils.h"
#include "nsRenderingContext.h"
#include "nsRuleNode.h"
#include "nsStyleContext.h"
#include "nsTableWrapperFrame.h"

#if defined(__clang__) && __clang_major__ == 3 && __clang_minor__ <= 8
#define CLANG_CRASH_BUG 1
#endif

using namespace mozilla;

typedef nsAbsoluteContainingBlock::AbsPosReflowFlags AbsPosReflowFlags;
typedef nsGridContainerFrame::TrackSize TrackSize;
const uint32_t nsGridContainerFrame::kTranslatedMaxLine =
  uint32_t(nsStyleGridLine::kMaxLine - nsStyleGridLine::kMinLine);
const uint32_t nsGridContainerFrame::kAutoLine = kTranslatedMaxLine + 3457U;
typedef nsTHashtable< nsPtrHashKey<nsIFrame> > FrameHashtable;
typedef mozilla::CSSAlignUtils::AlignJustifyFlags AlignJustifyFlags;
typedef nsLayoutUtils::IntrinsicISizeType IntrinsicISizeType;

// https://drafts.csswg.org/css-sizing/#constraints
enum class SizingConstraint
{
  eMinContent,  // sizing under min-content constraint
  eMaxContent,  // sizing under max-content constraint
  eNoConstraint // no constraint, used during Reflow
};

static void
ReparentFrame(nsIFrame* aFrame, nsContainerFrame* aOldParent,
              nsContainerFrame* aNewParent)
{
  NS_ASSERTION(aOldParent == aFrame->GetParent(),
               "Parent not consistent with expectations");

  aFrame->SetParent(aNewParent);

  // When pushing and pulling frames we need to check for whether any
  // views need to be reparented
  nsContainerFrame::ReparentFrameView(aFrame, aOldParent, aNewParent);
}

static void
ReparentFrames(nsFrameList& aFrameList, nsContainerFrame* aOldParent,
               nsContainerFrame* aNewParent)
{
  for (auto f : aFrameList) {
    ReparentFrame(f, aOldParent, aNewParent);
  }
}

static nscoord
ClampToCSSMaxBSize(nscoord aSize, const ReflowInput* aReflowInput)
{
  auto maxSize = aReflowInput->ComputedMaxBSize();
  if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
    MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
    aSize = std::min(aSize, maxSize);
  }
  return aSize;
}

// Same as above and set aStatus INCOMPLETE if aSize wasn't clamped.
// (If we clamp aSize it means our size is less than the break point,
// i.e. we're effectively breaking in our overflow, so we should leave
// aStatus as is (it will likely be set to OVERFLOW_INCOMPLETE later)).
static nscoord
ClampToCSSMaxBSize(nscoord aSize, const ReflowInput* aReflowInput,
                   nsReflowStatus* aStatus)
{
  auto maxSize = aReflowInput->ComputedMaxBSize();
  if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
    MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
    if (aSize < maxSize) {
      NS_FRAME_SET_INCOMPLETE(*aStatus);
    } else {
      aSize = maxSize;
    }
  } else {
    NS_FRAME_SET_INCOMPLETE(*aStatus);
  }
  return aSize;
}

static bool
IsPercentOfIndefiniteSize(const nsStyleCoord& aCoord, nscoord aPercentBasis)
{
  return aPercentBasis == NS_UNCONSTRAINEDSIZE && aCoord.HasPercent();
}

static nscoord
ResolveToDefiniteSize(const nsStyleCoord& aCoord, nscoord aPercentBasis)
{
  MOZ_ASSERT(aCoord.IsCoordPercentCalcUnit());
  if (::IsPercentOfIndefiniteSize(aCoord, aPercentBasis)) {
    return nscoord(0);
  }
  return std::max(nscoord(0),
                  nsRuleNode::ComputeCoordPercentCalc(aCoord, aPercentBasis));
}

// Synthesize a baseline from a border box.  For an alphabetical baseline
// this is the end edge of the border box.  For a central baseline it's
// the center of the border box.
// https://drafts.csswg.org/css-align-3/#synthesize-baselines
// For a 'first baseline' the measure is from the border-box start edge and
// for a 'last baseline' the measure is from the border-box end edge.
static nscoord
SynthesizeBaselineFromBorderBox(BaselineSharingGroup aGroup,
                                WritingMode aWM,
                                nscoord aBorderBoxSize)
{
  if (aGroup == BaselineSharingGroup::eFirst) {
    return aWM.IsAlphabeticalBaseline() ? aBorderBoxSize : aBorderBoxSize / 2;
  }
  MOZ_ASSERT(aGroup == BaselineSharingGroup::eLast);
  // Round up for central baseline offset, to be consistent with eFirst.
  return aWM.IsAlphabeticalBaseline() ? 0 :
    (aBorderBoxSize / 2) + (aBorderBoxSize % 2);
}

enum class GridLineSide
{
  eBeforeGridGap,
  eAfterGridGap,
};

struct nsGridContainerFrame::TrackSize
{
  enum StateBits : uint16_t {
    eAutoMinSizing =              0x1,
    eMinContentMinSizing =        0x2,
    eMaxContentMinSizing =        0x4,
    eMinOrMaxContentMinSizing = eMinContentMinSizing | eMaxContentMinSizing,
    eIntrinsicMinSizing = eMinOrMaxContentMinSizing | eAutoMinSizing,
    eModified =                   0x8,
    eAutoMaxSizing =             0x10,
    eMinContentMaxSizing =       0x20,
    eMaxContentMaxSizing =       0x40,
    eAutoOrMaxContentMaxSizing = eAutoMaxSizing | eMaxContentMaxSizing,
    eIntrinsicMaxSizing = eAutoOrMaxContentMaxSizing | eMinContentMaxSizing,
    eFlexMaxSizing =             0x80,
    eFrozen =                   0x100,
    eSkipGrowUnlimited1 =       0x200,
    eSkipGrowUnlimited2 =       0x400,
    eSkipGrowUnlimited = eSkipGrowUnlimited1 | eSkipGrowUnlimited2,
    eBreakBefore =              0x800,
    eFitContent =              0x1000,
    eInfinitelyGrowable =      0x2000,
  };

  StateBits Initialize(nscoord aPercentageBasis,
                       const nsStyleCoord& aMinCoord,
                       const nsStyleCoord& aMaxCoord);
  bool IsFrozen() const { return mState & eFrozen; }
#ifdef DEBUG
  void Dump() const;
#endif

  static bool IsMinContent(const nsStyleCoord& aCoord)
  {
    return aCoord.GetUnit() == eStyleUnit_Enumerated &&
      aCoord.GetIntValue() == NS_STYLE_GRID_TRACK_BREADTH_MIN_CONTENT;
  }
  static bool IsDefiniteMaxSizing(StateBits aStateBits)
  {
    return (aStateBits & (eIntrinsicMaxSizing | eFlexMaxSizing)) == 0;
  }

  nscoord mBase;
  nscoord mLimit;
  nscoord mPosition;  // zero until we apply 'align/justify-content'
  // mBaselineSubtreeSize is the size of a baseline-aligned subtree within
  // this track.  One subtree per baseline-sharing group (per track).
  nscoord mBaselineSubtreeSize[2];
  StateBits mState;
};

MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(TrackSize::StateBits)

namespace mozilla {
template <>
struct IsPod<nsGridContainerFrame::TrackSize> : TrueType {};
}

TrackSize::StateBits
nsGridContainerFrame::TrackSize::Initialize(nscoord aPercentageBasis,
                                            const nsStyleCoord& aMinCoord,
                                            const nsStyleCoord& aMaxCoord)
{
  MOZ_ASSERT(mBase == 0 && mLimit == 0 && mState == 0,
             "track size data is expected to be initialized to zero");
  auto minSizeUnit = aMinCoord.GetUnit();
  auto maxSizeUnit = aMaxCoord.GetUnit();
  if (minSizeUnit == eStyleUnit_None) {
    // This track is sized using fit-content(size) (represented in style system
    // with minCoord=None,maxCoord=size).  In layout, fit-content(size) behaves
    // as minmax(auto, max-content), with 'size' as an additional upper-bound.
    mState = eFitContent;
    minSizeUnit = eStyleUnit_Auto;
    maxSizeUnit = eStyleUnit_Enumerated; // triggers max-content sizing below
  }
  if (::IsPercentOfIndefiniteSize(aMinCoord, aPercentageBasis)) {
    // https://drafts.csswg.org/css-grid/#valdef-grid-template-columns-percentage
    // "If the inline or block size of the grid container is indefinite,
    //  <percentage> values relative to that size are treated as 'auto'."
    minSizeUnit = eStyleUnit_Auto;
  }
  if (::IsPercentOfIndefiniteSize(aMaxCoord, aPercentageBasis)) {
    maxSizeUnit = eStyleUnit_Auto;
  }
  // http://dev.w3.org/csswg/css-grid/#algo-init
  switch (minSizeUnit) {
    case eStyleUnit_Auto:
      mState |= eAutoMinSizing;
      break;
    case eStyleUnit_Enumerated:
      mState |= IsMinContent(aMinCoord) ? eMinContentMinSizing
                                        : eMaxContentMinSizing;
      break;
    default:
      MOZ_ASSERT(minSizeUnit != eStyleUnit_FlexFraction,
                 "<flex> min-sizing is invalid as a track size");
      mBase = ::ResolveToDefiniteSize(aMinCoord, aPercentageBasis);
  }
  switch (maxSizeUnit) {
    case eStyleUnit_Auto:
      mState |= eAutoMaxSizing;
      mLimit = NS_UNCONSTRAINEDSIZE;
      break;
    case eStyleUnit_Enumerated:
      mState |= IsMinContent(aMaxCoord) ? eMinContentMaxSizing
                                        : eMaxContentMaxSizing;
      mLimit = NS_UNCONSTRAINEDSIZE;
      break;
    case eStyleUnit_FlexFraction:
      mState |= eFlexMaxSizing;
      mLimit = mBase;
      break;
    default:
      mLimit = ::ResolveToDefiniteSize(aMaxCoord, aPercentageBasis);
      if (mLimit < mBase) {
        mLimit = mBase;
      }
  }

  mBaselineSubtreeSize[BaselineSharingGroup::eFirst] = nscoord(0);
  mBaselineSubtreeSize[BaselineSharingGroup::eLast] = nscoord(0);
  return mState;
}

/**
 * Is aFrame1 a prev-continuation of aFrame2?
 */
static bool
IsPrevContinuationOf(nsIFrame* aFrame1, nsIFrame* aFrame2)
{
  nsIFrame* prev = aFrame2;
  while ((prev = prev->GetPrevContinuation())) {
    if (prev == aFrame1) {
      return true;
    }
  }
  return false;
}

/**
 * Moves all frames from aSrc into aDest such that the resulting aDest
 * is still sorted in document content order and continuation order.
 * Precondition: both |aSrc| and |aDest| must be sorted to begin with.
 * @param aCommonAncestor a hint for nsLayoutUtils::CompareTreePosition
 */
static void
MergeSortedFrameLists(nsFrameList& aDest, nsFrameList& aSrc,
                      nsIContent* aCommonAncestor)
{
  nsIFrame* dest = aDest.FirstChild();
  for (nsIFrame* src = aSrc.FirstChild(); src; ) {
    if (!dest) {
      aDest.AppendFrames(nullptr, aSrc);
      break;
    }
    nsIContent* srcContent = src->GetContent();
    nsIContent* destContent = dest->GetContent();
    int32_t result = nsLayoutUtils::CompareTreePosition(srcContent,
                                                        destContent,
                                                        aCommonAncestor);
    if (MOZ_UNLIKELY(result == 0)) {
      // NOTE: we get here when comparing ::before/::after for the same element.
      if (MOZ_UNLIKELY(srcContent->IsGeneratedContentContainerForBefore())) {
        if (MOZ_LIKELY(!destContent->IsGeneratedContentContainerForBefore()) ||
            ::IsPrevContinuationOf(src, dest)) {
          result = -1;
        }
      } else if (MOZ_UNLIKELY(srcContent->IsGeneratedContentContainerForAfter())) {
        if (MOZ_UNLIKELY(destContent->IsGeneratedContentContainerForAfter()) &&
            ::IsPrevContinuationOf(src, dest)) {
          result = -1;
        }
      } else if (::IsPrevContinuationOf(src, dest)) {
        result = -1;
      }
    }
    if (result < 0) {
      // src should come before dest
      nsIFrame* next = src->GetNextSibling();
      aSrc.RemoveFrame(src);
      aDest.InsertFrame(nullptr, dest->GetPrevSibling(), src);
      src = next;
    } else {
      dest = dest->GetNextSibling();
    }
  }
  MOZ_ASSERT(aSrc.IsEmpty());
}

static void
MergeSortedFrameListsFor(nsFrameList& aDest, nsFrameList& aSrc,
                         nsContainerFrame* aParent)
{
  MergeSortedFrameLists(aDest, aSrc, aParent->GetContent());
}

template<typename Iterator>
class nsGridContainerFrame::GridItemCSSOrderIteratorT
{
public:
  enum OrderState { eUnknownOrder, eKnownOrdered, eKnownUnordered };
  enum ChildFilter { eSkipPlaceholders, eIncludeAll };
  GridItemCSSOrderIteratorT(nsIFrame* aGridContainer,
                            nsIFrame::ChildListID aListID,
                            ChildFilter aFilter = eSkipPlaceholders,
                            OrderState aState = eUnknownOrder)
    : mChildren(aGridContainer->GetChildList(aListID))
    , mArrayIndex(0)
    , mGridItemIndex(0)
    , mSkipPlaceholders(aFilter == eSkipPlaceholders)
#ifdef DEBUG
    , mGridContainer(aGridContainer)
    , mListID(aListID)
#endif
  {
    size_t count = 0;
    bool isOrdered = aState != eKnownUnordered;
    if (aState == eUnknownOrder) {
      auto maxOrder = std::numeric_limits<int32_t>::min();
      for (auto child : mChildren) {
        ++count;
        int32_t order = child->StylePosition()->mOrder;
        if (order < maxOrder) {
          isOrdered = false;
          break;
        }
        maxOrder = order;
      }
    }
    if (isOrdered) {
      mIter.emplace(begin(mChildren));
      mIterEnd.emplace(end(mChildren));
    } else {
      count *= 2; // XXX somewhat arbitrary estimate for now...
      mArray.emplace(count);
      for (Iterator i(begin(mChildren)), iEnd(end(mChildren)); i != iEnd; ++i) {
        mArray->AppendElement(*i);
      }
      // XXX replace this with nsTArray::StableSort when bug 1147091 is fixed.
      std::stable_sort(mArray->begin(), mArray->end(), CSSOrderComparator);
    }

    if (mSkipPlaceholders) {
      SkipPlaceholders();
    }
  }
  ~GridItemCSSOrderIteratorT()
  {
    MOZ_ASSERT(IsForward() == mGridItemCount.isNothing());
  }

  bool IsForward() const;
  Iterator begin(const nsFrameList& aList);
  Iterator end(const nsFrameList& aList);

  nsIFrame* operator*() const
  {
    MOZ_ASSERT(!AtEnd());
    if (mIter.isSome()) {
      return **mIter;
    }
    return (*mArray)[mArrayIndex];
  }

  /**
   * Return the child index of the current item, placeholders not counted.
   * It's forbidden to call this method when the current frame is placeholder.
   */
  size_t GridItemIndex() const
  {
    MOZ_ASSERT(!AtEnd());
    MOZ_ASSERT((**this)->GetType() != nsGkAtoms::placeholderFrame,
               "MUST not call this when at a placeholder");
    MOZ_ASSERT(IsForward() || mGridItemIndex < *mGridItemCount,
               "Returning an out-of-range mGridItemIndex...");
    return mGridItemIndex;
  }

  void SetGridItemCount(size_t aGridItemCount)
  {
#ifndef CLANG_CRASH_BUG
    MOZ_ASSERT(mIter.isSome() || mArray->Length() == aGridItemCount,
               "grid item count mismatch");
#endif
    mGridItemCount.emplace(aGridItemCount);
    // Note: it's OK if mGridItemIndex underflows -- GridItemIndex()
    // will not be called unless there is at least one item.
    mGridItemIndex = IsForward() ? 0 : *mGridItemCount - 1;
  }

  /**
   * Skip over placeholder children.
   */
  void SkipPlaceholders()
  {
    if (mIter.isSome()) {
      for (; *mIter != *mIterEnd; ++*mIter) {
        nsIFrame* child = **mIter;
        if (child->GetType() != nsGkAtoms::placeholderFrame) {
          return;
        }
      }
    } else {
      for (; mArrayIndex < mArray->Length(); ++mArrayIndex) {
        nsIFrame* child = (*mArray)[mArrayIndex];
        if (child->GetType() != nsGkAtoms::placeholderFrame) {
          return;
        }
      }
    }
  }

  bool AtEnd() const
  {
#ifndef CLANG_CRASH_BUG
    // Clang 3.6.2 crashes when compiling this assertion:
    MOZ_ASSERT(mIter.isSome() || mArrayIndex <= mArray->Length());
#endif
    return mIter ? (*mIter == *mIterEnd) : mArrayIndex >= mArray->Length();
  }

  void Next()
  {
#ifdef DEBUG
    MOZ_ASSERT(!AtEnd());
    nsFrameList list = mGridContainer->GetChildList(mListID);
    MOZ_ASSERT(list.FirstChild() == mChildren.FirstChild() &&
               list.LastChild() == mChildren.LastChild(),
               "the list of child frames must not change while iterating!");
#endif
    if (mSkipPlaceholders ||
        (**this)->GetType() != nsGkAtoms::placeholderFrame) {
      IsForward() ? ++mGridItemIndex : --mGridItemIndex;
    }
    if (mIter.isSome()) {
      ++*mIter;
    } else {
      ++mArrayIndex;
    }
    if (mSkipPlaceholders) {
      SkipPlaceholders();
    }
  }

  void Reset(ChildFilter aFilter = eSkipPlaceholders)
  {
    if (mIter.isSome()) {
      mIter.reset();
      mIter.emplace(begin(mChildren));
      mIterEnd.reset();
      mIterEnd.emplace(end(mChildren));
    } else {
      mArrayIndex = 0;
    }
    mGridItemIndex = IsForward() ? 0 : *mGridItemCount - 1;
    mSkipPlaceholders = aFilter == eSkipPlaceholders;
    if (mSkipPlaceholders) {
      SkipPlaceholders();
    }
  }

  bool IsValid() const { return mIter.isSome() || mArray.isSome(); }

  void Invalidate()
  {
    mIter.reset();
    mArray.reset();
    mozWritePoison(&mChildren, sizeof(mChildren));
  }

  bool ItemsAreAlreadyInOrder() const { return mIter.isSome(); }

  static bool CSSOrderComparator(nsIFrame* const& a, nsIFrame* const& b);
private:
  nsFrameList mChildren;
  // Used if child list is already in ascending 'order'.
  Maybe<Iterator> mIter;
  Maybe<Iterator> mIterEnd;
  // Used if child list is *not* in ascending 'order'.
  // This array is pre-sorted in reverse order for a reverse iterator.
  Maybe<nsTArray<nsIFrame*>> mArray;
  size_t mArrayIndex;
  // The index of the current grid item (placeholders excluded).
  size_t mGridItemIndex;
  // The number of grid items (placeholders excluded).
  // It's only initialized and used in a reverse iterator.
  Maybe<size_t> mGridItemCount;
  // Skip placeholder children in the iteration?
  bool mSkipPlaceholders;
#ifdef DEBUG
  nsIFrame* mGridContainer;
  nsIFrame::ChildListID mListID;
#endif
};

using GridItemCSSOrderIterator = nsGridContainerFrame::GridItemCSSOrderIterator;
using ReverseGridItemCSSOrderIterator = nsGridContainerFrame::ReverseGridItemCSSOrderIterator;

template<>
bool
GridItemCSSOrderIterator::CSSOrderComparator(nsIFrame* const& a,
                                             nsIFrame* const& b)
{ return a->StylePosition()->mOrder < b->StylePosition()->mOrder; }

template<>
bool
GridItemCSSOrderIterator::IsForward() const { return true; }

template<>
nsFrameList::iterator
GridItemCSSOrderIterator::begin(const nsFrameList& aList)
{ return aList.begin(); }

template<>
nsFrameList::iterator GridItemCSSOrderIterator::end(const nsFrameList& aList)
{ return aList.end(); }

template<>
bool
ReverseGridItemCSSOrderIterator::CSSOrderComparator(nsIFrame* const& a,
                                                    nsIFrame* const& b)
{ return a->StylePosition()->mOrder > b->StylePosition()->mOrder; }

template<>
bool
ReverseGridItemCSSOrderIterator::IsForward() const
{ return false; }

template<>
nsFrameList::reverse_iterator
ReverseGridItemCSSOrderIterator::begin(const nsFrameList& aList)
{ return aList.rbegin(); }

template<>
nsFrameList::reverse_iterator
ReverseGridItemCSSOrderIterator::end(const nsFrameList& aList)
{ return aList.rend(); }

/**
 * A LineRange can be definite or auto - when it's definite it represents
 * a consecutive set of tracks between a starting line and an ending line.
 * Before it's definite it can also represent an auto position with a span,
 * where mStart == kAutoLine and mEnd is the (non-zero positive) span.
 * For normal-flow items, the invariant mStart < mEnd holds when both
 * lines are definite.
 *
 * For abs.pos. grid items, mStart and mEnd may both be kAutoLine, meaning
 * "attach this side to the grid container containing block edge".
 * Additionally, mStart <= mEnd holds when both are definite (non-kAutoLine),
 * i.e. the invariant is slightly relaxed compared to normal flow items.
 */
struct nsGridContainerFrame::LineRange
{
 LineRange(int32_t aStart, int32_t aEnd)
   : mUntranslatedStart(aStart), mUntranslatedEnd(aEnd)
  {
#ifdef DEBUG
    if (!IsAutoAuto()) {
      if (IsAuto()) {
        MOZ_ASSERT(aEnd >= nsStyleGridLine::kMinLine &&
                   aEnd <= nsStyleGridLine::kMaxLine, "invalid span");
      } else {
        MOZ_ASSERT(aStart >= nsStyleGridLine::kMinLine &&
                   aStart <= nsStyleGridLine::kMaxLine, "invalid start line");
        MOZ_ASSERT(aEnd == int32_t(kAutoLine) ||
                   (aEnd >= nsStyleGridLine::kMinLine &&
                    aEnd <= nsStyleGridLine::kMaxLine), "invalid end line");
      }
    }
#endif
  }
  bool IsAutoAuto() const { return mStart == kAutoLine && mEnd == kAutoLine; }
  bool IsAuto() const { return mStart == kAutoLine; }
  bool IsDefinite() const { return mStart != kAutoLine; }
  uint32_t Extent() const
  {
    MOZ_ASSERT(mEnd != kAutoLine, "Extent is undefined for abs.pos. 'auto'");
    if (IsAuto()) {
      MOZ_ASSERT(mEnd >= 1 && mEnd < uint32_t(nsStyleGridLine::kMaxLine),
                 "invalid span");
      return mEnd;
    }
    return mEnd - mStart;
  }
  /**
   * Resolve this auto range to start at aStart, making it definite.
   * Precondition: this range IsAuto()
   */
  void ResolveAutoPosition(uint32_t aStart, uint32_t aExplicitGridOffset)
  {
    MOZ_ASSERT(IsAuto(), "Why call me?");
    mStart = aStart;
    mEnd += aStart;
    // Clamping to where kMaxLine is in the explicit grid, per
    // http://dev.w3.org/csswg/css-grid/#overlarge-grids :
    uint32_t translatedMax = aExplicitGridOffset + nsStyleGridLine::kMaxLine;
    if (MOZ_UNLIKELY(mStart >= translatedMax)) {
      mEnd = translatedMax;
      mStart = mEnd - 1;
    } else if (MOZ_UNLIKELY(mEnd > translatedMax)) {
      mEnd = translatedMax;
    }
  }
  /**
   * Translate the lines to account for (empty) removed tracks.  This method
   * is only for grid items and should only be called after placement.
   * aNumRemovedTracks contains a count for each line in the grid how many
   * tracks were removed between the start of the grid and that line.
   */
  void AdjustForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks)
  {
    MOZ_ASSERT(mStart != kAutoLine, "invalid resolved line for a grid item");
    MOZ_ASSERT(mEnd != kAutoLine, "invalid resolved line for a grid item");
    uint32_t numRemovedTracks = aNumRemovedTracks[mStart];
    MOZ_ASSERT(numRemovedTracks == aNumRemovedTracks[mEnd],
               "tracks that a grid item spans can't be removed");
    mStart -= numRemovedTracks;
    mEnd -= numRemovedTracks;
  }
  /**
   * Translate the lines to account for (empty) removed tracks.  This method
   * is only for abs.pos. children and should only be called after placement.
   * Same as for in-flow items, but we don't touch 'auto' lines here and we
   * also need to adjust areas that span into the removed tracks.
   */
  void AdjustAbsPosForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks)
  {
    if (mStart != nsGridContainerFrame::kAutoLine) {
      mStart -= aNumRemovedTracks[mStart];
    }
    if (mEnd != nsGridContainerFrame::kAutoLine) {
      MOZ_ASSERT(mStart == nsGridContainerFrame::kAutoLine ||
                 mEnd > mStart, "invalid line range");
      mEnd -= aNumRemovedTracks[mEnd];
    }
  }
  /**
   * Return the contribution of this line range for step 2 in
   * http://dev.w3.org/csswg/css-grid/#auto-placement-algo
   */
  uint32_t HypotheticalEnd() const { return mEnd; }
  /**
   * Given an array of track sizes, return the starting position and length
   * of the tracks in this line range.
   */
  void ToPositionAndLength(const nsTArray<TrackSize>& aTrackSizes,
                           nscoord* aPos, nscoord* aLength) const;
  /**
   * Given an array of track sizes, return the length of the tracks in this
   * line range.
   */
  nscoord ToLength(const nsTArray<TrackSize>& aTrackSizes) const;
  /**
   * Given an array of track sizes and a grid origin coordinate, adjust the
   * abs.pos. containing block along an axis given by aPos and aLength.
   * aPos and aLength should already be initialized to the grid container
   * containing block for this axis before calling this method.
   */
  void ToPositionAndLengthForAbsPos(const Tracks& aTracks,
                                    nscoord aGridOrigin,
                                    nscoord* aPos, nscoord* aLength) const;

  /**
   * @note We'll use the signed member while resolving definite positions
   * to line numbers (1-based), which may become negative for implicit lines
   * to the top/left of the explicit grid.  PlaceGridItems() then translates
   * the whole grid to a 0,0 origin and we'll use the unsigned member from
   * there on.
   */
  union {
    uint32_t mStart;
    int32_t mUntranslatedStart;
  };
  union {
    uint32_t mEnd;
    int32_t mUntranslatedEnd;
  };
protected:
  LineRange() {}
};

/**
 * Helper class to construct a LineRange from translated lines.
 * The ctor only accepts translated definite line numbers.
 */
struct nsGridContainerFrame::TranslatedLineRange : public LineRange
{
  TranslatedLineRange(uint32_t aStart, uint32_t aEnd)
  {
    MOZ_ASSERT(aStart < aEnd && aEnd <= kTranslatedMaxLine);
    mStart = aStart;
    mEnd = aEnd;
  }
};

/**
 * A GridArea is the area in the grid for a grid item.
 * The area is represented by two LineRanges, both of which can be auto
 * (@see LineRange) in intermediate steps while the item is being placed.
 * @see PlaceGridItems
 */
struct nsGridContainerFrame::GridArea
{
  GridArea(const LineRange& aCols, const LineRange& aRows)
    : mCols(aCols), mRows(aRows) {}
  bool IsDefinite() const { return mCols.IsDefinite() && mRows.IsDefinite(); }
  LineRange mCols;
  LineRange mRows;
};

struct nsGridContainerFrame::GridItemInfo
{
  /**
   * Item state per axis.
   */
  enum StateBits : uint8_t {
    eIsFlexing =              0x1, // does the item span a flex track?
    eFirstBaseline =          0x2, // participate in 'first baseline' alignment?
    // ditto 'last baseline', mutually exclusive w. eFirstBaseline
    eLastBaseline =           0x4,
    eIsBaselineAligned = eFirstBaseline | eLastBaseline,
    // One of e[Self|Content]Baseline is set when eIsBaselineAligned is true
    eSelfBaseline =           0x8, // is it *-self:[last ]baseline alignment?
    // Ditto *-content:[last ]baseline. Mutually exclusive w. eSelfBaseline.
    eContentBaseline =       0x10,
    eAllBaselineBits = eIsBaselineAligned | eSelfBaseline | eContentBaseline,
    // Should apply Automatic Minimum Size per:
    // https://drafts.csswg.org/css-grid/#min-size-auto
    eApplyAutoMinSize =      0x20,
    // Clamp per https://drafts.csswg.org/css-grid/#min-size-auto
    eClampMarginBoxMinSize = 0x40,
  };

  explicit GridItemInfo(nsIFrame* aFrame,
                        const GridArea& aArea)
    : mFrame(aFrame)
    , mArea(aArea)
  {
    mState[eLogicalAxisBlock] = StateBits(0);
    mState[eLogicalAxisInline] = StateBits(0);
    mBaselineOffset[eLogicalAxisBlock] = nscoord(0);
    mBaselineOffset[eLogicalAxisInline] = nscoord(0);
  }

  /**
   * If the item is [align|justify]-self:[last ]baseline aligned in the given
   * axis then set aBaselineOffset to the baseline offset and return aAlign.
   * Otherwise, return a fallback alignment.
   */
  uint8_t GetSelfBaseline(uint8_t aAlign, LogicalAxis aAxis,
                          nscoord* aBaselineOffset) const
  {
    MOZ_ASSERT(aAlign == NS_STYLE_ALIGN_BASELINE ||
               aAlign == NS_STYLE_ALIGN_LAST_BASELINE);
    if (!(mState[aAxis] & eSelfBaseline)) {
      return aAlign == NS_STYLE_ALIGN_BASELINE ? NS_STYLE_ALIGN_SELF_START
                                               : NS_STYLE_ALIGN_SELF_END;
    }
    *aBaselineOffset = mBaselineOffset[aAxis];
    return aAlign;
  }

  // Return true if we should apply Automatic Minimum Size to this item.
  // https://drafts.csswg.org/css-grid/#min-size-auto
  // @note the caller should also check that the item spans at least one track
  // that has a min track sizing function that is 'auto' before applying it.
  bool ShouldApplyAutoMinSize(WritingMode aContainerWM,
                              LogicalAxis aContainerAxis,
                              nscoord aPercentageBasis) const
  {
    const auto pos = mFrame->StylePosition();
    const auto& size = aContainerAxis == eLogicalAxisInline ?
      pos->ISize(aContainerWM) : pos->BSize(aContainerWM);
    // NOTE: if we have a definite or 'max-content' size then our automatic
    // minimum size can't affect our size.  Excluding these simplifies applying
    // the clamping in the right cases later.
    if (size.GetUnit() == eStyleUnit_Auto ||
        ::IsPercentOfIndefiniteSize(size, aPercentageBasis) || // same as 'auto'
        (size.GetUnit() == eStyleUnit_Enumerated &&
         size.GetIntValue() != NS_STYLE_WIDTH_MAX_CONTENT)) {
      const auto& minSize = aContainerAxis == eLogicalAxisInline ?
        pos->MinISize(aContainerWM) : pos->MinBSize(aContainerWM);
      return minSize.GetUnit() == eStyleUnit_Auto &&
             mFrame->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE;
    }
    return false;
  }

#ifdef DEBUG
  void Dump() const;
#endif

  static bool IsStartRowLessThan(const GridItemInfo* a, const GridItemInfo* b)
  {
    return a->mArea.mRows.mStart < b->mArea.mRows.mStart;
  }

  nsIFrame* const mFrame;
  GridArea mArea;
  // Offset from the margin edge to the baseline (LogicalAxis index).  It's from
  // the start edge when eFirstBaseline is set, end edge otherwise. It's mutable
  // since we update the value fairly late (just before reflowing the item).
  mutable nscoord mBaselineOffset[2];
  mutable StateBits mState[2]; // state bits per axis (LogicalAxis index)
  static_assert(mozilla::eLogicalAxisBlock == 0, "unexpected index value");
  static_assert(mozilla::eLogicalAxisInline == 1, "unexpected index value");
};

using GridItemInfo = nsGridContainerFrame::GridItemInfo;
using ItemState = GridItemInfo::StateBits;
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(ItemState)

#ifdef DEBUG
void
nsGridContainerFrame::GridItemInfo::Dump() const
{
  auto Dump1 = [this] (const char* aMsg, LogicalAxis aAxis) {
    auto state = mState[aAxis];
    if (!state) {
      return;
    }
    printf("%s", aMsg);
    if (state & ItemState::eIsFlexing) {
      printf("flexing ");
    }
    if (state & ItemState::eApplyAutoMinSize) {
      printf("auto-min-size ");
    }
    if (state & ItemState::eClampMarginBoxMinSize) {
      printf("clamp ");
    }
    if (state & ItemState::eFirstBaseline) {
      printf("first baseline %s-alignment ",
             (state & ItemState::eSelfBaseline) ? "self" : "content");
    }
    if (state & ItemState::eLastBaseline) {
      printf("last baseline %s-alignment ",
             (state & ItemState::eSelfBaseline) ? "self" : "content");
    }
    if (state & ItemState::eIsBaselineAligned) {
      printf("%.2fpx", NSAppUnitsToFloatPixels(mBaselineOffset[aAxis],
                                               AppUnitsPerCSSPixel()));
    }
    printf("\n");
  };
  printf("grid-row: %d %d\n", mArea.mRows.mStart, mArea.mRows.mEnd);
  Dump1("  grid block-axis: ", eLogicalAxisBlock);
  printf("grid-column: %d %d\n", mArea.mCols.mStart, mArea.mCols.mEnd);
  Dump1("  grid inline-axis: ", eLogicalAxisInline);
}
#endif

/**
 * Utility class to find line names.  It provides an interface to lookup line
 * names with a dynamic number of repeat(auto-fill/fit) tracks taken into
 * account.
 */
class MOZ_STACK_CLASS nsGridContainerFrame::LineNameMap
{
public:
  /**
   * Create a LineNameMap.
   * @param aGridTemplate is the grid-template-rows/columns data for this axis
   * @param aNumRepeatTracks the number of actual tracks associated with
   *   a repeat(auto-fill/fit) track (zero or more), or zero if there is no
   *   specified repeat(auto-fill/fit) track
   */
  LineNameMap(const nsStyleGridTemplate& aGridTemplate,
              uint32_t                   aNumRepeatTracks)
    : mLineNameLists(aGridTemplate.mLineNameLists)
    , mRepeatAutoLineNameListBefore(aGridTemplate.mRepeatAutoLineNameListBefore)
    , mRepeatAutoLineNameListAfter(aGridTemplate.mRepeatAutoLineNameListAfter)
    , mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ?
                         aGridTemplate.mRepeatAutoIndex : 0)
    , mRepeatAutoEnd(mRepeatAutoStart + aNumRepeatTracks)
    , mRepeatEndDelta(aGridTemplate.HasRepeatAuto() ?
                        int32_t(aNumRepeatTracks) - 1 :
                        0)
    , mTemplateLinesEnd(mLineNameLists.Length() + mRepeatEndDelta)
    , mHasRepeatAuto(aGridTemplate.HasRepeatAuto())
  {
    MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0);
    MOZ_ASSERT(mRepeatAutoStart <= mLineNameLists.Length());
    MOZ_ASSERT(!mHasRepeatAuto || mLineNameLists.Length() >= 2);
  }

  /**
   * Find the aNth occurrence of aName, searching forward if aNth is positive,
   * and in reverse if aNth is negative (aNth == 0 is invalid), starting from
   * aFromIndex (not inclusive), and return a 1-based line number.
   * Also take into account there is an unconditional match at aImplicitLine
   * unless it's zero.
   * Return zero if aNth occurrences can't be found.  In that case, aNth has
   * been decremented with the number of occurrences that were found (if any).
   *
   * E.g. to search for "A 2" forward from the start of the grid: aName is "A"
   * aNth is 2 and aFromIndex is zero.  To search for "A -2", aNth is -2 and
   * aFromIndex is ExplicitGridEnd + 1 (which is the line "before" the last
   * line when we're searching in reverse).  For "span A 2", aNth is 2 when
   * used on a grid-[row|column]-end property and -2 for a *-start property,
   * and aFromIndex is the line (which we should skip) on the opposite property.
   */
  uint32_t FindNamedLine(const nsString& aName, int32_t* aNth,
                         uint32_t aFromIndex, uint32_t aImplicitLine) const
  {
    MOZ_ASSERT(aNth && *aNth != 0);
    if (*aNth > 0) {
      return FindLine(aName, aNth, aFromIndex, aImplicitLine);
    }
    int32_t nth = -*aNth;
    int32_t line = RFindLine(aName, &nth, aFromIndex, aImplicitLine);
    *aNth = -nth;
    return line;
  }

private:
  /**
   * @see FindNamedLine, this function searches forward.
   */
  uint32_t FindLine(const nsString& aName, int32_t* aNth,
                    uint32_t aFromIndex, uint32_t aImplicitLine) const
  {
    MOZ_ASSERT(aNth && *aNth > 0);
    int32_t nth = *aNth;
    const uint32_t end = mTemplateLinesEnd;
    uint32_t line;
    uint32_t i = aFromIndex;
    for (; i < end; i = line) {
      line = i + 1;
      if (line == aImplicitLine || Contains(i, aName)) {
        if (--nth == 0) {
          return line;
        }
      }
    }
    if (aImplicitLine > i) {
      // aImplicitLine is after the lines we searched above so it's last.
      // (grid-template-areas has more tracks than grid-template-[rows|columns])
      if (--nth == 0) {
        return aImplicitLine;
      }
    }
    MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
    *aNth = nth;
    return 0;
  }

  /**
   * @see FindNamedLine, this function searches in reverse.
   */
  uint32_t RFindLine(const nsString& aName, int32_t* aNth,
                     uint32_t aFromIndex, uint32_t aImplicitLine) const
  {
    MOZ_ASSERT(aNth && *aNth > 0);
    if (MOZ_UNLIKELY(aFromIndex == 0)) {
      return 0; // There are no named lines beyond the start of the explicit grid.
    }
    --aFromIndex; // (shift aFromIndex so we can treat it as inclusive)
    int32_t nth = *aNth;
    // The implicit line may be beyond the explicit grid so we match
    // this line first if it's within the mTemplateLinesEnd..aFromIndex range.
    const uint32_t end = mTemplateLinesEnd;
    if (aImplicitLine > end && aImplicitLine < aFromIndex) {
      if (--nth == 0) {
        return aImplicitLine;
      }
    }
    for (uint32_t i = std::min(aFromIndex, end); i; --i) {
      if (i == aImplicitLine || Contains(i - 1, aName)) {
        if (--nth == 0) {
          return i;
        }
      }
    }
    MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
    *aNth = nth;
    return 0;
  }

  // Return true if aName exists at aIndex.
  bool Contains(uint32_t aIndex, const nsString& aName) const
  {
    if (!mHasRepeatAuto) {
      return mLineNameLists[aIndex].Contains(aName);
    }
    if (aIndex < mRepeatAutoEnd && aIndex >= mRepeatAutoStart &&
        mRepeatAutoLineNameListBefore.Contains(aName)) {
      return true;
    }
    if (aIndex <= mRepeatAutoEnd && aIndex > mRepeatAutoStart &&
        mRepeatAutoLineNameListAfter.Contains(aName)) {
      return true;
    }
    if (aIndex <= mRepeatAutoStart) {
      return mLineNameLists[aIndex].Contains(aName) ||
             (aIndex == mRepeatAutoEnd &&
              mLineNameLists[aIndex + 1].Contains(aName));
    }
    return aIndex >= mRepeatAutoEnd &&
           mLineNameLists[aIndex - mRepeatEndDelta].Contains(aName);
  }

  // Some style data references, for easy access.
  const nsTArray<nsTArray<nsString>>& mLineNameLists;
  const nsTArray<nsString>& mRepeatAutoLineNameListBefore;
  const nsTArray<nsString>& mRepeatAutoLineNameListAfter;
  // The index of the repeat(auto-fill/fit) track, or zero if there is none.
  // Relative to mExplicitGridOffset (repeat tracks are explicit by definition).
  const uint32_t mRepeatAutoStart;
  // The (hypothetical) index of the last such repeat() track.
  const uint32_t mRepeatAutoEnd;
  // The difference between mTemplateLinesEnd and mLineNameLists.Length().
  const int32_t mRepeatEndDelta;
  // The end of the line name lists with repeat(auto-fill/fit) tracks accounted
  // for.  It is equal to mLineNameLists.Length() when a repeat() track
  // generates one track (making mRepeatEndDelta == 0).
  const uint32_t mTemplateLinesEnd;
  // True if there is a specified repeat(auto-fill/fit) track.
  // Indexed relative to mExplicitGridOffset + mRepeatAutoStart.
  const bool mHasRepeatAuto;
};

/**
 * Encapsulates CSS track-sizing functions.
 */
struct nsGridContainerFrame::TrackSizingFunctions
{
  TrackSizingFunctions(const nsStyleGridTemplate& aGridTemplate,
                       const nsStyleCoord&        aAutoMinSizing,
                       const nsStyleCoord&        aAutoMaxSizing)
    : mMinSizingFunctions(aGridTemplate.mMinTrackSizingFunctions)
    , mMaxSizingFunctions(aGridTemplate.mMaxTrackSizingFunctions)
    , mAutoMinSizing(aAutoMinSizing)
    , mAutoMaxSizing(aAutoMaxSizing)
    , mExplicitGridOffset(0)
    , mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ?
                         aGridTemplate.mRepeatAutoIndex : 0)
    , mRepeatAutoEnd(mRepeatAutoStart)
    , mRepeatEndDelta(0)
    , mHasRepeatAuto(aGridTemplate.HasRepeatAuto())
  {
    MOZ_ASSERT(mMinSizingFunctions.Length() == mMaxSizingFunctions.Length());
    MOZ_ASSERT(!mHasRepeatAuto ||
               (mMinSizingFunctions.Length() >= 1 &&
                mRepeatAutoStart < mMinSizingFunctions.Length()));
  }

  /**
   * Initialize the number of auto-fill/fit tracks to use and return that.
   * (zero if no auto-fill/fit track was specified)
   */
  uint32_t InitRepeatTracks(const nsStyleCoord& aGridGap, nscoord aMinSize,
                            nscoord aSize, nscoord aMaxSize)
  {
    uint32_t repeatTracks =
      CalculateRepeatFillCount(aGridGap, aMinSize, aSize, aMaxSize);
    SetNumRepeatTracks(repeatTracks);
    // Blank out the removed flags for each of these tracks.
    mRemovedRepeatTracks.SetLength(repeatTracks);
    for (auto& track : mRemovedRepeatTracks) {
      track = false;
    }
    return repeatTracks;
  }

  uint32_t CalculateRepeatFillCount(const nsStyleCoord& aGridGap,
                                    nscoord aMinSize,
                                    nscoord aSize,
                                    nscoord aMaxSize) const
  {
    if (!mHasRepeatAuto) {
      return 0;
    }
    // Spec quotes are from https://drafts.csswg.org/css-grid/#repeat-notation
    const uint32_t numTracks = mMinSizingFunctions.Length();
    MOZ_ASSERT(numTracks >= 1, "expected at least the repeat() track");
    nscoord maxFill = aSize != NS_UNCONSTRAINEDSIZE ? aSize : aMaxSize;
    if (maxFill == NS_UNCONSTRAINEDSIZE && aMinSize == 0) {
      // "Otherwise, the specified track list repeats only once."
      return 1;
    }
    nscoord repeatTrackSize = 0;
    // Note that one repeat() track size is included in |sum| in this loop.
    nscoord sum = 0;
    const nscoord percentBasis = aSize;
    for (uint32_t i = 0; i < numTracks; ++i) {
      // "treating each track as its max track sizing function if that is
      // definite or as its minimum track sizing function otherwise"
      // https://drafts.csswg.org/css-grid/#valdef-repeat-auto-fill
      const auto& maxCoord = mMaxSizingFunctions[i];
      const auto* coord = &maxCoord;
      if (!coord->IsCoordPercentCalcUnit()) {
        coord = &mMinSizingFunctions[i];
        if (!coord->IsCoordPercentCalcUnit()) {
          return 1;
        }
      }
      nscoord trackSize = ::ResolveToDefiniteSize(*coord, percentBasis);
      if (i == mRepeatAutoStart) {
        // Use a minimum 1px for the repeat() track-size.
        if (trackSize < AppUnitsPerCSSPixel()) {
          trackSize = AppUnitsPerCSSPixel();
        }
        repeatTrackSize = trackSize;
      }
      sum += trackSize;
    }
    nscoord gridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aSize);
    if (numTracks > 1) {
      // Add grid-gaps for all the tracks including the repeat() track.
      sum += gridGap * (numTracks - 1);
    }
    // Calculate the max number of tracks that fits without overflow.
    nscoord available = maxFill != NS_UNCONSTRAINEDSIZE ? maxFill : aMinSize;
    nscoord spaceToFill = available - sum;
    if (spaceToFill <= 0) {
      // "if any number of repetitions would overflow, then 1 repetition"
      return 1;
    }
    // Calculate the max number of tracks that fits without overflow.
    div_t q = div(spaceToFill, repeatTrackSize + gridGap);
    // The +1 here is for the one repeat track we already accounted for above.
    uint32_t numRepeatTracks = q.quot + 1;
    if (q.rem != 0 && maxFill == NS_UNCONSTRAINEDSIZE) {
      // "Otherwise, if the grid container has a definite min size in
      // the relevant axis, the number of repetitions is the largest possible
      // positive integer that fulfills that minimum requirement."
      ++numRepeatTracks; // one more to ensure the grid is at least min-size
    }
    // Clamp the number of repeat tracks so that the last line <= kMaxLine.
    // (note that |numTracks| already includes one repeat() track)
    const uint32_t maxRepeatTracks = nsStyleGridLine::kMaxLine - numTracks;
    return std::min(numRepeatTracks, maxRepeatTracks);
  }

  /**
   * Compute the explicit grid end line number (in a zero-based grid).
   * @param aGridTemplateAreasEnd 'grid-template-areas' end line in this axis
   */
  uint32_t ComputeExplicitGridEnd(uint32_t aGridTemplateAreasEnd)
  {
    uint32_t end = NumExplicitTracks() + 1;
    end = std::max(end, aGridTemplateAreasEnd);
    end = std::min(end, uint32_t(nsStyleGridLine::kMaxLine));
    return end;
  }

  const nsStyleCoord& MinSizingFor(uint32_t aTrackIndex) const
  {
    if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
      return mAutoMinSizing;
    }
    uint32_t index = aTrackIndex - mExplicitGridOffset;
    if (index >= mRepeatAutoStart) {
      if (index < mRepeatAutoEnd) {
        return mMinSizingFunctions[mRepeatAutoStart];
      }
      index -= mRepeatEndDelta;
    }
    return index < mMinSizingFunctions.Length() ?
      mMinSizingFunctions[index] : mAutoMinSizing;
  }
  const nsStyleCoord& MaxSizingFor(uint32_t aTrackIndex) const
  {
    if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
      return mAutoMaxSizing;
    }
    uint32_t index = aTrackIndex - mExplicitGridOffset;
    if (index >= mRepeatAutoStart) {
      if (index < mRepeatAutoEnd) {
        return mMaxSizingFunctions[mRepeatAutoStart];
      }
      index -= mRepeatEndDelta;
    }
    return index < mMaxSizingFunctions.Length() ?
      mMaxSizingFunctions[index] : mAutoMaxSizing;
  }
  uint32_t NumExplicitTracks() const
  {
    return mMinSizingFunctions.Length() + mRepeatEndDelta;
  }
  uint32_t NumRepeatTracks() const
  {
    return mRepeatAutoEnd - mRepeatAutoStart;
  }
  void SetNumRepeatTracks(uint32_t aNumRepeatTracks)
  {
    MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0);
    mRepeatAutoEnd = mRepeatAutoStart + aNumRepeatTracks;
    mRepeatEndDelta = mHasRepeatAuto ?
                        int32_t(aNumRepeatTracks) - 1 :
                        0;
}

  // Some style data references, for easy access.
  const nsTArray<nsStyleCoord>& mMinSizingFunctions;
  const nsTArray<nsStyleCoord>& mMaxSizingFunctions;
  const nsStyleCoord& mAutoMinSizing;
  const nsStyleCoord& mAutoMaxSizing;
  // Offset from the start of the implicit grid to the first explicit track.
  uint32_t mExplicitGridOffset;
  // The index of the repeat(auto-fill/fit) track, or zero if there is none.
  const uint32_t mRepeatAutoStart;
  // The (hypothetical) index of the last such repeat() track.
  uint32_t mRepeatAutoEnd;
  // The difference between mExplicitGridEnd and mMinSizingFunctions.Length().
  int32_t mRepeatEndDelta;
  // True if there is a specified repeat(auto-fill/fit) track.
  const bool mHasRepeatAuto;
  // True if this track (relative to mRepeatAutoStart) is a removed auto-fit.
  nsTArray<bool> mRemovedRepeatTracks;
};

/**
 * State for the tracks in one dimension.
 */
struct nsGridContainerFrame::Tracks
{
  explicit Tracks(LogicalAxis aAxis)
    : mStateUnion(TrackSize::StateBits(0))
    , mAxis(aAxis)
    , mCanResolveLineRangeSize(false)
  {
    mBaselineSubtreeAlign[BaselineSharingGroup::eFirst] = NS_STYLE_ALIGN_AUTO;
    mBaselineSubtreeAlign[BaselineSharingGroup::eLast] = NS_STYLE_ALIGN_AUTO;
    mBaseline[BaselineSharingGroup::eFirst] = NS_INTRINSIC_WIDTH_UNKNOWN;
    mBaseline[BaselineSharingGroup::eLast] = NS_INTRINSIC_WIDTH_UNKNOWN;
  }

  void Initialize(const TrackSizingFunctions& aFunctions,
                  const nsStyleCoord&         aGridGap,
                  uint32_t                    aNumTracks,
                  nscoord                     aContentBoxSize);

  /**
   * Return the union of the state bits for the tracks in aRange.
   */
   TrackSize::StateBits StateBitsForRange(const LineRange& aRange) const;

  // Some data we collect for aligning baseline-aligned items.
  struct ItemBaselineData
  {
    uint32_t mBaselineTrack;
    nscoord mBaseline;
    nscoord mSize;
    GridItemInfo* mGridItem;
    static bool IsBaselineTrackLessThan(const ItemBaselineData& a,
                                        const ItemBaselineData& b)
    {
      return a.mBaselineTrack < b.mBaselineTrack;
    }
  };

  /**
   * Calculate baseline offsets for the given set of items.
   * Helper for InitialzeItemBaselines.
   */
  void CalculateItemBaselines(nsTArray<ItemBaselineData>& aBaselineItems,
                              BaselineSharingGroup aBaselineGroup);

  /**
   * Initialize grid item baseline state and offsets.
   */
  void InitializeItemBaselines(GridReflowInput&        aState,
                               nsTArray<GridItemInfo>& aGridItems);

  /**
   * Apply the additional alignment needed to align the baseline-aligned subtree
   * the item belongs to within its baseline track.
   */
  void AlignBaselineSubtree(const GridItemInfo& aGridItem) const;

  enum class TrackSizingPhase
  {
    eIntrinsicMinimums,
    eContentBasedMinimums,
    eMaxContentMinimums,
    eIntrinsicMaximums,
    eMaxContentMaximums,
  };

  // Some data we collect on each item for Step 2 of the Track Sizing Algorithm
  // in ResolveIntrinsicSize below.
  struct Step2ItemData final
  {
    uint32_t mSpan;
    TrackSize::StateBits mState;
    LineRange mLineRange;
    nscoord mMinSize;
    nscoord mMinContentContribution;
    nscoord mMaxContentContribution;
    nsIFrame* mFrame;
    static bool IsSpanLessThan(const Step2ItemData& a, const Step2ItemData& b)
    {
      return a.mSpan < b.mSpan;
    }

    template<TrackSizingPhase phase>
    nscoord SizeContributionForPhase() const
    {
      switch (phase) {
        case TrackSizingPhase::eIntrinsicMinimums:
        case TrackSizingPhase::eIntrinsicMaximums:
          return mMinSize;
        case TrackSizingPhase::eContentBasedMinimums:
          return mMinContentContribution;
        case TrackSizingPhase::eMaxContentMinimums:
        case TrackSizingPhase::eMaxContentMaximums:
          return mMaxContentContribution;
      }
      MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
    }
  };

  using FitContentClamper =
    function<bool(uint32_t aTrack, nscoord aMinSize, nscoord* aSize)>;

  // Helper method for ResolveIntrinsicSize.
  template<TrackSizingPhase phase>
  bool GrowSizeForSpanningItems(nsTArray<Step2ItemData>::iterator aIter,
                                const nsTArray<Step2ItemData>::iterator aEnd,
                                nsTArray<uint32_t>& aTracks,
                                nsTArray<TrackSize>& aPlan,
                                nsTArray<TrackSize>& aItemPlan,
                                TrackSize::StateBits aSelector,
                                const FitContentClamper& aClamper = nullptr,
                                bool aNeedInfinitelyGrowableFlag = false);

  /**
   * Resolve Intrinsic Track Sizes.
   * http://dev.w3.org/csswg/css-grid/#algo-content
   */
  void ResolveIntrinsicSize(GridReflowInput&            aState,
                            nsTArray<GridItemInfo>&     aGridItems,
                            const TrackSizingFunctions& aFunctions,
                            LineRange GridArea::*       aRange,
                            nscoord                     aPercentageBasis,
                            SizingConstraint            aConstraint);

  /**
   * Helper for ResolveIntrinsicSize.  It implements step 1 "size tracks to fit
   * non-spanning items" in the spec.  Return true if the track has a <flex>
   * max-sizing function, false otherwise.
   */
  bool ResolveIntrinsicSizeStep1(GridReflowInput&            aState,
                                 const TrackSizingFunctions& aFunctions,
                                 nscoord                     aPercentageBasis,
                                 SizingConstraint            aConstraint,
                                 const LineRange&            aRange,
                                 const GridItemInfo&         aGridItem);

  // Helper method that returns the track size to use in §11.5.1.2
  // https://drafts.csswg.org/css-grid/#extra-space
  template<TrackSizingPhase phase> static
  nscoord StartSizeInDistribution(const TrackSize& aSize)
  {
    switch (phase) {
      case TrackSizingPhase::eIntrinsicMinimums:
      case TrackSizingPhase::eContentBasedMinimums:
      case TrackSizingPhase::eMaxContentMinimums:
        return aSize.mBase;
      case TrackSizingPhase::eIntrinsicMaximums:
      case TrackSizingPhase::eMaxContentMaximums:
        if (aSize.mLimit == NS_UNCONSTRAINEDSIZE) {
          return aSize.mBase;
        }
        return aSize.mLimit;
    }
    MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
  }

  /**
   * Collect the tracks which are growable (matching aSelector) into
   * aGrowableTracks, and return the amount of space that can be used
   * to grow those tracks.  This method implements CSS Grid §11.5.1.2.
   * https://drafts.csswg.org/css-grid/#extra-space
   */
  template<TrackSizingPhase phase>
  nscoord CollectGrowable(nscoord              aAvailableSpace,
                          const LineRange&     aRange,
                          TrackSize::StateBits aSelector,
                          nsTArray<uint32_t>&  aGrowableTracks) const
  {
    MOZ_ASSERT(aAvailableSpace > 0, "why call me?");
    nscoord space = aAvailableSpace - mGridGap * (aRange.Extent() - 1);
    const uint32_t start = aRange.mStart;
    const uint32_t end = aRange.mEnd;
    for (uint32_t i = start; i < end; ++i) {
      const TrackSize& sz = mSizes[i];
      space -= StartSizeInDistribution<phase>(sz);
      if (space <= 0) {
        return 0;
      }
      if (sz.mState & aSelector) {
        aGrowableTracks.AppendElement(i);
      }
    }
    return aGrowableTracks.IsEmpty() ? 0 : space;
  }

  template<TrackSizingPhase phase>
  void InitializeItemPlan(nsTArray<TrackSize>&      aItemPlan,
                          const nsTArray<uint32_t>& aTracks) const
  {
    for (uint32_t track : aTracks) {
      auto& plan = aItemPlan[track];
      const TrackSize& sz = mSizes[track];
      plan.mBase = StartSizeInDistribution<phase>(sz);
      bool unlimited = sz.mState & TrackSize::eInfinitelyGrowable;
      plan.mLimit = unlimited ? NS_UNCONSTRAINEDSIZE : sz.mLimit;
      plan.mState = sz.mState;
    }
  }

  template<TrackSizingPhase phase>
  void InitializePlan(nsTArray<TrackSize>& aPlan) const
  {
    for (size_t i = 0, len = aPlan.Length(); i < len; ++i) {
      auto& plan = aPlan[i];
      const auto& sz = mSizes[i];
      plan.mBase = StartSizeInDistribution<phase>(sz);
      MOZ_ASSERT(phase == TrackSizingPhase::eMaxContentMaximums ||
                 !(sz.mState & TrackSize::eInfinitelyGrowable),
                 "forgot to reset the eInfinitelyGrowable bit?");
      plan.mState = sz.mState;
    }
  }

  template<TrackSizingPhase phase>
  void CopyPlanToSize(const nsTArray<TrackSize>& aPlan,
                      bool aNeedInfinitelyGrowableFlag = false)
  {
    for (size_t i = 0, len = mSizes.Length(); i < len; ++i) {
      const auto& plan = aPlan[i];
      MOZ_ASSERT(plan.mBase >= 0);
      auto& sz = mSizes[i];
      switch (phase) {
        case TrackSizingPhase::eIntrinsicMinimums:
        case TrackSizingPhase::eContentBasedMinimums:
        case TrackSizingPhase::eMaxContentMinimums:
          sz.mBase = plan.mBase;
          break;
        case TrackSizingPhase::eIntrinsicMaximums:
          if (plan.mState & TrackSize::eModified) {
            if (sz.mLimit == NS_UNCONSTRAINEDSIZE &&
                aNeedInfinitelyGrowableFlag) {
              sz.mState |= TrackSize::eInfinitelyGrowable;
            }
            sz.mLimit = plan.mBase;
          }
          break;
        case TrackSizingPhase::eMaxContentMaximums:
          if (plan.mState & TrackSize::eModified) {
            sz.mLimit = plan.mBase;
          }
          sz.mState &= ~TrackSize::eInfinitelyGrowable;
          break;
      }
    }
  }

  /**
   * Grow the planned size for tracks in aGrowableTracks up to their limit
   * and then freeze them (all aGrowableTracks must be unfrozen on entry).
   * Subtract the space added from aAvailableSpace and return that.
   */
  nscoord GrowTracksToLimit(nscoord                   aAvailableSpace,
                            nsTArray<TrackSize>&      aPlan,
                            const nsTArray<uint32_t>& aGrowableTracks,
                            FitContentClamper         aFitContentClamper) const
  {
    MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0);
    nscoord space = aAvailableSpace;
    uint32_t numGrowable = aGrowableTracks.Length();
    while (true) {
      nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
      for (uint32_t track : aGrowableTracks) {
        TrackSize& sz = aPlan[track];
        if (sz.IsFrozen()) {
          continue;
        }
        nscoord newBase = sz.mBase + spacePerTrack;
        nscoord limit = sz.mLimit;
        if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
                         aFitContentClamper)) {
          // Clamp the limit to the fit-content() size, for §12.5.2 step 5/6.
          aFitContentClamper(track, sz.mBase, &limit);
        }
        if (newBase > limit) {
          nscoord consumed = limit - sz.mBase;
          if (consumed > 0) {
            space -= consumed;
            sz.mBase = limit;
          }
          sz.mState |= TrackSize::eFrozen;
          if (--numGrowable == 0) {
            return space;
          }
        } else {
          sz.mBase = newBase;
          space -= spacePerTrack;
        }
        MOZ_ASSERT(space >= 0);
        if (space == 0) {
          return 0;
        }
      }
    }
    MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return");
    return 0;
  }

  /**
   * Helper for GrowSelectedTracksUnlimited.  For the set of tracks (S) that
   * match aMinSizingSelector: if a track in S doesn't match aMaxSizingSelector
   * then mark it with aSkipFlag.  If all tracks in S were marked then unmark
   * them.  Return aNumGrowable minus the number of tracks marked.  It is
   * assumed that aPlan have no aSkipFlag set for tracks in aGrowableTracks
   * on entry to this method.
   */
   static uint32_t
   MarkExcludedTracks(nsTArray<TrackSize>&      aPlan,
                      uint32_t                  aNumGrowable,
                      const nsTArray<uint32_t>& aGrowableTracks,
                      TrackSize::StateBits      aMinSizingSelector,
                      TrackSize::StateBits      aMaxSizingSelector,
                      TrackSize::StateBits      aSkipFlag)
  {
    bool foundOneSelected = false;
    bool foundOneGrowable = false;
    uint32_t numGrowable = aNumGrowable;
    for (uint32_t track : aGrowableTracks) {
      TrackSize& sz = aPlan[track];
      const auto state = sz.mState;
      if (state & aMinSizingSelector) {
        foundOneSelected = true;
        if (state & aMaxSizingSelector) {
          foundOneGrowable = true;
          continue;
        }
        sz.mState |= aSkipFlag;
        MOZ_ASSERT(numGrowable != 0);
        --numGrowable;
      }
    }
    // 12.5 "if there are no such tracks, then all affected tracks"
    if (foundOneSelected && !foundOneGrowable) {
      for (uint32_t track : aGrowableTracks) {
        aPlan[track].mState &= ~aSkipFlag;
      }
      numGrowable = aNumGrowable;
    }
    return numGrowable;
  }

  /**
   * Mark all tracks in aGrowableTracks with an eSkipGrowUnlimited bit if
   * they *shouldn't* grow unlimited in §11.5.1.2.3 "Distribute space beyond
   * growth limits" https://drafts.csswg.org/css-grid/#extra-space
   * Return the number of tracks that are still growable.
   */
  template<TrackSizingPhase phase>
  static uint32_t
  MarkExcludedTracks(nsTArray<TrackSize>&      aPlan,
                     const nsTArray<uint32_t>& aGrowableTracks,
                     TrackSize::StateBits      aSelector)
  {
    uint32_t numGrowable = aGrowableTracks.Length();
    if (phase == TrackSizingPhase::eIntrinsicMaximums ||
        phase == TrackSizingPhase::eMaxContentMaximums) {
      // "when handling any intrinsic growth limit: all affected tracks"
      return numGrowable;
    }
    MOZ_ASSERT(aSelector == (aSelector & TrackSize::eIntrinsicMinSizing) &&
                            (aSelector & TrackSize::eMaxContentMinSizing),
               "Should only get here for track sizing steps 2.1 to 2.3");
    // Note that eMaxContentMinSizing is always included. We do those first:
    numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks,
                                     TrackSize::eMaxContentMinSizing,
                                     TrackSize::eMaxContentMaxSizing,
                                     TrackSize::eSkipGrowUnlimited1);
    // Now mark min-content/auto min-sizing tracks if requested.
    auto minOrAutoSelector = aSelector & ~TrackSize::eMaxContentMinSizing;
    if (minOrAutoSelector) {
      numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks,
                                       minOrAutoSelector,
                                       TrackSize::eIntrinsicMaxSizing,
                                       TrackSize::eSkipGrowUnlimited2);
    }
    return numGrowable;
  }

  /**
   * Increase the planned size for tracks in aGrowableTracks that aren't
   * marked with a eSkipGrowUnlimited flag beyond their limit.
   * This implements the "Distribute space beyond growth limits" step in
   * https://drafts.csswg.org/css-grid/#distribute-extra-space
   */
  void GrowSelectedTracksUnlimited(nscoord                   aAvailableSpace,
                                   nsTArray<TrackSize>&      aPlan,
                                   const nsTArray<uint32_t>& aGrowableTracks,
                                   uint32_t                  aNumGrowable,
                                   FitContentClamper aFitContentClamper) const
  {
    MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0 &&
               aNumGrowable <= aGrowableTracks.Length());
    nscoord space = aAvailableSpace;
    DebugOnly<bool> didClamp = false;
    while (aNumGrowable) {
      nscoord spacePerTrack = std::max<nscoord>(space / aNumGrowable, 1);
      for (uint32_t track : aGrowableTracks) {
        TrackSize& sz = aPlan[track];
        if (sz.mState & TrackSize::eSkipGrowUnlimited) {
          continue; // an excluded track
        }
        nscoord delta = spacePerTrack;
        nscoord newBase = sz.mBase + delta;
        if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
                         aFitContentClamper)) {
          // Clamp newBase to the fit-content() size, for §12.5.2 step 5/6.
          if (aFitContentClamper(track, sz.mBase, &newBase)) {
            didClamp = true;
            delta = newBase - sz.mBase;
            MOZ_ASSERT(delta >= 0, "track size shouldn't shrink");
            sz.mState |= TrackSize::eSkipGrowUnlimited1;
            --aNumGrowable;
          }
        }
        sz.mBase = newBase;
        space -= delta;
        MOZ_ASSERT(space >= 0);
        if (space == 0) {
          return;
        }
      }
    }
    MOZ_ASSERT(didClamp, "we don't exit the loop above except by return, "
                         "unless we clamped some track's size");
  }

  /**
   * Distribute aAvailableSpace to the planned base size for aGrowableTracks
   * up to their limits, then distribute the remaining space beyond the limits.
   */
  template<TrackSizingPhase phase>
  void DistributeToTrackSizes(nscoord              aAvailableSpace,
                              nsTArray<TrackSize>& aPlan,
                              nsTArray<TrackSize>& aItemPlan,
                              nsTArray<uint32_t>&  aGrowableTracks,
                              TrackSize::StateBits aSelector,
                              const FitContentClamper& aFitContentClamper)
  {
    InitializeItemPlan<phase>(aItemPlan, aGrowableTracks);
    nscoord space = GrowTracksToLimit(aAvailableSpace, aItemPlan, aGrowableTracks,
                                      aFitContentClamper);
    if (space > 0) {
      uint32_t numGrowable =
        MarkExcludedTracks<phase>(aItemPlan, aGrowableTracks, aSelector);
      GrowSelectedTracksUnlimited(space, aItemPlan, aGrowableTracks,
                                  numGrowable, aFitContentClamper);
    }
    for (uint32_t track : aGrowableTracks) {
      nscoord& plannedSize = aPlan[track].mBase;
      nscoord itemIncurredSize = aItemPlan[track].mBase;
      if (plannedSize < itemIncurredSize) {
        plannedSize = itemIncurredSize;
      }
    }
  }

  /**
   * Distribute aAvailableSize to the tracks.  This implements 12.6 at:
   * http://dev.w3.org/csswg/css-grid/#algo-grow-tracks
   */
  void DistributeFreeSpace(nscoord aAvailableSize)
  {
    const uint32_t numTracks = mSizes.Length();
    if (MOZ_UNLIKELY(numTracks == 0 || aAvailableSize <= 0)) {
      return;
    }
    if (aAvailableSize == NS_UNCONSTRAINEDSIZE) {
      for (TrackSize& sz : mSizes) {
        sz.mBase = sz.mLimit;
      }
    } else {
      // Compute free space and count growable tracks.
      nscoord space = aAvailableSize;
      uint32_t numGrowable = numTracks;
      for (const TrackSize& sz : mSizes) {
        space -= sz.mBase;
        MOZ_ASSERT(sz.mBase <= sz.mLimit);
        if (sz.mBase == sz.mLimit) {
          --numGrowable;
        }
      }
      // Distribute the free space evenly to the growable tracks. If not exactly
      // divisable the remainder is added to the leading tracks.
      while (space > 0 && numGrowable) {
        nscoord spacePerTrack =
          std::max<nscoord>(space / numGrowable, 1);
        for (uint32_t i = 0; i < numTracks && space > 0; ++i) {
          TrackSize& sz = mSizes[i];
          if (sz.mBase == sz.mLimit) {
            continue;
          }
          nscoord newBase = sz.mBase + spacePerTrack;
          if (newBase >= sz.mLimit) {
            space -= sz.mLimit - sz.mBase;
            sz.mBase = sz.mLimit;
            --numGrowable;
          } else {
            space -= spacePerTrack;
            sz.mBase = newBase;
          }
        }
      }
    }
  }

  /**
   * Implements "12.7.1. Find the Size of an 'fr'".
   * http://dev.w3.org/csswg/css-grid/#algo-find-fr-size
   * (The returned value is a 'nscoord' divided by a factor - a floating type
   * is used to avoid intermediary rounding errors.)
   */
  float FindFrUnitSize(const LineRange&            aRange,
                       const nsTArray<uint32_t>&   aFlexTracks,
                       const TrackSizingFunctions& aFunctions,
                       nscoord                     aSpaceToFill) const;

  /**
   * Implements the "find the used flex fraction" part of StretchFlexibleTracks.
   * (The returned value is a 'nscoord' divided by a factor - a floating type
   * is used to avoid intermediary rounding errors.)
   */
  float FindUsedFlexFraction(GridReflowInput&            aState,
                             nsTArray<GridItemInfo>&     aGridItems,
                             const nsTArray<uint32_t>&   aFlexTracks,
                             const TrackSizingFunctions& aFunctions,
                             nscoord                     aAvailableSize) const;

  /**
   * Implements "12.7. Stretch Flexible Tracks"
   * http://dev.w3.org/csswg/css-grid/#algo-flex-tracks
   */
  void StretchFlexibleTracks(GridReflowInput&            aState,
                             nsTArray<GridItemInfo>&     aGridItems,
                             const TrackSizingFunctions& aFunctions,
                             nscoord                     aAvailableSize);

  /**
   * Implements "12.3. Track Sizing Algorithm"
   * http://dev.w3.org/csswg/css-grid/#algo-track-sizing
   */
  void CalculateSizes(GridReflowInput&            aState,
                      nsTArray<GridItemInfo>&     aGridItems,
                      const TrackSizingFunctions& aFunctions,
                      nscoord                     aContentSize,
                      LineRange GridArea::*       aRange,
                      SizingConstraint            aConstraint);

  /**
   * Apply 'align/justify-content', whichever is relevant for this axis.
   * https://drafts.csswg.org/css-align-3/#propdef-align-content
   */
  void AlignJustifyContent(const nsStylePosition* aStyle,
                           WritingMode            aWM,
                           const LogicalSize&     aContainerSize);

  nscoord GridLineEdge(uint32_t aLine, GridLineSide aSide) const
  {
    if (MOZ_UNLIKELY(mSizes.IsEmpty())) {
      // https://drafts.csswg.org/css-grid/#grid-definition
      // "... the explicit grid still contains one grid line in each axis."
      MOZ_ASSERT(aLine == 0, "We should only resolve line 1 in an empty grid");
      return nscoord(0);
    }
    MOZ_ASSERT(aLine <= mSizes.Length(), "mSizes is too small");
    if (aSide == GridLineSide::eBeforeGridGap) {
      if (aLine == 0) {
        return nscoord(0);
      }
      const TrackSize& sz = mSizes[aLine - 1];
      return sz.mPosition + sz.mBase;
    }
    if (aLine == mSizes.Length()) {
      return mContentBoxSize;
    }
    return mSizes[aLine].mPosition;
  }

  nscoord SumOfGridGaps() const
  {
    auto len = mSizes.Length();
    return MOZ_LIKELY(len > 1) ? (len - 1) * mGridGap : 0;
  }

  /**
   * Break before aRow, i.e. set the eBreakBefore flag on aRow and set the grid
   * gap before aRow to zero (and shift all rows after it by the removed gap).
   */
  void BreakBeforeRow(uint32_t aRow)
  {
    MOZ_ASSERT(mAxis == eLogicalAxisBlock,
               "Should only be fragmenting in the block axis (between rows)");
    nscoord prevRowEndPos = 0;
    if (aRow != 0) {
      auto& prevSz = mSizes[aRow - 1];
      prevRowEndPos = prevSz.mPosition + prevSz.mBase;
    }
    auto& sz = mSizes[aRow];
    const nscoord gap = sz.mPosition - prevRowEndPos;
    sz.mState |= TrackSize::eBreakBefore;
    if (gap != 0) {
      for (uint32_t i = aRow, len = mSizes.Length(); i < len; ++i) {
        mSizes[i].mPosition -= gap;
      }
    }
  }

  /**
   * Set the size of aRow to aSize and adjust the position of all rows after it.
   */
  void ResizeRow(uint32_t aRow, nscoord aNewSize)
  {
    MOZ_ASSERT(mAxis == eLogicalAxisBlock,
               "Should only be fragmenting in the block axis (between rows)");
    MOZ_ASSERT(aNewSize >= 0);
    auto& sz = mSizes[aRow];
    nscoord delta = aNewSize - sz.mBase;
    NS_WARNING_ASSERTION(delta != nscoord(0), "Useless call to ResizeRow");
    sz.mBase = aNewSize;
    const uint32_t numRows = mSizes.Length();
    for (uint32_t r = aRow + 1; r < numRows; ++r) {
      mSizes[r].mPosition += delta;
    }
  }

  nscoord ResolveSize(const LineRange& aRange) const
  {
    MOZ_ASSERT(mCanResolveLineRangeSize);
    MOZ_ASSERT(aRange.Extent() > 0, "grid items cover at least one track");
    nscoord pos, size;
    aRange.ToPositionAndLength(mSizes, &pos, &size);
    return size;
  }

  nsTArray<nsString> GetExplicitLineNamesAtIndex(
    const nsStyleGridTemplate& aGridTemplate,
    const TrackSizingFunctions& aFunctions,
    uint32_t aIndex)
  {
    nsTArray<nsString> lineNames;

    bool hasRepeatAuto = aGridTemplate.HasRepeatAuto();
    const nsTArray<nsTArray<nsString>>& lineNameLists(
      aGridTemplate.mLineNameLists);

    if (!hasRepeatAuto) {
      if (aIndex < lineNameLists.Length()) {
        lineNames.AppendElements(lineNameLists[aIndex]);
      }
    } else {
      const uint32_t repeatTrackCount = aFunctions.NumRepeatTracks();
      const uint32_t repeatAutoStart = aGridTemplate.mRepeatAutoIndex;
      const uint32_t repeatAutoEnd = (repeatAutoStart + repeatTrackCount);
      const int32_t repeatEndDelta = int32_t(repeatTrackCount - 1);

      if (aIndex <= repeatAutoStart) {
        if (aIndex < lineNameLists.Length()) {
          lineNames.AppendElements(lineNameLists[aIndex]);
        }
        if (aIndex == repeatAutoEnd) {
          uint32_t i = aIndex + 1;
          if (i < lineNameLists.Length()) {
            lineNames.AppendElements(lineNameLists[i]);
          }
        }
      }
      if (aIndex <= repeatAutoEnd && aIndex > repeatAutoStart) {
        lineNames.AppendElements(aGridTemplate.mRepeatAutoLineNameListAfter);
      }
      if (aIndex < repeatAutoEnd && aIndex >= repeatAutoStart) {
        lineNames.AppendElements(aGridTemplate.mRepeatAutoLineNameListBefore);
      }
      if (aIndex >= repeatAutoEnd && aIndex > repeatAutoStart) {
        uint32_t i = aIndex - repeatEndDelta;
        if (i < lineNameLists.Length()) {
          lineNames.AppendElements(lineNameLists[i]);
        }
      }
    }

    return lineNames;
  }

#ifdef DEBUG
  void Dump() const
  {
    for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
      printf("  %d: ", i);
      mSizes[i].Dump();
      printf("\n");
    }
  }
#endif

  AutoTArray<TrackSize, 32> mSizes;
  nscoord mContentBoxSize;
  nscoord mGridGap;
  // The first(last)-baseline for the first(last) track in this axis.
  nscoord mBaseline[2]; // index by BaselineSharingGroup
  // The union of the track min/max-sizing state bits in this axis.
  TrackSize::StateBits mStateUnion;
  LogicalAxis mAxis;
  // Used for aligning a baseline-aligned subtree of items.  The only possible
  // values are NS_STYLE_ALIGN_{START,END,CENTER,AUTO}.  AUTO means there are
  // no baseline-aligned items in any track in that axis.
  // There is one alignment value for each BaselineSharingGroup.
  uint8_t mBaselineSubtreeAlign[2];
  // True if track positions and sizes are final in this axis.
  bool mCanResolveLineRangeSize;
};

/**
 * Grid data shared by all continuations, owned by the first-in-flow.
 * The data is initialized from the first-in-flow's GridReflowInput at
 * the end of its reflow.  Fragmentation will modify mRows.mSizes -
 * the mPosition to remove the row gap at the break boundary, the mState
 * by setting the eBreakBefore flag, and mBase is modified when we decide
 * to grow a row.  mOriginalRowData is setup by the first-in-flow and
 * not modified after that.  It's used for undoing the changes to mRows.
 * mCols, mGridItems, mAbsPosItems are used for initializing the grid
 * reflow state for continuations, see GridReflowInput::Initialize below.
 */
struct nsGridContainerFrame::SharedGridData
{
  SharedGridData() :
    mCols(eLogicalAxisInline),
    mRows(eLogicalAxisBlock),
    mGenerateComputedGridInfo(false) {}
  Tracks mCols;
  Tracks mRows;
  struct RowData {
    nscoord mBase; // the original track size
    nscoord mGap;  // the original gap before a track
  };
  nsTArray<RowData> mOriginalRowData;
  nsTArray<GridItemInfo> mGridItems;
  nsTArray<GridItemInfo> mAbsPosItems;
  bool mGenerateComputedGridInfo;

  /**
   * Only set on the first-in-flow.  Continuations will Initialize() their
   * GridReflowInput from it.
   */
  NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedGridData)
};

struct MOZ_STACK_CLASS nsGridContainerFrame::GridReflowInput
{
  GridReflowInput(nsGridContainerFrame*    aFrame,
                  const ReflowInput& aRI)
    : GridReflowInput(aFrame, *aRI.mRenderingContext, &aRI, aRI.mStylePosition,
                      aRI.GetWritingMode())
  {}
  GridReflowInput(nsGridContainerFrame* aFrame,
                  nsRenderingContext&   aRC)
    : GridReflowInput(aFrame, aRC, nullptr, aFrame->StylePosition(),
                      aFrame->GetWritingMode())
  {}

  /**
   * Initialize our track sizes and grid item info using the shared
   * state from aGridContainerFrame first-in-flow.
   */
  void InitializeForContinuation(nsGridContainerFrame* aGridContainerFrame,
                                 nscoord               aConsumedBSize)
  {
    MOZ_ASSERT(aGridContainerFrame->GetPrevInFlow(),
               "don't call this on the first-in-flow");
    MOZ_ASSERT(mGridItems.IsEmpty() && mAbsPosItems.IsEmpty(),
               "shouldn't have any item data yet");

    // Get the SharedGridData from the first-in-flow. Also calculate the number
    // of fragments before this so that we can figure out our start row below.
    uint32_t fragment = 0;
    nsIFrame* firstInFlow = aGridContainerFrame;
    for (auto pif = aGridContainerFrame->GetPrevInFlow();
         pif; pif = pif->GetPrevInFlow()) {
      ++fragment;
      firstInFlow = pif;
    }
    mSharedGridData = firstInFlow->GetProperty(SharedGridData::Prop());
    MOZ_ASSERT(mSharedGridData, "first-in-flow must have SharedGridData");

    // Find the start row for this fragment and undo breaks after that row
    // since the breaks might be different from the last reflow.
    auto& rowSizes = mSharedGridData->mRows.mSizes;
    const uint32_t numRows = rowSizes.Length();
    mStartRow = numRows;
    for (uint32_t row = 0, breakCount = 0; row < numRows; ++row) {
      if (rowSizes[row].mState & TrackSize::eBreakBefore) {
        if (fragment == ++breakCount) {
          mStartRow = row;
          mFragBStart = rowSizes[row].mPosition;
          // Restore the original size for |row| and grid gaps / state after it.
          const auto& origRowData = mSharedGridData->mOriginalRowData;
          rowSizes[row].mBase = origRowData[row].mBase;
          nscoord prevEndPos = rowSizes[row].mPosition + rowSizes[row].mBase;
          while (++row < numRows) {
            auto& sz = rowSizes[row];
            const auto& orig = origRowData[row];
            sz.mPosition = prevEndPos + orig.mGap;
            sz.mBase = orig.mBase;
            sz.mState &= ~TrackSize::eBreakBefore;
            prevEndPos = sz.mPosition + sz.mBase;
          }
          break;
        }
      }
    }
    if (mStartRow == numRows) {
      // All of the grid's rows fit inside of previous grid-container fragments.
      mFragBStart = aConsumedBSize;
    }

    // Copy the shared track state.
    // XXX consider temporarily swapping the array elements instead and swapping
    // XXX them back after we're done reflowing, for better performance.
    // XXX (bug 1252002)
    mCols = mSharedGridData->mCols;
    mRows = mSharedGridData->mRows;

    // Copy item data from each child's first-in-flow data in mSharedGridData.
    // XXX NOTE: This is O(n^2) in the number of items. (bug 1252186)
    mIter.Reset();
    for (; !mIter.AtEnd(); mIter.Next()) {
      nsIFrame* child = *mIter;
      nsIFrame* childFirstInFlow = child->FirstInFlow();
      DebugOnly<size_t> len = mGridItems.Length();
      for (auto& itemInfo : mSharedGridData->mGridItems) {
        if (itemInfo.mFrame == childFirstInFlow) {
          auto item = mGridItems.AppendElement(GridItemInfo(child, itemInfo.mArea));
          // Copy the item's baseline data so that the item's last fragment can do
          // 'last baseline' alignment if necessary.
          item->mState[0] |= itemInfo.mState[0] & ItemState::eAllBaselineBits;
          item->mState[1] |= itemInfo.mState[1] & ItemState::eAllBaselineBits;
          item->mBaselineOffset[0] = itemInfo.mBaselineOffset[0];
          item->mBaselineOffset[1] = itemInfo.mBaselineOffset[1];
          break;
        }
      }
      MOZ_ASSERT(mGridItems.Length() == len + 1, "can't find GridItemInfo");
    }

    // XXX NOTE: This is O(n^2) in the number of abs.pos. items. (bug 1252186)
    nsFrameList absPosChildren(aGridContainerFrame->GetChildList(
                                 aGridContainerFrame->GetAbsoluteListID()));
    for (auto f : absPosChildren) {
      nsIFrame* childFirstInFlow = f->FirstInFlow();
      DebugOnly<size_t> len = mAbsPosItems.Length();
      for (auto& itemInfo : mSharedGridData->mAbsPosItems) {
        if (itemInfo.mFrame == childFirstInFlow) {
          mAbsPosItems.AppendElement(GridItemInfo(f, itemInfo.mArea));
          break;
        }
      }
      MOZ_ASSERT(mAbsPosItems.Length() == len + 1, "can't find GridItemInfo");
    }

    // Copy in the computed grid info state bit
    if (mSharedGridData->mGenerateComputedGridInfo) {
      aGridContainerFrame->AddStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES);
    }
  }

  /**
   * Calculate our track sizes.
   */
  void CalculateTrackSizes(const Grid&        aGrid,
                           const LogicalSize& aContentBox,
                           SizingConstraint   aConstraint);

  /**
   * Return the percentage basis for a grid item in its writing-mode.
   * If aAxis is eLogicalAxisInline then we return NS_UNCONSTRAINEDSIZE in
   * both axes since we know all track sizes are indefinite at this point
   * (we calculate column sizes before row sizes).  Otherwise, assert that
   * column sizes are known and calculate the size for aGridItem.mArea.mCols
   * and use NS_UNCONSTRAINEDSIZE in the other axis.
   * @param aAxis the axis we're currently calculating track sizes for
   */
  LogicalSize PercentageBasisFor(LogicalAxis aAxis,
                                 const GridItemInfo& aGridItem) const;

  /**
   * Return the containing block for a grid item occupying aArea.
   */
  LogicalRect ContainingBlockFor(const GridArea& aArea) const;

  /**
   * Return the containing block for an abs.pos. grid item occupying aArea.
   * Any 'auto' lines in the grid area will be aligned with grid container
   * containing block on that side.
   * @param aGridOrigin the origin of the grid
   * @param aGridCB the grid container containing block (its padding area)
   */
  LogicalRect ContainingBlockForAbsPos(const GridArea&     aArea,
                                       const LogicalPoint& aGridOrigin,
                                       const LogicalRect&  aGridCB) const;

  GridItemCSSOrderIterator mIter;
  const nsStylePosition* const mGridStyle;
  Tracks mCols;
  Tracks mRows;
  TrackSizingFunctions mColFunctions;
  TrackSizingFunctions mRowFunctions;
  /**
   * Info about each (normal flow) grid item.
   */
  nsTArray<GridItemInfo> mGridItems;
  /**
   * Info about each grid-aligned abs.pos. child.
   */
  nsTArray<GridItemInfo> mAbsPosItems;

  /**
   * @note mReflowInput may be null when using the 2nd ctor above. In this case
   * we'll construct a dummy parent reflow state if we need it to calculate
   * min/max-content contributions when sizing tracks.
   */
  const ReflowInput* const mReflowInput;
  nsRenderingContext& mRenderingContext;
  nsGridContainerFrame* const mFrame;
  SharedGridData* mSharedGridData; // [weak] owned by mFrame's first-in-flow.
  /** Computed border+padding with mSkipSides applied. */
  LogicalMargin mBorderPadding;
  /**
   * BStart of this fragment in "grid space" (i.e. the concatenation of content
   * areas of all fragments).  Equal to mRows.mSizes[mStartRow].mPosition,
   * or, if this fragment starts after the last row, the GetConsumedBSize().
   */
  nscoord mFragBStart;
  /** The start row for this fragment. */
  uint32_t mStartRow;
  /**
   * The start row for the next fragment, if any.  If mNextFragmentStartRow ==
   * mStartRow then there are no rows in this fragment.
   */
  uint32_t mNextFragmentStartRow;
  /** Our tentative ApplySkipSides bits. */
  LogicalSides mSkipSides;
  const WritingMode mWM;
  /** Initialized lazily, when we find the fragmentainer. */
  bool mInFragmentainer;

private:
  GridReflowInput(nsGridContainerFrame*    aFrame,
                  nsRenderingContext&      aRenderingContext,
                  const ReflowInput* aReflowInput,
                  const nsStylePosition*   aGridStyle,
                  const WritingMode&       aWM)
    : mIter(aFrame, kPrincipalList)
    , mGridStyle(aGridStyle)
    , mCols(eLogicalAxisInline)
    , mRows(eLogicalAxisBlock)
    , mColFunctions(mGridStyle->mGridTemplateColumns,
                    mGridStyle->mGridAutoColumnsMin,
                    mGridStyle->mGridAutoColumnsMax)
    , mRowFunctions(mGridStyle->mGridTemplateRows,
                    mGridStyle->mGridAutoRowsMin,
                    mGridStyle->mGridAutoRowsMax)
    , mReflowInput(aReflowInput)
    , mRenderingContext(aRenderingContext)
    , mFrame(aFrame)
    , mSharedGridData(nullptr)
    , mBorderPadding(aWM)
    , mFragBStart(0)
    , mStartRow(0)
    , mNextFragmentStartRow(0)
    , mWM(aWM)
    , mInFragmentainer(false)
  {
    MOZ_ASSERT(!aReflowInput || aReflowInput->mFrame == mFrame);
    if (aReflowInput) {
      mBorderPadding = aReflowInput->ComputedLogicalBorderPadding();
      mSkipSides = aFrame->PreReflowBlockLevelLogicalSkipSides();
      mBorderPadding.ApplySkipSides(mSkipSides);
    }
  }
};

using GridReflowInput = nsGridContainerFrame::GridReflowInput;

/**
 * The Grid implements grid item placement and the state of the grid -
 * the size of the explicit/implicit grid, which cells are occupied etc.
 */
struct MOZ_STACK_CLASS nsGridContainerFrame::Grid
{
  /**
   * Place all child frames into the grid and expand the (implicit) grid as
   * needed.  The allocated GridAreas are stored in the GridAreaProperty
   * frame property on the child frame.
   * @param aComputedMinSize the container's min-size - used to determine
   *   the number of repeat(auto-fill/fit) tracks.
   * @param aComputedSize the container's size - used to determine
   *   the number of repeat(auto-fill/fit) tracks.
   * @param aComputedMaxSize the container's max-size - used to determine
   *   the number of repeat(auto-fill/fit) tracks.
   */
  void PlaceGridItems(GridReflowInput& aState,
                      const LogicalSize& aComputedMinSize,
                      const LogicalSize& aComputedSize,
                      const LogicalSize& aComputedMaxSize);

  /**
   * As above but for an abs.pos. child.  Any 'auto' lines will be represented
   * by kAutoLine in the LineRange result.
   * @param aGridStart the first line in the final, but untranslated grid
   * @param aGridEnd the last line in the final, but untranslated grid
   */
  LineRange ResolveAbsPosLineRange(const nsStyleGridLine& aStart,
                                   const nsStyleGridLine& aEnd,
                                   const LineNameMap& aNameMap,
                                   uint32_t GridNamedArea::* aAreaStart,
                                   uint32_t GridNamedArea::* aAreaEnd,
                                   uint32_t aExplicitGridEnd,
                                   int32_t aGridStart,
                                   int32_t aGridEnd,
                                   const nsStylePosition* aStyle);

  /**
   * Return a GridArea for abs.pos. item with non-auto lines placed at
   * a definite line (1-based) with placement errors resolved.  One or both
   * positions may still be 'auto'.
   * @param aChild the abs.pos. grid item to place
   * @param aStyle the StylePosition() for the grid container
   */
  GridArea PlaceAbsPos(nsIFrame* aChild,
                       const LineNameMap& aColLineNameMap,
                       const LineNameMap& aRowLineNameMap,
                       const nsStylePosition* aStyle);

  /**
   * Find the first column in row aLockedRow starting at aStartCol where aArea
   * could be placed without overlapping other items.  The returned column may
   * cause aArea to overflow the current implicit grid bounds if placed there.
   */
  uint32_t FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
                       const GridArea* aArea) const;

  /**
   * Place aArea in the first column (in row aArea->mRows.mStart) starting at
   * aStartCol without overlapping other items.  The resulting aArea may
   * overflow the current implicit grid bounds.
   * Pre-condition: aArea->mRows.IsDefinite() is true.
   * Post-condition: aArea->IsDefinite() is true.
   */
  void PlaceAutoCol(uint32_t aStartCol, GridArea* aArea) const;

  /**
   * Find the first row in column aLockedCol starting at aStartRow where aArea
   * could be placed without overlapping other items.  The returned row may
   * cause aArea to overflow the current implicit grid bounds if placed there.
   */
  uint32_t FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
                       const GridArea* aArea) const;

  /**
   * Place aArea in the first row (in column aArea->mCols.mStart) starting at
   * aStartRow without overlapping other items. The resulting aArea may
   * overflow the current implicit grid bounds.
   * Pre-condition: aArea->mCols.IsDefinite() is true.
   * Post-condition: aArea->IsDefinite() is true.
   */
  void PlaceAutoRow(uint32_t aStartRow, GridArea* aArea) const;

  /**
   * Place aArea in the first column starting at aStartCol,aStartRow without
   * causing it to overlap other items or overflow mGridColEnd.
   * If there's no such column in aStartRow, continue in position 1,aStartRow+1.
   * Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
   * Post-condition: aArea->IsDefinite() is true.
   */
  void PlaceAutoAutoInRowOrder(uint32_t aStartCol,
                               uint32_t aStartRow,
                               GridArea* aArea) const;

  /**
   * Place aArea in the first row starting at aStartCol,aStartRow without
   * causing it to overlap other items or overflow mGridRowEnd.
   * If there's no such row in aStartCol, continue in position aStartCol+1,1.
   * Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
   * Post-condition: aArea->IsDefinite() is true.
   */
  void PlaceAutoAutoInColOrder(uint32_t aStartCol,
                               uint32_t aStartRow,
                               GridArea* aArea) const;

  /**
   * Return aLine if it's inside the aMin..aMax range (inclusive),
   * otherwise return kAutoLine.
   */
  static int32_t
  AutoIfOutside(int32_t aLine, int32_t aMin, int32_t aMax)
  {
    MOZ_ASSERT(aMin <= aMax);
    if (aLine < aMin || aLine > aMax) {
      return kAutoLine;
    }
    return aLine;
  }

  /**
   * Inflate the implicit grid to include aArea.
   * @param aArea may be definite or auto
   */
  void InflateGridFor(const GridArea& aArea)
  {
    mGridColEnd = std::max(mGridColEnd, aArea.mCols.HypotheticalEnd());
    mGridRowEnd = std::max(mGridRowEnd, aArea.mRows.HypotheticalEnd());
    MOZ_ASSERT(mGridColEnd <= kTranslatedMaxLine &&
               mGridRowEnd <= kTranslatedMaxLine);
  }

  enum LineRangeSide {
    eLineRangeSideStart, eLineRangeSideEnd
  };
  /**
   * Return a line number for (non-auto) aLine, per:
   * http://dev.w3.org/csswg/css-grid/#line-placement
   * @param aLine style data for the line (must be non-auto)
   * @param aNth a number of lines to find from aFromIndex, negative if the
   *             search should be in reverse order.  In the case aLine has
   *             a specified line name, it's permitted to pass in zero which
   *             will be treated as one.
   * @param aFromIndex the zero-based index to start counting from
   * @param aLineNameList the explicit named lines
   * @param aAreaStart a pointer to GridNamedArea::mColumnStart/mRowStart
   * @param aAreaEnd a pointer to GridNamedArea::mColumnEnd/mRowEnd
   * @param aExplicitGridEnd the last line in the explicit grid
   * @param aEdge indicates whether we are resolving a start or end line
   * @param aStyle the StylePosition() for the grid container
   * @return a definite line (1-based), clamped to the kMinLine..kMaxLine range
   */
  int32_t ResolveLine(const nsStyleGridLine& aLine,
                      int32_t aNth,
                      uint32_t aFromIndex,
                      const LineNameMap& aNameMap,
                      uint32_t GridNamedArea::* aAreaStart,
                      uint32_t GridNamedArea::* aAreaEnd,
                      uint32_t aExplicitGridEnd,
                      LineRangeSide aSide,
                      const nsStylePosition* aStyle);

  /**
   * Helper method for ResolveLineRange.
   * @see ResolveLineRange
   * @return a pair (start,end) of lines
   */
  typedef std::pair<int32_t, int32_t> LinePair;
  LinePair ResolveLineRangeHelper(const nsStyleGridLine& aStart,
                                  const nsStyleGridLine& aEnd,
                                  const LineNameMap& aNameMap,
                                  uint32_t GridNamedArea::* aAreaStart,
                                  uint32_t GridNamedArea::* aAreaEnd,
                                  uint32_t aExplicitGridEnd,
                                  const nsStylePosition* aStyle);

  /**
   * Return a LineRange based on the given style data. Non-auto lines
   * are resolved to a definite line number (1-based) per:
   * http://dev.w3.org/csswg/css-grid/#line-placement
   * with placement errors corrected per:
   * http://dev.w3.org/csswg/css-grid/#grid-placement-errors
   * @param aStyle the StylePosition() for the grid container
   * @param aStart style data for the start line
   * @param aEnd style data for the end line
   * @param aLineNameList the explicit named lines
   * @param aAreaStart a pointer to GridNamedArea::mColumnStart/mRowStart
   * @param aAreaEnd a pointer to GridNamedArea::mColumnEnd/mRowEnd
   * @param aExplicitGridEnd the last line in the explicit grid
   * @param aStyle the StylePosition() for the grid container
   */
  LineRange ResolveLineRange(const nsStyleGridLine& aStart,
                             const nsStyleGridLine& aEnd,
                             const LineNameMap& aNameMap,
                             uint32_t GridNamedArea::* aAreaStart,
                             uint32_t GridNamedArea::* aAreaEnd,
                             uint32_t aExplicitGridEnd,
                             const nsStylePosition* aStyle);

  /**
   * Return a GridArea with non-auto lines placed at a definite line (1-based)
   * with placement errors resolved.  One or both positions may still
   * be 'auto'.
   * @param aChild the grid item
   * @param aStyle the StylePosition() for the grid container
   */
  GridArea PlaceDefinite(nsIFrame*              aChild,
                         const LineNameMap&     aColLineNameMap,
                         const LineNameMap&     aRowLineNameMap,
                         const nsStylePosition* aStyle);

  bool HasImplicitNamedArea(const nsString& aName) const
  {
    return mAreas && mAreas->Contains(aName);
  }

  /**
   * A convenience method to lookup a name in 'grid-template-areas'.
   * @param aStyle the StylePosition() for the grid container
   * @return null if not found
   */
  static const css::GridNamedArea*
  FindNamedArea(const nsSubstring& aName, const nsStylePosition* aStyle)
  {
    if (!aStyle->mGridTemplateAreas) {
      return nullptr;
    }
    const nsTArray<css::GridNamedArea>& areas =
      aStyle->mGridTemplateAreas->mNamedAreas;
    size_t len = areas.Length();
    for (size_t i = 0; i < len; ++i) {
      const css::GridNamedArea& area = areas[i];
      if (area.mName == aName) {
        return &area;
      }
    }
    return nullptr;
  }

  // Return true if aString ends in aSuffix and has at least one character before
  // the suffix. Assign aIndex to where the suffix starts.
  static bool
  IsNameWithSuffix(const nsString& aString, const nsString& aSuffix,
                   uint32_t* aIndex)
  {
    if (StringEndsWith(aString, aSuffix)) {
      *aIndex = aString.Length() - aSuffix.Length();
      return *aIndex != 0;
    }
    return false;
  }

  static bool
  IsNameWithEndSuffix(const nsString& aString, uint32_t* aIndex)
  {
    return IsNameWithSuffix(aString, NS_LITERAL_STRING("-end"), aIndex);
  }

  static bool
  IsNameWithStartSuffix(const nsString& aString, uint32_t* aIndex)
  {
    return IsNameWithSuffix(aString, NS_LITERAL_STRING("-start"), aIndex);
  }

  /**
   * A CellMap holds state for each cell in the grid.
   * It's row major.  It's sparse in the sense that it only has enough rows to
   * cover the last row that has a grid item.  Each row only has enough entries
   * to cover columns that are occupied *on that row*, i.e. it's not a full
   * matrix covering the entire implicit grid.  An absent Cell means that it's
   * unoccupied by any grid item.
   */
  struct CellMap {
    struct Cell {
      Cell() : mIsOccupied(false) {}
      bool mIsOccupied : 1;
    };

    void Fill(const GridArea& aGridArea)
    {
      MOZ_ASSERT(aGridArea.IsDefinite());
      MOZ_ASSERT(aGridArea.mRows.mStart < aGridArea.mRows.mEnd);
      MOZ_ASSERT(aGridArea.mCols.mStart < aGridArea.mCols.mEnd);
      const auto numRows = aGridArea.mRows.mEnd;
      const auto numCols = aGridArea.mCols.mEnd;
      mCells.EnsureLengthAtLeast(numRows);
      for (auto i = aGridArea.mRows.mStart; i < numRows; ++i) {
        nsTArray<Cell>& cellsInRow = mCells[i];
        cellsInRow.EnsureLengthAtLeast(numCols);
        for (auto j = aGridArea.mCols.mStart; j < numCols; ++j) {
          cellsInRow[j].mIsOccupied = true;
        }
      }
    }

    uint32_t IsEmptyCol(uint32_t aCol) const
    {
      for (auto& row : mCells) {
        if (aCol < row.Length() && row[aCol].mIsOccupied) {
          return false;
        }
      }
      return true;
    }
    uint32_t IsEmptyRow(uint32_t aRow) const
    {
      if (aRow >= mCells.Length()) {
        return true;
      }
      for (const Cell& cell : mCells[aRow]) {
        if (cell.mIsOccupied) {
          return false;
        }
      }
      return true;
    }
#ifdef DEBUG
    void Dump() const
    {
      const size_t numRows = mCells.Length();
      for (size_t i = 0; i < numRows; ++i) {
        const nsTArray<Cell>& cellsInRow = mCells[i];
        const size_t numCols = cellsInRow.Length();
        printf("%lu:\t", (unsigned long)i + 1);
        for (size_t j = 0; j < numCols; ++j) {
          printf(cellsInRow[j].mIsOccupied ? "X " : ". ");
        }
        printf("\n");
      }
    }
#endif

    nsTArray<nsTArray<Cell>> mCells;
  };

  /**
   * State for each cell in the grid.
   */
  CellMap mCellMap;
  /**
   * @see HasImplicitNamedArea.
   */
  ImplicitNamedAreas* mAreas;
  /**
   * The last column grid line (1-based) in the explicit grid.
   * (i.e. the number of explicit columns + 1)
   */
  uint32_t mExplicitGridColEnd;
  /**
   * The last row grid line (1-based) in the explicit grid.
   * (i.e. the number of explicit rows + 1)
   */
  uint32_t mExplicitGridRowEnd;
  // Same for the implicit grid, except these become zero-based after
  // resolving definite lines.
  uint32_t mGridColEnd;
  uint32_t mGridRowEnd;

  /**
   * Offsets from the start of the implicit grid to the start of the translated
   * explicit grid.  They are zero if there are no implicit lines before 1,1.
   * e.g. "grid-column: span 3 / 1" makes mExplicitGridOffsetCol = 3 and the
   * corresponding GridArea::mCols will be 0 / 3 in the zero-based translated
   * grid.
   */
  uint32_t mExplicitGridOffsetCol;
  uint32_t mExplicitGridOffsetRow;
};

void
nsGridContainerFrame::GridReflowInput::CalculateTrackSizes(
  const Grid&        aGrid,
  const LogicalSize& aContentBox,
  SizingConstraint   aConstraint)
{
  mCols.Initialize(mColFunctions, mGridStyle->mGridColumnGap,
                   aGrid.mGridColEnd, aContentBox.ISize(mWM));
  mRows.Initialize(mRowFunctions, mGridStyle->mGridRowGap,
                   aGrid.mGridRowEnd, aContentBox.BSize(mWM));

  mCols.CalculateSizes(*this, mGridItems, mColFunctions,
                       aContentBox.ISize(mWM), &GridArea::mCols,
                       aConstraint);
  mCols.AlignJustifyContent(mGridStyle, mWM, aContentBox);
  // Column positions and sizes are now final.
  mCols.mCanResolveLineRangeSize = true;

  mRows.CalculateSizes(*this, mGridItems, mRowFunctions,
                       aContentBox.BSize(mWM), &GridArea::mRows,
                       aConstraint);
}

/**
 * (XXX share this utility function with nsFlexContainerFrame at some point)
 *
 * Helper for BuildDisplayList, to implement this special-case for grid
 * items from the spec:
 *   The painting order of grid items is exactly the same as inline blocks,
 *   except that [...] 'z-index' values other than 'auto' create a stacking
 *   context even if 'position' is 'static'.
 * http://dev.w3.org/csswg/css-grid/#z-order
 */
static uint32_t
GetDisplayFlagsForGridItem(nsIFrame* aFrame)
{
  const nsStylePosition* pos = aFrame->StylePosition();
  if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) {
    return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT;
  }
  return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT;
}

// Align an item's margin box in its aAxis inside aCBSize.
static void
AlignJustifySelf(uint8_t aAlignment, LogicalAxis aAxis,
                 AlignJustifyFlags aFlags,
                 nscoord aBaselineAdjust, nscoord aCBSize,
                 const ReflowInput& aRI, const LogicalSize& aChildSize,
                 LogicalPoint* aPos)
{
  MOZ_ASSERT(aAlignment != NS_STYLE_ALIGN_AUTO, "unexpected 'auto' "
             "computed value for normal flow grid item");

  // NOTE: this is the resulting frame offset (border box).
  nscoord offset =
    CSSAlignUtils::AlignJustifySelf(aAlignment, aAxis, aFlags,
                                    aBaselineAdjust, aCBSize,
                                    aRI, aChildSize);

  // Set the position (aPos) for the requested alignment.
  if (offset != 0) {
    WritingMode wm = aRI.GetWritingMode();
    nscoord& pos = aAxis == eLogicalAxisBlock ? aPos->B(wm) : aPos->I(wm);
    pos += MOZ_LIKELY(aFlags & AlignJustifyFlags::eSameSide) ? offset : -offset;
  }
}

static void
AlignSelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
          uint8_t aAlignSelf, nscoord aCBSize, const WritingMode aCBWM,
          const ReflowInput& aRI, const LogicalSize& aSize,
          LogicalPoint* aPos)
{
  auto alignSelf = aAlignSelf;

  AlignJustifyFlags flags = AlignJustifyFlags::eNoFlags;
  if (alignSelf & NS_STYLE_ALIGN_SAFE) {
    flags |= AlignJustifyFlags::eOverflowSafe;
  }
  alignSelf &= ~NS_STYLE_ALIGN_FLAG_BITS;

  WritingMode childWM = aRI.GetWritingMode();
  if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisBlock, childWM)) {
    flags |= AlignJustifyFlags::eSameSide;
  }

  // Grid's 'align-self' axis is never parallel to the container's inline axis.
  if (alignSelf == NS_STYLE_ALIGN_LEFT || alignSelf == NS_STYLE_ALIGN_RIGHT) {
    alignSelf = NS_STYLE_ALIGN_START;
  }
  if (MOZ_LIKELY(alignSelf == NS_STYLE_ALIGN_NORMAL)) {
    alignSelf = NS_STYLE_ALIGN_STRETCH;
  }

  nscoord baselineAdjust = 0;
  if (alignSelf == NS_STYLE_ALIGN_BASELINE ||
      alignSelf == NS_STYLE_ALIGN_LAST_BASELINE) {
    alignSelf = aGridItem.GetSelfBaseline(alignSelf, eLogicalAxisBlock,
                                          &baselineAdjust);
  }

  bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
  LogicalAxis axis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock;
  AlignJustifySelf(alignSelf, axis, flags, baselineAdjust,
                   aCBSize, aRI, aSize, aPos);
}

static void
JustifySelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
            uint8_t aJustifySelf, nscoord aCBSize, const WritingMode aCBWM,
            const ReflowInput& aRI, const LogicalSize& aSize,
            LogicalPoint* aPos)
{
  auto justifySelf = aJustifySelf;

  AlignJustifyFlags flags = AlignJustifyFlags::eNoFlags;
  if (justifySelf & NS_STYLE_JUSTIFY_SAFE) {
    flags |= AlignJustifyFlags::eOverflowSafe;
  }
  justifySelf &= ~NS_STYLE_JUSTIFY_FLAG_BITS;

  WritingMode childWM = aRI.GetWritingMode();
  if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisInline, childWM)) {
    flags |= AlignJustifyFlags::eSameSide;
  }

  if (MOZ_LIKELY(justifySelf == NS_STYLE_ALIGN_NORMAL)) {
    justifySelf = NS_STYLE_ALIGN_STRETCH;
  }

  nscoord baselineAdjust = 0;
  // Grid's 'justify-self' axis is always parallel to the container's inline
  // axis, so justify-self:left|right always applies.
  switch (justifySelf) {
    case NS_STYLE_JUSTIFY_LEFT:
      justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_START
                                      : NS_STYLE_JUSTIFY_END;
      break;
    case NS_STYLE_JUSTIFY_RIGHT:
      justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_END
                                      : NS_STYLE_JUSTIFY_START;
      break;
    case NS_STYLE_JUSTIFY_BASELINE:
    case NS_STYLE_JUSTIFY_LAST_BASELINE:
      justifySelf = aGridItem.GetSelfBaseline(justifySelf, eLogicalAxisInline,
                                              &baselineAdjust);
      break;
  }

  bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
  LogicalAxis axis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
  AlignJustifySelf(justifySelf, axis, flags, baselineAdjust,
                   aCBSize, aRI, aSize, aPos);
}

static uint16_t
GetAlignJustifyValue(uint16_t aAlignment, const WritingMode aWM,
                     const bool aIsAlign, bool* aOverflowSafe)
{
  *aOverflowSafe = aAlignment & NS_STYLE_ALIGN_SAFE;
  aAlignment &= (NS_STYLE_ALIGN_ALL_BITS & ~NS_STYLE_ALIGN_FLAG_BITS);

  // Map some alignment values to 'start' / 'end'.
  switch (aAlignment) {
    case NS_STYLE_ALIGN_LEFT:
    case NS_STYLE_ALIGN_RIGHT: {
      if (aIsAlign) {
        // Grid's 'align-content' axis is never parallel to the inline axis.
        return NS_STYLE_ALIGN_START;
      }
      bool isStart = aWM.IsBidiLTR() == (aAlignment == NS_STYLE_ALIGN_LEFT);
      return isStart ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END;
    }
    case NS_STYLE_ALIGN_FLEX_START: // same as 'start' for Grid
      return NS_STYLE_ALIGN_START;
    case NS_STYLE_ALIGN_FLEX_END: // same as 'end' for Grid
      return NS_STYLE_ALIGN_END;
  }
  return aAlignment;
}

static uint16_t
GetAlignJustifyFallbackIfAny(uint16_t aAlignment, const WritingMode aWM,
                             const bool aIsAlign, bool* aOverflowSafe)
{
  uint16_t fallback = aAlignment >> NS_STYLE_ALIGN_ALL_SHIFT;
  if (fallback) {
    return GetAlignJustifyValue(fallback, aWM, aIsAlign, aOverflowSafe);
  }
  // https://drafts.csswg.org/css-align-3/#fallback-alignment
  switch (aAlignment) {
    case NS_STYLE_ALIGN_STRETCH:
    case NS_STYLE_ALIGN_SPACE_BETWEEN:
      return NS_STYLE_ALIGN_START;
    case NS_STYLE_ALIGN_SPACE_AROUND:
    case NS_STYLE_ALIGN_SPACE_EVENLY:
      return NS_STYLE_ALIGN_CENTER;
  }
  return 0;
}

//----------------------------------------------------------------------

// Frame class boilerplate
// =======================

NS_QUERYFRAME_HEAD(nsGridContainerFrame)
  NS_QUERYFRAME_ENTRY(nsGridContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)

NS_IMPL_FRAMEARENA_HELPERS(nsGridContainerFrame)

nsContainerFrame*
NS_NewGridContainerFrame(nsIPresShell* aPresShell,
                         nsStyleContext* aContext)
{
  return new (aPresShell) nsGridContainerFrame(aContext);
}


//----------------------------------------------------------------------

// nsGridContainerFrame Method Implementations
// ===========================================

/*static*/ const nsRect&
nsGridContainerFrame::GridItemCB(nsIFrame* aChild)
{
  MOZ_ASSERT((aChild->GetStateBits() & NS_FRAME_OUT_OF_FLOW) &&
             aChild->IsAbsolutelyPositioned());
  nsRect* cb = aChild->GetProperty(GridItemContainingBlockRect());
  MOZ_ASSERT(cb, "this method must only be called on grid items, and the grid "
                 "container should've reflowed this item by now and set up cb");
  return *cb;
}

void
nsGridContainerFrame::AddImplicitNamedAreas(
  const nsTArray<nsTArray<nsString>>& aLineNameLists)
{
  // http://dev.w3.org/csswg/css-grid/#implicit-named-areas
  // Note: recording these names for fast lookup later is just an optimization.
  const uint32_t len =
    std::min(aLineNameLists.Length(), size_t(nsStyleGridLine::kMaxLine));
  nsTHashtable<nsStringHashKey> currentStarts;
  ImplicitNamedAreas* areas = GetImplicitNamedAreas();
  for (uint32_t i = 0; i < len; ++i) {
    for (const nsString& name : aLineNameLists[i]) {
      uint32_t indexOfSuffix;
      if (Grid::IsNameWithStartSuffix(name, &indexOfSuffix) ||
          Grid::IsNameWithEndSuffix(name, &indexOfSuffix)) {
        // Extract the name that was found earlier.
        nsDependentSubstring areaName(name, 0, indexOfSuffix);

        // Lazily create the ImplicitNamedAreas.
        if (!areas) {
          areas = new ImplicitNamedAreas;
          SetProperty(ImplicitNamedAreasProperty(), areas);
        }

        mozilla::css::GridNamedArea area;
        if (!areas->Get(areaName, &area)) {
          // Not found, so prep the newly-seen area with a name and empty
          // boundary information, which will get filled in later.
          area.mName = areaName;
          area.mRowStart = 0;
          area.mRowEnd = 0;
          area.mColumnStart = 0;
          area.mColumnEnd = 0;

          areas->Put(areaName, area);
        }
      }
    }
  }
}

void
nsGridContainerFrame::InitImplicitNamedAreas(const nsStylePosition* aStyle)
{
  ImplicitNamedAreas* areas = GetImplicitNamedAreas();
  if (areas) {
    // Clear it, but reuse the hashtable itself for now.  We'll remove it
    // below if it isn't needed anymore.
    areas->Clear();
  }
  AddImplicitNamedAreas(aStyle->mGridTemplateColumns.mLineNameLists);
  AddImplicitNamedAreas(aStyle->mGridTemplateRows.mLineNameLists);
  if (areas && areas->Count() == 0) {
    DeleteProperty(ImplicitNamedAreasProperty());
  }
}

int32_t
nsGridContainerFrame::Grid::ResolveLine(const nsStyleGridLine& aLine,
                                        int32_t aNth,
                                        uint32_t aFromIndex,
                                        const LineNameMap& aNameMap,
                                        uint32_t GridNamedArea::* aAreaStart,
                                        uint32_t GridNamedArea::* aAreaEnd,
                                        uint32_t aExplicitGridEnd,
                                        LineRangeSide aSide,
                                        const nsStylePosition* aStyle)
{
  MOZ_ASSERT(!aLine.IsAuto());
  int32_t line = 0;
  if (aLine.mLineName.IsEmpty()) {
    MOZ_ASSERT(aNth != 0, "css-grid 9.2: <integer> must not be zero.");
    line = int32_t(aFromIndex) + aNth;
  } else {
    if (aNth == 0) {
      // <integer> was omitted; treat it as 1.
      aNth = 1;
    }
    bool isNameOnly = !aLine.mHasSpan && aLine.mInteger == 0;
    if (isNameOnly) {
      const GridNamedArea* area = FindNamedArea(aLine.mLineName, aStyle);
      if (area || HasImplicitNamedArea(aLine.mLineName)) {
        // The given name is a named area - look for explicit lines named
        // <name>-start/-end depending on which side we're resolving.
        // http://dev.w3.org/csswg/css-grid/#grid-placement-slot
        uint32_t implicitLine = 0;
        nsAutoString lineName(aLine.mLineName);
        if (aSide == eLineRangeSideStart) {
          lineName.AppendLiteral("-start");
          implicitLine = area ? area->*aAreaStart : 0;
        } else {
          lineName.AppendLiteral("-end");
          implicitLine = area ? area->*aAreaEnd : 0;
        }
        line = aNameMap.FindNamedLine(lineName, &aNth, aFromIndex,
                                      implicitLine);
      }
    }

    if (line == 0) {
      // If mLineName ends in -start/-end, try the prefix as a named area.
      uint32_t implicitLine = 0;
      uint32_t index;
      auto GridNamedArea::* areaEdge = aAreaStart;
      bool found = IsNameWithStartSuffix(aLine.mLineName, &index);
      if (!found) {
        found = IsNameWithEndSuffix(aLine.mLineName, &index);
        areaEdge = aAreaEnd;
      }
      if (found) {
        const GridNamedArea* area =
          FindNamedArea(nsDependentSubstring(aLine.mLineName, 0, index),
                        aStyle);
        if (area) {
          implicitLine = area->*areaEdge;
        }
      }
      line = aNameMap.FindNamedLine(aLine.mLineName, &aNth, aFromIndex,
                                    implicitLine);
    }

    if (line == 0) {
      MOZ_ASSERT(aNth != 0, "we found all N named lines but 'line' is zero!");
      int32_t edgeLine;
      if (aLine.mHasSpan) {
        // http://dev.w3.org/csswg/css-grid/#grid-placement-span-int
        // 'span <custom-ident> N'
        edgeLine = aSide == eLineRangeSideStart ? 1 : aExplicitGridEnd;
      } else {
        // http://dev.w3.org/csswg/css-grid/#grid-placement-int
        // '<custom-ident> N'
        edgeLine = aNth < 0 ? 1 : aExplicitGridEnd;
      }
      // "If not enough lines with that name exist, all lines in the implicit
      // grid are assumed to have that name..."
      line = edgeLine + aNth;
    }
  }
  return clamped(line, nsStyleGridLine::kMinLine, nsStyleGridLine::kMaxLine);
}

nsGridContainerFrame::Grid::LinePair
nsGridContainerFrame::Grid::ResolveLineRangeHelper(
  const nsStyleGridLine& aStart,
  const nsStyleGridLine& aEnd,
  const LineNameMap& aNameMap,
  uint32_t GridNamedArea::* aAreaStart,
  uint32_t GridNamedArea::* aAreaEnd,
  uint32_t aExplicitGridEnd,
  const nsStylePosition* aStyle)
{
  MOZ_ASSERT(int32_t(nsGridContainerFrame::kAutoLine) > nsStyleGridLine::kMaxLine);

  if (aStart.mHasSpan) {
    if (aEnd.mHasSpan || aEnd.IsAuto()) {
      // http://dev.w3.org/csswg/css-grid/#grid-placement-errors
      if (aStart.mLineName.IsEmpty()) {
        // span <integer> / span *
        // span <integer> / auto
        return LinePair(kAutoLine, aStart.mInteger);
      }
      // span <custom-ident> / span *
      // span <custom-ident> / auto
      return LinePair(kAutoLine, 1); // XXX subgrid explicit size instead of 1?
    }

    uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0;
    auto end = ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, aAreaStart,
                           aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd,
                           aStyle);
    int32_t span = aStart.mInteger == 0 ? 1 : aStart.mInteger;
    if (end <= 1) {
      // The end is at or before the first explicit line, thus all lines before
      // it match <custom-ident> since they're implicit.
      int32_t start = std::max(end - span, nsStyleGridLine::kMinLine);
      return LinePair(start, end);
    }
    auto start = ResolveLine(aStart, -span, end, aNameMap, aAreaStart,
                             aAreaEnd, aExplicitGridEnd, eLineRangeSideStart,
                             aStyle);
    return LinePair(start, end);
  }

  int32_t start = kAutoLine;
  if (aStart.IsAuto()) {
    if (aEnd.IsAuto()) {
      // auto / auto
      return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
    }
    if (aEnd.mHasSpan) {
      if (aEnd.mLineName.IsEmpty()) {
        // auto / span <integer>
        MOZ_ASSERT(aEnd.mInteger != 0);
        return LinePair(start, aEnd.mInteger);
      }
      // http://dev.w3.org/csswg/css-grid/#grid-placement-errors
      // auto / span <custom-ident>
      return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
    }
  } else {
    uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0;
    start = ResolveLine(aStart, aStart.mInteger, from, aNameMap,
                        aAreaStart, aAreaEnd, aExplicitGridEnd,
                        eLineRangeSideStart, aStyle);
    if (aEnd.IsAuto()) {
      // A "definite line / auto" should resolve the auto to 'span 1'.
      // The error handling in ResolveLineRange will make that happen and also
      // clamp the end line correctly if we return "start / start".
      return LinePair(start, start);
    }
  }

  uint32_t from;
  int32_t nth = aEnd.mInteger == 0 ? 1 : aEnd.mInteger;
  if (aEnd.mHasSpan) {
    if (MOZ_UNLIKELY(start < 0)) {
      if (aEnd.mLineName.IsEmpty()) {
        return LinePair(start, start + nth);
      }
      from = 0;
    } else {
      if (start >= int32_t(aExplicitGridEnd)) {
        // The start is at or after the last explicit line, thus all lines
        // after it match <custom-ident> since they're implicit.
        return LinePair(start, std::min(start + nth, nsStyleGridLine::kMaxLine));
      }
      from = start;
    }
  } else {
    from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0;
  }
  auto end = ResolveLine(aEnd, nth, from, aNameMap, aAreaStart,
                         aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle);
  if (start == int32_t(kAutoLine)) {
    // auto / definite line
    start = std::max(nsStyleGridLine::kMinLine, end - 1);
  }
  return LinePair(start, end);
}

nsGridContainerFrame::LineRange
nsGridContainerFrame::Grid::ResolveLineRange(
  const nsStyleGridLine& aStart,
  const nsStyleGridLine& aEnd,
  const LineNameMap& aNameMap,
  uint32_t GridNamedArea::* aAreaStart,
  uint32_t GridNamedArea::* aAreaEnd,
  uint32_t aExplicitGridEnd,
  const nsStylePosition* aStyle)
{
  LinePair r = ResolveLineRangeHelper(aStart, aEnd, aNameMap, aAreaStart,
                                      aAreaEnd, aExplicitGridEnd, aStyle);
  MOZ_ASSERT(r.second != int32_t(kAutoLine));

  if (r.first == int32_t(kAutoLine)) {
    // r.second is a span, clamp it to kMaxLine - 1 so that the returned
    // range has a HypotheticalEnd <= kMaxLine.
    // http://dev.w3.org/csswg/css-grid/#overlarge-grids
    r.second = std::min(r.second, nsStyleGridLine::kMaxLine - 1);
  } else {
    // http://dev.w3.org/csswg/css-grid/#grid-placement-errors
    if (r.first > r.second) {
      Swap(r.first, r.second);
    } else if (r.first == r.second) {
      if (MOZ_UNLIKELY(r.first == nsStyleGridLine::kMaxLine)) {
        r.first = nsStyleGridLine::kMaxLine - 1;
      }
      r.second = r.first + 1; // XXX subgrid explicit size instead of 1?
    }
  }
  return LineRange(r.first, r.second);
}

nsGridContainerFrame::GridArea
nsGridContainerFrame::Grid::PlaceDefinite(nsIFrame* aChild,
                                          const LineNameMap& aColLineNameMap,
                                          const LineNameMap& aRowLineNameMap,
                                          const nsStylePosition* aStyle)
{
  const nsStylePosition* itemStyle = aChild->StylePosition();
  return GridArea(
    ResolveLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
                     aColLineNameMap,
                     &GridNamedArea::mColumnStart, &GridNamedArea::mColumnEnd,
                     mExplicitGridColEnd, aStyle),
    ResolveLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
                     aRowLineNameMap,
                     &GridNamedArea::mRowStart, &GridNamedArea::mRowEnd,
                     mExplicitGridRowEnd, aStyle));
}

nsGridContainerFrame::LineRange
nsGridContainerFrame::Grid::ResolveAbsPosLineRange(
  const nsStyleGridLine& aStart,
  const nsStyleGridLine& aEnd,
  const LineNameMap& aNameMap,
  uint32_t GridNamedArea::* aAreaStart,
  uint32_t GridNamedArea::* aAreaEnd,
  uint32_t aExplicitGridEnd,
  int32_t aGridStart,
  int32_t aGridEnd,
  const nsStylePosition* aStyle)
{
  if (aStart.IsAuto()) {
    if (aEnd.IsAuto()) {
      return LineRange(kAutoLine, kAutoLine);
    }
    uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0;
    int32_t end =
      ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, aAreaStart,
                  aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle);
    if (aEnd.mHasSpan) {
      ++end;
    }
    // A line outside the existing grid is treated as 'auto' for abs.pos (10.1).
    end = AutoIfOutside(end, aGridStart, aGridEnd);
    return LineRange(kAutoLine, end);
  }

  if (aEnd.IsAuto()) {
    uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0;
    int32_t start =
      ResolveLine(aStart, aStart.mInteger, from, aNameMap, aAreaStart,
                  aAreaEnd, aExplicitGridEnd, eLineRangeSideStart, aStyle);
    if (aStart.mHasSpan) {
      start = std::max(aGridEnd - start, aGridStart);
    }
    start = AutoIfOutside(start, aGridStart, aGridEnd);
    return LineRange(start, kAutoLine);
  }

  LineRange r = ResolveLineRange(aStart, aEnd, aNameMap, aAreaStart,
                                 aAreaEnd, aExplicitGridEnd, aStyle);
  if (r.IsAuto()) {
    MOZ_ASSERT(aStart.mHasSpan && aEnd.mHasSpan, "span / span is the only case "
               "leading to IsAuto here -- we dealt with the other cases above");
    // The second span was ignored per 9.2.1.  For abs.pos., 10.1 says that this
    // case should result in "auto / auto" unlike normal flow grid items.
    return LineRange(kAutoLine, kAutoLine);
  }

  return LineRange(AutoIfOutside(r.mUntranslatedStart, aGridStart, aGridEnd),
                   AutoIfOutside(r.mUntranslatedEnd, aGridStart, aGridEnd));
}

nsGridContainerFrame::GridArea
nsGridContainerFrame::Grid::PlaceAbsPos(nsIFrame* aChild,
                                        const LineNameMap& aColLineNameMap,
                                        const LineNameMap& aRowLineNameMap,
                                        const nsStylePosition* aStyle)
{
  const nsStylePosition* itemStyle = aChild->StylePosition();
  int32_t gridColStart = 1 - mExplicitGridOffsetCol;
  int32_t gridRowStart = 1 - mExplicitGridOffsetRow;
  return GridArea(
    ResolveAbsPosLineRange(itemStyle->mGridColumnStart,
                           itemStyle->mGridColumnEnd,
                           aColLineNameMap,
                           &GridNamedArea::mColumnStart,
                           &GridNamedArea::mColumnEnd,
                           mExplicitGridColEnd, gridColStart, mGridColEnd,
                           aStyle),
    ResolveAbsPosLineRange(itemStyle->mGridRowStart,
                           itemStyle->mGridRowEnd,
                           aRowLineNameMap,
                           &GridNamedArea::mRowStart,
                           &GridNamedArea::mRowEnd,
                           mExplicitGridRowEnd, gridRowStart, mGridRowEnd,
                           aStyle));
}

uint32_t
nsGridContainerFrame::Grid::FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
                                        const GridArea* aArea) const
{
  const uint32_t extent = aArea->mCols.Extent();
  const uint32_t iStart = aLockedRow;
  const uint32_t iEnd = iStart + aArea->mRows.Extent();
  uint32_t candidate = aStartCol;
  for (uint32_t i = iStart; i < iEnd; ) {
    if (i >= mCellMap.mCells.Length()) {
      break;
    }
    const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
    const uint32_t len = cellsInRow.Length();
    const uint32_t lastCandidate = candidate;
    // Find the first gap in the current row that's at least 'extent' wide.
    // ('gap' tracks how wide the current column gap is.)
    for (uint32_t j = candidate, gap = 0; j < len && gap < extent; ++j) {
      if (!cellsInRow[j].mIsOccupied) {
        ++gap;
        continue;
      }
      candidate = j + 1;
      gap = 0;
    }
    if (lastCandidate < candidate && i != iStart) {
      // Couldn't fit 'extent' tracks at 'lastCandidate' here so we must
      // restart from the beginning with the new 'candidate'.
      i = iStart;
    } else {
      ++i;
    }
  }
  return candidate;
}

void
nsGridContainerFrame::Grid::PlaceAutoCol(uint32_t aStartCol,
                                         GridArea* aArea) const
{
  MOZ_ASSERT(aArea->mRows.IsDefinite() && aArea->mCols.IsAuto());
  uint32_t col = FindAutoCol(aStartCol, aArea->mRows.mStart, aArea);
  aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
  MOZ_ASSERT(aArea->IsDefinite());
}

uint32_t
nsGridContainerFrame::Grid::FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
                                        const GridArea* aArea) const
{
  const uint32_t extent = aArea->mRows.Extent();
  const uint32_t jStart = aLockedCol;
  const uint32_t jEnd = jStart + aArea->mCols.Extent();
  const uint32_t iEnd = mCellMap.mCells.Length();
  uint32_t candidate = aStartRow;
  // Find the first gap in the rows that's at least 'extent' tall.
  // ('gap' tracks how tall the current row gap is.)
  for (uint32_t i = candidate, gap = 0; i < iEnd && gap < extent; ++i) {
    ++gap; // tentative, but we may reset it below if a column is occupied
    const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
    const uint32_t clampedJEnd = std::min<uint32_t>(jEnd, cellsInRow.Length());
    // Check if the current row is unoccupied from jStart to jEnd.
    for (uint32_t j = jStart; j < clampedJEnd; ++j) {
      if (cellsInRow[j].mIsOccupied) {
        // Couldn't fit 'extent' rows at 'candidate' here; we hit something
        // at row 'i'.  So, try the row after 'i' as our next candidate.
        candidate = i + 1;
        gap = 0;
        break;
      }
    }
  }
  return candidate;
}

void
nsGridContainerFrame::Grid::PlaceAutoRow(uint32_t aStartRow,
                                         GridArea* aArea) const
{
  MOZ_ASSERT(aArea->mCols.IsDefinite() && aArea->mRows.IsAuto());
  uint32_t row = FindAutoRow(aArea->mCols.mStart, aStartRow, aArea);
  aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
  MOZ_ASSERT(aArea->IsDefinite());
}

void
nsGridContainerFrame::Grid::PlaceAutoAutoInRowOrder(uint32_t aStartCol,
                                                    uint32_t aStartRow,
                                                    GridArea* aArea) const
{
  MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
  const uint32_t colExtent = aArea->mCols.Extent();
  const uint32_t gridRowEnd = mGridRowEnd;
  const uint32_t gridColEnd = mGridColEnd;
  uint32_t col = aStartCol;
  uint32_t row = aStartRow;
  for (; row < gridRowEnd; ++row) {
    col = FindAutoCol(col, row, aArea);
    if (col + colExtent <= gridColEnd) {
      break;
    }
    col = 0;
  }
  MOZ_ASSERT(row < gridRowEnd || col == 0,
             "expected column 0 for placing in a new row");
  aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
  aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
  MOZ_ASSERT(aArea->IsDefinite());
}

void
nsGridContainerFrame::Grid::PlaceAutoAutoInColOrder(uint32_t aStartCol,
                                                    uint32_t aStartRow,
                                                    GridArea* aArea) const
{
  MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
  const uint32_t rowExtent = aArea->mRows.Extent();
  const uint32_t gridRowEnd = mGridRowEnd;
  const uint32_t gridColEnd = mGridColEnd;
  uint32_t col = aStartCol;
  uint32_t row = aStartRow;
  for (; col < gridColEnd; ++col) {
    row = FindAutoRow(col, row, aArea);
    if (row + rowExtent <= gridRowEnd) {
      break;
    }
    row = 0;
  }
  MOZ_ASSERT(col < gridColEnd || row == 0,
             "expected row 0 for placing in a new column");
  aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
  aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
  MOZ_ASSERT(aArea->IsDefinite());
}

void
nsGridContainerFrame::Grid::PlaceGridItems(GridReflowInput& aState,
                                           const LogicalSize& aComputedMinSize,
                                           const LogicalSize& aComputedSize,
                                           const LogicalSize& aComputedMaxSize)
{
  mAreas = aState.mFrame->GetImplicitNamedAreas();
  const nsStylePosition* const gridStyle = aState.mGridStyle;
  MOZ_ASSERT(mCellMap.mCells.IsEmpty(), "unexpected entries in cell map");

  // http://dev.w3.org/csswg/css-grid/#grid-definition
  // Initialize the end lines of the Explicit Grid (mExplicitGridCol[Row]End).
  // This is determined by the larger of the number of rows/columns defined
  // by 'grid-template-areas' and the 'grid-template-rows'/'-columns', plus one.
  // Also initialize the Implicit Grid (mGridCol[Row]End) to the same values.
  // Note that this is for a grid with a 1,1 origin.  We'll change that
  // to a 0,0 based grid after placing definite lines.
  auto areas = gridStyle->mGridTemplateAreas.get();
  uint32_t numRepeatCols = aState.mColFunctions.InitRepeatTracks(
                             gridStyle->mGridColumnGap,
                             aComputedMinSize.ISize(aState.mWM),
                             aComputedSize.ISize(aState.mWM),
                             aComputedMaxSize.ISize(aState.mWM));
  mGridColEnd = mExplicitGridColEnd =
    aState.mColFunctions.ComputeExplicitGridEnd(areas ? areas->mNColumns + 1 : 1);
  LineNameMap colLineNameMap(gridStyle->mGridTemplateColumns, numRepeatCols);

  uint32_t numRepeatRows = aState.mRowFunctions.InitRepeatTracks(
                             gridStyle->mGridRowGap,
                             aComputedMinSize.BSize(aState.mWM),
                             aComputedSize.BSize(aState.mWM),
                             aComputedMaxSize.BSize(aState.mWM));
  mGridRowEnd = mExplicitGridRowEnd =
    aState.mRowFunctions.ComputeExplicitGridEnd(areas ? areas->NRows() + 1 : 1);
  LineNameMap rowLineNameMap(gridStyle->mGridTemplateRows, numRepeatRows);

  // http://dev.w3.org/csswg/css-grid/#line-placement
  // Resolve definite positions per spec chap 9.2.
  int32_t minCol = 1;
  int32_t minRow = 1;
  aState.mGridItems.ClearAndRetainStorage();
  aState.mIter.Reset();
  for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
    nsIFrame* child = *aState.mIter;
    GridItemInfo* info =
        aState.mGridItems.AppendElement(GridItemInfo(child,
                                          PlaceDefinite(child,
                                                        colLineNameMap,
                                                        rowLineNameMap,
                                                        gridStyle)));
    MOZ_ASSERT(aState.mIter.GridItemIndex() == aState.mGridItems.Length() - 1,
               "GridItemIndex() is broken");
    GridArea& area = info->mArea;
    if (area.mCols.IsDefinite()) {
      minCol = std::min(minCol, area.mCols.mUntranslatedStart);
    }
    if (area.mRows.IsDefinite()) {
      minRow = std::min(minRow, area.mRows.mUntranslatedStart);
    }
  }

  // Translate the whole grid so that the top-/left-most area is at 0,0.
  mExplicitGridOffsetCol = 1 - minCol; // minCol/Row is always <= 1, see above
  mExplicitGridOffsetRow = 1 - minRow;
  aState.mColFunctions.mExplicitGridOffset = mExplicitGridOffsetCol;
  aState.mRowFunctions.mExplicitGridOffset = mExplicitGridOffsetRow;
  const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
  const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
  mGridColEnd += offsetToColZero;
  mGridRowEnd += offsetToRowZero;
  aState.mIter.Reset();
  for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
    GridArea& area = aState.mGridItems[aState.mIter.GridItemIndex()].mArea;
    if (area.mCols.IsDefinite()) {
      area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
      area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
    }
    if (area.mRows.IsDefinite()) {
      area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
      area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
    }
    if (area.IsDefinite()) {
      mCellMap.Fill(area);
      InflateGridFor(area);
    }
  }

  // http://dev.w3.org/csswg/css-grid/#auto-placement-algo
  // Step 1, place 'auto' items that have one definite position -
  // definite row (column) for grid-auto-flow:row (column).
  auto flowStyle = gridStyle->mGridAutoFlow;
  const bool isRowOrder = (flowStyle & NS_STYLE_GRID_AUTO_FLOW_ROW);
  const bool isSparse = !(flowStyle & NS_STYLE_GRID_AUTO_FLOW_DENSE);
  // We need 1 cursor per row (or column) if placement is sparse.
  {
    Maybe<nsDataHashtable<nsUint32HashKey, uint32_t>> cursors;
    if (isSparse) {
      cursors.emplace();
    }
    auto placeAutoMinorFunc = isRowOrder ? &Grid::PlaceAutoCol
                                         : &Grid::PlaceAutoRow;
    aState.mIter.Reset();
    for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
      GridArea& area = aState.mGridItems[aState.mIter.GridItemIndex()].mArea;
      LineRange& major = isRowOrder ? area.mRows : area.mCols;
      LineRange& minor = isRowOrder ? area.mCols : area.mRows;
      if (major.IsDefinite() && minor.IsAuto()) {
        // Items with 'auto' in the minor dimension only.
        uint32_t cursor = 0;
        if (isSparse) {
          cursors->Get(major.mStart, &cursor);
        }
        (this->*placeAutoMinorFunc)(cursor, &area);
        mCellMap.Fill(area);
        if (isSparse) {
          cursors->Put(major.mStart, minor.mEnd);
        }
      }
      InflateGridFor(area);  // Step 2, inflating for auto items too
    }
  }

  // XXX NOTE possible spec issue.
  // XXX It's unclear if the remaining major-dimension auto and
  // XXX auto in both dimensions should use the same cursor or not,
  // XXX https://www.w3.org/Bugs/Public/show_bug.cgi?id=16044
  // XXX seems to indicate it shouldn't.
  // XXX http://dev.w3.org/csswg/css-grid/#auto-placement-cursor
  // XXX now says it should (but didn't in earlier versions)

  // Step 3, place the remaining grid items
  uint32_t cursorMajor = 0; // for 'dense' these two cursors will stay at 0,0
  uint32_t cursorMinor = 0;
  auto placeAutoMajorFunc = isRowOrder ? &Grid::PlaceAutoRow
                                       : &Grid::PlaceAutoCol;
  aState.mIter.Reset();
  for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
    GridArea& area = aState.mGridItems[aState.mIter.GridItemIndex()].mArea;
    MOZ_ASSERT(*aState.mIter == aState.mGridItems[aState.mIter.GridItemIndex()].mFrame,
               "iterator out of sync with aState.mGridItems");
    LineRange& major = isRowOrder ? area.mRows : area.mCols;
    LineRange& minor = isRowOrder ? area.mCols : area.mRows;
    if (major.IsAuto()) {
      if (minor.IsDefinite()) {
        // Items with 'auto' in the major dimension only.
        if (isSparse) {
          if (minor.mStart < cursorMinor) {
            ++cursorMajor;
          }
          cursorMinor = minor.mStart;
        }
        (this->*placeAutoMajorFunc)(cursorMajor, &area);
        if (isSparse) {
          cursorMajor = major.mStart;
        }
      } else {
        // Items with 'auto' in both dimensions.
        if (isRowOrder) {
          PlaceAutoAutoInRowOrder(cursorMinor, cursorMajor, &area);
        } else {
          PlaceAutoAutoInColOrder(cursorMajor, cursorMinor, &area);
        }
        if (isSparse) {
          cursorMajor = major.mStart;
          cursorMinor = minor.mEnd;
#ifdef DEBUG
          uint32_t gridMajorEnd = isRowOrder ? mGridRowEnd : mGridColEnd;
          uint32_t gridMinorEnd = isRowOrder ? mGridColEnd : mGridRowEnd;
          MOZ_ASSERT(cursorMajor <= gridMajorEnd,
                     "we shouldn't need to place items further than 1 track "
                     "past the current end of the grid, in major dimension");
          MOZ_ASSERT(cursorMinor <= gridMinorEnd,
                     "we shouldn't add implicit minor tracks for auto/auto");
#endif
        }
      }
      mCellMap.Fill(area);
      InflateGridFor(area);
    }
  }

  if (aState.mFrame->IsAbsoluteContainer()) {
    // 9.4 Absolutely-positioned Grid Items
    // http://dev.w3.org/csswg/css-grid/#abspos-items
    // We only resolve definite lines here; we'll align auto positions to the
    // grid container later during reflow.
    nsFrameList children(aState.mFrame->GetChildList(
                           aState.mFrame->GetAbsoluteListID()));
    const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
    const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
    // Untranslate the grid again temporarily while resolving abs.pos. lines.
    AutoRestore<uint32_t> save1(mGridColEnd);
    AutoRestore<uint32_t> save2(mGridRowEnd);
    mGridColEnd -= offsetToColZero;
    mGridRowEnd -= offsetToRowZero;
    aState.mAbsPosItems.ClearAndRetainStorage();
    size_t i = 0;
    for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
      nsIFrame* child = e.get();
      GridItemInfo* info =
          aState.mAbsPosItems.AppendElement(GridItemInfo(child,
                                              PlaceAbsPos(child,
                                                          colLineNameMap,
                                                          rowLineNameMap,
                                                          gridStyle)));
      GridArea& area = info->mArea;
      if (area.mCols.mUntranslatedStart != int32_t(kAutoLine)) {
        area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
      }
      if (area.mCols.mUntranslatedEnd != int32_t(kAutoLine)) {
        area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
      }
      if (area.mRows.mUntranslatedStart != int32_t(kAutoLine)) {
        area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
      }
      if (area.mRows.mUntranslatedEnd != int32_t(kAutoLine)) {
        area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
      }
    }
  }

  // Count empty 'auto-fit' tracks in the repeat() range.
  // |colAdjust| will have a count for each line in the grid of how many
  // tracks were empty between the start of the grid and that line.

  // Since this loop is concerned with just the repeat tracks, we
  // iterate from 0..NumRepeatTracks() which is the natural range of
  // mRemoveRepeatTracks. This means we have to add
  // (mExplicitGridOffset + mRepeatAutoStart) to get a zero-based
  // index for arrays like mCellMap and colAdjust. We'll then fill out
  // the colAdjust array for all the remaining lines.
  Maybe<nsTArray<uint32_t>> colAdjust;
  uint32_t numEmptyCols = 0;
  if (aState.mColFunctions.mHasRepeatAuto &&
      !gridStyle->mGridTemplateColumns.mIsAutoFill &&
      aState.mColFunctions.NumRepeatTracks() > 0) {
    const uint32_t repeatStart = (aState.mColFunctions.mExplicitGridOffset +
                                  aState.mColFunctions.mRepeatAutoStart);
    const uint32_t numRepeats = aState.mColFunctions.NumRepeatTracks();
    const uint32_t numColLines = mGridColEnd + 1;
    for (uint32_t i = 0; i < numRepeats; ++i) {
      if (numEmptyCols) {
        (*colAdjust)[repeatStart + i] = numEmptyCols;
      }
      if (mCellMap.IsEmptyCol(repeatStart + i)) {
        ++numEmptyCols;
        if (colAdjust.isNothing()) {
          colAdjust.emplace(numColLines);
          colAdjust->SetLength(numColLines);
          PodZero(colAdjust->Elements(), colAdjust->Length());
        }

        aState.mColFunctions.mRemovedRepeatTracks[i] = true;
      }
    }
    // Fill out the colAdjust array for all the columns after the
    // repeats.
    if (numEmptyCols) {
      for (uint32_t col = repeatStart + numRepeats;
          col < numColLines; ++col) {
        (*colAdjust)[col] = numEmptyCols;
      }
    }
  }

  // Do similar work for the row tracks, with the same logic.
  Maybe<nsTArray<uint32_t>> rowAdjust;
  uint32_t numEmptyRows = 0;
  if (aState.mRowFunctions.mHasRepeatAuto &&
      !gridStyle->mGridTemplateRows.mIsAutoFill &&
      aState.mRowFunctions.NumRepeatTracks() > 0) {
    const uint32_t repeatStart = (aState.mRowFunctions.mExplicitGridOffset +
                                  aState.mRowFunctions.mRepeatAutoStart);
    const uint32_t numRepeats = aState.mRowFunctions.NumRepeatTracks();
    const uint32_t numRowLines = mGridRowEnd + 1;
    for (uint32_t i = 0; i < numRepeats; ++i) {
      if (numEmptyRows) {
        (*rowAdjust)[repeatStart + i] = numEmptyRows;
      }
      if (mCellMap.IsEmptyRow(repeatStart + i)) {
        ++numEmptyRows;
        if (rowAdjust.isNothing()) {
          rowAdjust.emplace(numRowLines);
          rowAdjust->SetLength(numRowLines);
          PodZero(rowAdjust->Elements(), rowAdjust->Length());
        }

        aState.mRowFunctions.mRemovedRepeatTracks[i] = true;
      }
    }
    if (numEmptyRows) {
      for (uint32_t row = repeatStart + numRepeats;
          row < numRowLines; ++row) {
        (*rowAdjust)[row] = numEmptyRows;
      }
    }
  }
  // Remove the empty 'auto-fit' tracks we found above, if any.
  if (numEmptyCols || numEmptyRows) {
    // Adjust the line numbers in the grid areas.
    for (auto& item : aState.mGridItems) {
      GridArea& area = item.mArea;
      if (numEmptyCols) {
        area.mCols.AdjustForRemovedTracks(*colAdjust);
      }
      if (numEmptyRows) {
        area.mRows.AdjustForRemovedTracks(*rowAdjust);
      }
    }
    for (auto& item : aState.mAbsPosItems) {
      GridArea& area = item.mArea;
      if (numEmptyCols) {
        area.mCols.AdjustAbsPosForRemovedTracks(*colAdjust);
      }
      if (numEmptyRows) {
        area.mRows.AdjustAbsPosForRemovedTracks(*rowAdjust);
      }
    }
    // Adjust the grid size.
    mGridColEnd -= numEmptyCols;
    mExplicitGridColEnd -= numEmptyCols;
    mGridRowEnd -= numEmptyRows;
    mExplicitGridRowEnd -= numEmptyRows;
    // Adjust the track mapping to unmap the removed tracks.
    auto colRepeatCount = aState.mColFunctions.NumRepeatTracks();
    aState.mColFunctions.SetNumRepeatTracks(colRepeatCount - numEmptyCols);
    auto rowRepeatCount = aState.mRowFunctions.NumRepeatTracks();
    aState.mRowFunctions.SetNumRepeatTracks(rowRepeatCount - numEmptyRows);
  }

  // Update the line boundaries of the implicit grid areas, if needed.
  if (mAreas &&
      aState.mFrame->HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES)) {
    for (auto iter = mAreas->Iter(); !iter.Done(); iter.Next()) {
      auto& areaInfo = iter.Data();

      // Resolve the lines for the area. We use the name of the area as the
      // name of the lines, knowing that the line placement algorithm will
      // add the -start and -end suffixes as appropriate for layout.
      nsStyleGridLine lineStartAndEnd;
      lineStartAndEnd.mLineName = areaInfo.mName;

      LineRange columnLines = ResolveLineRange(
        lineStartAndEnd, lineStartAndEnd,
        colLineNameMap,
        &GridNamedArea::mColumnStart, &GridNamedArea::mColumnEnd,
        mExplicitGridColEnd, gridStyle);

      LineRange rowLines = ResolveLineRange(
        lineStartAndEnd, lineStartAndEnd,
        rowLineNameMap,
        &GridNamedArea::mRowStart, &GridNamedArea::mRowEnd,
        mExplicitGridRowEnd, gridStyle);

      // Put the resolved line indices back into the area structure.
      areaInfo.mColumnStart = columnLines.mStart + mExplicitGridOffsetCol;
      areaInfo.mColumnEnd = columnLines.mEnd + mExplicitGridOffsetCol;
      areaInfo.mRowStart = rowLines.mStart + mExplicitGridOffsetRow;
      areaInfo.mRowEnd = rowLines.mEnd + mExplicitGridOffsetRow;
    }
  }
}

void
nsGridContainerFrame::Tracks::Initialize(
  const TrackSizingFunctions& aFunctions,
  const nsStyleCoord&         aGridGap,
  uint32_t                    aNumTracks,
  nscoord                     aContentBoxSize)
{
  MOZ_ASSERT(aNumTracks >= aFunctions.mExplicitGridOffset +
                             aFunctions.NumExplicitTracks());
  mSizes.SetLength(aNumTracks);
  PodZero(mSizes.Elements(), mSizes.Length());
  for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
    mStateUnion |= mSizes[i].Initialize(aContentBoxSize,
                                        aFunctions.MinSizingFor(i),
                                        aFunctions.MaxSizingFor(i));
  }
  mGridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aContentBoxSize);
  mContentBoxSize = aContentBoxSize;
}

/**
 * Reflow aChild in the given aAvailableSize.
 */
static nscoord
MeasuringReflow(nsIFrame*           aChild,
                const ReflowInput*  aReflowInput,
                nsRenderingContext* aRC,
                const LogicalSize&  aAvailableSize,
                const LogicalSize&  aCBSize,
                nscoord             aIMinSizeClamp = NS_MAXSIZE,
                nscoord             aBMinSizeClamp = NS_MAXSIZE)
{
  nsContainerFrame* parent = aChild->GetParent();
  nsPresContext* pc = aChild->PresContext();
  Maybe<ReflowInput> dummyParentState;
  const ReflowInput* rs = aReflowInput;
  if (!aReflowInput) {
    MOZ_ASSERT(!parent->HasAnyStateBits(NS_FRAME_IN_REFLOW));
    dummyParentState.emplace(pc, parent, aRC,
                             LogicalSize(parent->GetWritingMode(), 0,
                                         NS_UNCONSTRAINEDSIZE),
                             ReflowInput::DUMMY_PARENT_REFLOW_STATE);
    rs = dummyParentState.ptr();
  }
#ifdef DEBUG
  // This will suppress various CRAZY_SIZE warnings for this reflow.
  parent->SetProperty(
    nsContainerFrame::DebugReflowingWithInfiniteISize(), true);
#endif
  auto wm = aChild->GetWritingMode();
  uint32_t riFlags = ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE;
  if (aAvailableSize.ISize(wm) == INFINITE_ISIZE_COORD) {
    riFlags |= ReflowInput::COMPUTE_SIZE_SHRINK_WRAP;
  }
  if (aIMinSizeClamp != NS_MAXSIZE) {
    riFlags |= ReflowInput::I_CLAMP_MARGIN_BOX_MIN_SIZE;
  }
  if (aBMinSizeClamp != NS_MAXSIZE) {
    riFlags |= ReflowInput::B_CLAMP_MARGIN_BOX_MIN_SIZE;
    aChild->SetProperty(nsIFrame::BClampMarginBoxMinSizeProperty(),
                             aBMinSizeClamp);
  } else {
    aChild->DeleteProperty(nsIFrame::BClampMarginBoxMinSizeProperty());
  }
  ReflowInput childRI(pc, *rs, aChild, aAvailableSize, &aCBSize, riFlags);
  ReflowOutput childSize(childRI);
  nsReflowStatus childStatus;
  const uint32_t flags = NS_FRAME_NO_MOVE_FRAME | NS_FRAME_NO_SIZE_VIEW;
  parent->ReflowChild(aChild, pc, childSize, childRI, wm,
                      LogicalPoint(wm), nsSize(), flags, childStatus);
  parent->FinishReflowChild(aChild, pc, childSize, &childRI, wm,
                            LogicalPoint(wm), nsSize(), flags);
#ifdef DEBUG
    parent->DeleteProperty(nsContainerFrame::DebugReflowingWithInfiniteISize());
#endif
  return childSize.BSize(wm);
}

/**
 * Return the [min|max]-content contribution of aChild to its parent (i.e.
 * the child's margin-box) in aAxis.
 */
static nscoord
ContentContribution(const GridItemInfo&       aGridItem,
                    const GridReflowInput&    aState,
                    nsRenderingContext*       aRC,
                    WritingMode               aCBWM,
                    LogicalAxis               aAxis,
                    const Maybe<LogicalSize>& aPercentageBasis,
                    IntrinsicISizeType        aConstraint,
                    nscoord                   aMinSizeClamp = NS_MAXSIZE,
                    uint32_t                  aFlags = 0)
{
  nsIFrame* child = aGridItem.mFrame;
  PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
  nscoord size = nsLayoutUtils::IntrinsicForAxis(axis, aRC, child, aConstraint,
                   aPercentageBasis,
                   aFlags | nsLayoutUtils::BAIL_IF_REFLOW_NEEDED,
                   aMinSizeClamp);
  if (size == NS_INTRINSIC_WIDTH_UNKNOWN) {
    // We need to reflow the child to find its BSize contribution.
    // XXX this will give mostly correct results for now (until bug 1174569).
    nscoord availISize = INFINITE_ISIZE_COORD;
    nscoord availBSize = NS_UNCONSTRAINEDSIZE;
    auto childWM = child->GetWritingMode();
    const bool isOrthogonal = childWM.IsOrthogonalTo(aCBWM);
    // The next two variables are MinSizeClamp values in the child's axes.
    nscoord iMinSizeClamp = NS_MAXSIZE;
    nscoord bMinSizeClamp = NS_MAXSIZE;
    LogicalSize cbSize(childWM, 0, 0);
    if (aState.mCols.mCanResolveLineRangeSize) {
      nscoord sz = aState.mCols.ResolveSize(aGridItem.mArea.mCols);
      if (isOrthogonal) {
        availBSize = sz;
        cbSize.BSize(childWM) = sz;
        if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
          bMinSizeClamp = sz;
        }
      } else {
        availISize = sz;
        cbSize.ISize(childWM) = sz;
        if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
          iMinSizeClamp = sz;
        }
      }
    }
    if (isOrthogonal == (aAxis == eLogicalAxisInline)) {
      bMinSizeClamp = aMinSizeClamp;
    } else {
      iMinSizeClamp = aMinSizeClamp;
    }
    LogicalSize availableSize(childWM, availISize, availBSize);
    size = ::MeasuringReflow(child, aState.mReflowInput, aRC, availableSize,
                             cbSize, iMinSizeClamp, bMinSizeClamp);
    size += child->GetLogicalUsedMargin(childWM).BStartEnd(childWM);
    nscoord overflow = size - aMinSizeClamp;
    if (MOZ_UNLIKELY(overflow > 0)) {
      nscoord contentSize = child->ContentBSize(childWM);
      nscoord newContentSize = std::max(nscoord(0), contentSize - overflow);
      // XXXmats deal with percentages better, see bug 1300369 comment 27.
      size -= contentSize - newContentSize;
    }
  }
  MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
             "baseline offset should be non-negative at this point");
  MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
             aGridItem.mBaselineOffset[aAxis] == nscoord(0),
             "baseline offset should be zero when not baseline-aligned");
  size += aGridItem.mBaselineOffset[aAxis];
  return std::max(size, 0);
}

struct CachedIntrinsicSizes
{
  Maybe<nscoord> mMinSize;
  Maybe<nscoord> mMinContentContribution;
  Maybe<nscoord> mMaxContentContribution;

  // The item's percentage basis for intrinsic sizing purposes.
  Maybe<LogicalSize> mPercentageBasis;

  // "if the grid item spans only grid tracks that have a fixed max track
  // sizing function, its automatic minimum size in that dimension is
  // further clamped to less than or equal to the size necessary to fit its
  // margin box within the resulting grid area (flooring at zero)"
  // https://drafts.csswg.org/css-grid/#min-size-auto
  // This is the clamp value to use for that:
  nscoord mMinSizeClamp = NS_MAXSIZE;
};

static nscoord
MinContentContribution(const GridItemInfo&    aGridItem,
                       const GridReflowInput& aState,
                       nsRenderingContext*    aRC,
                       WritingMode            aCBWM,
                       LogicalAxis            aAxis,
                       CachedIntrinsicSizes*  aCache)
{
  if (aCache->mMinContentContribution.isSome()) {
    return aCache->mMinContentContribution.value();
  }
  if (aCache->mPercentageBasis.isNothing()) {
    aCache->mPercentageBasis.emplace(aState.PercentageBasisFor(aAxis, aGridItem));
  }
  nscoord s = ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
                                  aCache->mPercentageBasis,
                                  nsLayoutUtils::MIN_ISIZE,
                                  aCache->mMinSizeClamp);
  aCache->mMinContentContribution.emplace(s);
  return s;
}

static nscoord
MaxContentContribution(const GridItemInfo&    aGridItem,
                       const GridReflowInput& aState,
                       nsRenderingContext*    aRC,
                       WritingMode            aCBWM,
                       LogicalAxis            aAxis,
                       CachedIntrinsicSizes*  aCache)
{
  if (aCache->mMaxContentContribution.isSome()) {
    return aCache->mMaxContentContribution.value();
  }
  if (aCache->mPercentageBasis.isNothing()) {
    aCache->mPercentageBasis.emplace(aState.PercentageBasisFor(aAxis, aGridItem));
  }
  nscoord s = ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
                                  aCache->mPercentageBasis,
                                  nsLayoutUtils::PREF_ISIZE,
                                  aCache->mMinSizeClamp);
  aCache->mMaxContentContribution.emplace(s);
  return s;
}

// Computes the min-size contribution for a grid item, as defined at
// https://drafts.csswg.org/css-grid/#min-size-contributions
static nscoord
MinSize(const GridItemInfo&    aGridItem,
        const GridReflowInput& aState,
        nsRenderingContext*    aRC,
        WritingMode            aCBWM,
        LogicalAxis            aAxis,
        CachedIntrinsicSizes*  aCache)
{
  if (aCache->mMinSize.isSome()) {
    return aCache->mMinSize.value();
  }
  nsIFrame* child = aGridItem.mFrame;
  PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
  const nsStylePosition* stylePos = child->StylePosition();
  const nsStyleCoord& sizeStyle =
    axis == eAxisHorizontal ? stylePos->mWidth : stylePos->mHeight;
  if (sizeStyle.GetUnit() != eStyleUnit_Auto) {
    nscoord s =
      MinContentContribution(aGridItem, aState, aRC, aCBWM, aAxis, aCache);
    aCache->mMinSize.emplace(s);
    return s;
  }

  if (aCache->mPercentageBasis.isNothing()) {
    aCache->mPercentageBasis.emplace(aState.PercentageBasisFor(aAxis, aGridItem));
  }

  // https://drafts.csswg.org/css-grid/#min-size-auto
  // This calculates the min-content contribution from either a definite
  // min-width (or min-height depending on aAxis), or the "specified /
  // transferred size" for min-width:auto if overflow == visible (as min-width:0
  // otherwise), or NS_UNCONSTRAINEDSIZE for other min-width intrinsic values
  // (which results in always taking the "content size" part below).
  MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
             "baseline offset should be non-negative at this point");
  MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
             aGridItem.mBaselineOffset[aAxis] == nscoord(0),
             "baseline offset should be zero when not baseline-aligned");
  nscoord sz = aGridItem.mBaselineOffset[aAxis] +
    nsLayoutUtils::MinSizeContributionForAxis(axis, aRC, child,
                                              nsLayoutUtils::MIN_ISIZE,
                                              *aCache->mPercentageBasis);
  const nsStyleCoord& style = axis == eAxisHorizontal ? stylePos->mMinWidth
                                                      : stylePos->mMinHeight;
  auto unit = style.GetUnit();
  if (unit == eStyleUnit_Enumerated ||
      (unit == eStyleUnit_Auto &&
       child->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE)) {
    // Now calculate the "content size" part and return whichever is smaller.
    MOZ_ASSERT(unit != eStyleUnit_Enumerated || sz == NS_UNCONSTRAINEDSIZE);
    sz = std::min(sz, ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
                                          aCache->mPercentageBasis,
                                          nsLayoutUtils::MIN_ISIZE,
                                          aCache->mMinSizeClamp,
                                          nsLayoutUtils::MIN_INTRINSIC_ISIZE));
  }
  aCache->mMinSize.emplace(sz);
  return sz;
}

void
nsGridContainerFrame::Tracks::CalculateSizes(
  GridReflowInput&            aState,
  nsTArray<GridItemInfo>&     aGridItems,
  const TrackSizingFunctions& aFunctions,
  nscoord                     aContentBoxSize,
  LineRange GridArea::*       aRange,
  SizingConstraint            aConstraint)
{
  nscoord percentageBasis = aContentBoxSize;
  if (percentageBasis == NS_UNCONSTRAINEDSIZE) {
    percentageBasis = 0;
  }
  InitializeItemBaselines(aState, aGridItems);
  ResolveIntrinsicSize(aState, aGridItems, aFunctions, aRange, percentageBasis,
                       aConstraint);
  if (aConstraint != SizingConstraint::eMinContent) {
    nscoord freeSpace = aContentBoxSize;
    if (freeSpace != NS_UNCONSTRAINEDSIZE) {
      freeSpace -= SumOfGridGaps();
    }
    DistributeFreeSpace(freeSpace);
    StretchFlexibleTracks(aState, aGridItems, aFunctions, freeSpace);
  }
}

TrackSize::StateBits
nsGridContainerFrame::Tracks::StateBitsForRange(const LineRange& aRange) const
{
  TrackSize::StateBits state = TrackSize::StateBits(0);
  const uint32_t start = aRange.mStart;
  const uint32_t end = aRange.mEnd;
  for (uint32_t i = start; i < end; ++i) {
    state |= mSizes[i].mState;
  }
  return state;
}

bool
nsGridContainerFrame::Tracks::ResolveIntrinsicSizeStep1(
  GridReflowInput&            aState,
  const TrackSizingFunctions& aFunctions,
  nscoord                     aPercentageBasis,
  SizingConstraint            aConstraint,
  const LineRange&            aRange,
  const GridItemInfo&         aGridItem)
{
  CachedIntrinsicSizes cache;
  TrackSize& sz = mSizes[aRange.mStart];
  WritingMode wm = aState.mWM;

  // Check if we need to apply "Automatic Minimum Size" and cache it.
  if ((sz.mState & TrackSize::eAutoMinSizing) &&
      aGridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) {
    aGridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize;
  }

  // Calculate data for "Automatic Minimum Size" clamping, if needed.
  bool needed = ((sz.mState & TrackSize::eIntrinsicMinSizing) ||
                 aConstraint == SizingConstraint::eNoConstraint) &&
                (aGridItem.mState[mAxis] & ItemState::eApplyAutoMinSize);
  if (needed && TrackSize::IsDefiniteMaxSizing(sz.mState)) {
    if (sz.mState & TrackSize::eIntrinsicMinSizing) {
      auto maxCoord = aFunctions.MaxSizingFor(aRange.mStart);
      cache.mMinSizeClamp =
        nsRuleNode::ComputeCoordPercentCalc(maxCoord, aPercentageBasis);
    }
    aGridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
  }
  // min sizing
  nsRenderingContext* rc = &aState.mRenderingContext;
  if (sz.mState & TrackSize::eAutoMinSizing) {
    nscoord s;
    if (aConstraint == SizingConstraint::eMinContent) {
      s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
    } else if (aConstraint == SizingConstraint::eMaxContent) {
      s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
    } else {
      MOZ_ASSERT(aConstraint == SizingConstraint::eNoConstraint);
      s = MinSize(aGridItem, aState, rc, wm, mAxis, &cache);
    }
    sz.mBase = std::max(sz.mBase, s);
  } else if (sz.mState & TrackSize::eMinContentMinSizing) {
    auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
    sz.mBase = std::max(sz.mBase, s);
  } else if (sz.mState & TrackSize::eMaxContentMinSizing) {
    auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
    sz.mBase = std::max(sz.mBase, s);
  }
  // max sizing
  if (sz.mState & TrackSize::eMinContentMaxSizing) {
    auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
    if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
      sz.mLimit = s;
    } else {
      sz.mLimit = std::max(sz.mLimit, s);
    }
  } else if (sz.mState & (TrackSize::eAutoMaxSizing |
                          TrackSize::eMaxContentMaxSizing)) {
    auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
    if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
      sz.mLimit = s;
    } else {
      sz.mLimit = std::max(sz.mLimit, s);
    }
    if (MOZ_UNLIKELY(sz.mState & TrackSize::eFitContent)) {
      // Clamp mLimit to the fit-content() size, for §12.5.1.
      auto maxCoord = aFunctions.MaxSizingFor(aRange.mStart);
      nscoord fitContentClamp =
        nsRuleNode::ComputeCoordPercentCalc(maxCoord, aPercentageBasis);
      sz.mLimit = std::min(sz.mLimit, fitContentClamp);
    }
  }
  if (sz.mLimit < sz.mBase) {
    sz.mLimit = sz.mBase;
  }
  return sz.mState & TrackSize::eFlexMaxSizing;
}

void
nsGridContainerFrame::Tracks::CalculateItemBaselines(
  nsTArray<ItemBaselineData>& aBaselineItems,
  BaselineSharingGroup aBaselineGroup)
{
  if (aBaselineItems.IsEmpty()) {
    return;
  }

  // Sort the collected items on their baseline track.
  std::sort(aBaselineItems.begin(), aBaselineItems.end(),
            ItemBaselineData::IsBaselineTrackLessThan);

  MOZ_ASSERT(mSizes.Length() > 0, "having an item implies at least one track");
  const uint32_t lastTrack = mSizes.Length() - 1;
  nscoord maxBaseline = 0;
  nscoord maxDescent = 0;
  uint32_t currentTrack = kAutoLine; // guaranteed to not match any item
  uint32_t trackStartIndex = 0;
  for (uint32_t i = 0, len = aBaselineItems.Length(); true ; ++i) {
    // Find the maximum baseline and descent in the current track.
    if (i != len) {
      const ItemBaselineData& item = aBaselineItems[i];
      if (currentTrack == item.mBaselineTrack) {
        maxBaseline = std::max(maxBaseline, item.mBaseline);
        maxDescent = std::max(maxDescent, item.mSize - item.mBaseline);
        continue;
      }
    }
    // Iterate the current track again and update the baseline offsets making
    // all items baseline-aligned within this group in this track.
    for (uint32_t j = trackStartIndex; j < i; ++j) {
      const ItemBaselineData& item = aBaselineItems[j];
      item.mGridItem->mBaselineOffset[mAxis] = maxBaseline - item.mBaseline;
      MOZ_ASSERT(item.mGridItem->mBaselineOffset[mAxis] >= 0);
    }
    if (i != 0) {
      // Store the size of this baseline-aligned subtree.
      mSizes[currentTrack].mBaselineSubtreeSize[aBaselineGroup] =
        maxBaseline + maxDescent;
      // Record the first(last) baseline for the first(last) track.
      if (currentTrack == 0 && aBaselineGroup == BaselineSharingGroup::eFirst) {
        mBaseline[aBaselineGroup] = maxBaseline;
      }
      if (currentTrack == lastTrack &&
          aBaselineGroup == BaselineSharingGroup::eLast) {
        mBaseline[aBaselineGroup] = maxBaseline;
      }
    }
    if (i == len) {
      break;
    }
    // Initialize data for the next track with baseline-aligned items.
    const ItemBaselineData& item = aBaselineItems[i];
    currentTrack = item.mBaselineTrack;
    trackStartIndex = i;
    maxBaseline = item.mBaseline;
    maxDescent = item.mSize - item.mBaseline;
  }
}

void
nsGridContainerFrame::Tracks::InitializeItemBaselines(
  GridReflowInput&        aState,
  nsTArray<GridItemInfo>& aGridItems)
{

  nsTArray<ItemBaselineData> firstBaselineItems;
  nsTArray<ItemBaselineData> lastBaselineItems;
  WritingMode wm = aState.mWM;
  nsStyleContext* containerSC = aState.mFrame->StyleContext();
  GridItemCSSOrderIterator& iter = aState.mIter;
  iter.Reset();
  for (; !iter.AtEnd(); iter.Next()) {
    nsIFrame* child = *iter;
    GridItemInfo& gridItem = aGridItems[iter.GridItemIndex()];
    uint32_t baselineTrack = kAutoLine;
    auto state = ItemState(0);
    auto childWM = child->GetWritingMode();
    const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
    const bool isInlineAxis = mAxis == eLogicalAxisInline; // i.e. columns
    // XXX update the line below to include orthogonal grid/table boxes
    // XXX since they have baselines in both dimensions. And flexbox with
    // XXX reversed main/cross axis?
    const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal;
    if (itemHasBaselineParallelToTrack) {
      // [align|justify]-self:[last ]baseline.
      auto selfAlignment = isOrthogonal ?
        child->StylePosition()->UsedJustifySelf(containerSC) :
        child->StylePosition()->UsedAlignSelf(containerSC);
      selfAlignment &= ~NS_STYLE_ALIGN_FLAG_BITS;
      if (selfAlignment == NS_STYLE_ALIGN_BASELINE) {
        state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline;
        const GridArea& area = gridItem.mArea;
        baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
      } else if (selfAlignment == NS_STYLE_ALIGN_LAST_BASELINE) {
        state |= ItemState::eLastBaseline | ItemState::eSelfBaseline;
        const GridArea& area = gridItem.mArea;
        baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
      }

      // [align|justify]-content:[last ]baseline.
      // https://drafts.csswg.org/css-align-3/#baseline-align-content
      // "[...] and its computed 'align-self' or 'justify-self' (whichever
      // affects its block axis) is 'stretch' or 'self-start' ('self-end').
      // For this purpose, the 'start', 'end', 'flex-start', and 'flex-end'
      // values of 'align-self' are treated as either 'self-start' or
      // 'self-end', whichever they end up equivalent to.
      auto alignContent = child->StylePosition()->mAlignContent;
      alignContent &= ~NS_STYLE_ALIGN_FLAG_BITS;
      if (alignContent == NS_STYLE_ALIGN_BASELINE ||
          alignContent == NS_STYLE_ALIGN_LAST_BASELINE) {
        const auto selfAlignEdge = alignContent == NS_STYLE_ALIGN_BASELINE ?
          NS_STYLE_ALIGN_SELF_START : NS_STYLE_ALIGN_SELF_END;
        bool validCombo = selfAlignment == NS_STYLE_ALIGN_NORMAL ||
                          selfAlignment == NS_STYLE_ALIGN_STRETCH ||
                          selfAlignment == selfAlignEdge;
        if (!validCombo) {
          // We're doing alignment in the axis that's orthogonal to mAxis here.
          LogicalAxis alignAxis = GetOrthogonalAxis(mAxis);
          // |sameSide| is true if the container's start side in this axis is
          // the same as the child's start side, in the child's parallel axis.
          bool sameSide = wm.ParallelAxisStartsOnSameSide(alignAxis, childWM);
          switch (selfAlignment) {
            case NS_STYLE_ALIGN_LEFT:
              selfAlignment = !isInlineAxis || wm.IsBidiLTR() ? NS_STYLE_ALIGN_START
                                                              : NS_STYLE_ALIGN_END;
              break;
            case NS_STYLE_ALIGN_RIGHT:
              selfAlignment = isInlineAxis && wm.IsBidiLTR() ? NS_STYLE_ALIGN_END
                                                             : NS_STYLE_ALIGN_START;
              break;
          }
          switch (selfAlignment) {
            case NS_STYLE_ALIGN_START:
            case NS_STYLE_ALIGN_FLEX_START:
              validCombo = sameSide ==
                           (alignContent == NS_STYLE_ALIGN_BASELINE);
              break;
            case NS_STYLE_ALIGN_END:
            case NS_STYLE_ALIGN_FLEX_END:
              validCombo = sameSide ==
                           (alignContent == NS_STYLE_ALIGN_LAST_BASELINE);
              break;
          }
        }
        if (validCombo) {
          const GridArea& area = gridItem.mArea;
          if (alignContent == NS_STYLE_ALIGN_BASELINE) {
            state |= ItemState::eFirstBaseline | ItemState::eContentBaseline;
            baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
          } else if (alignContent == NS_STYLE_ALIGN_LAST_BASELINE) {
            state |= ItemState::eLastBaseline | ItemState::eContentBaseline;
            baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
          }
        }
      }
    }

    if (state & ItemState::eIsBaselineAligned) {
      // XXX available size issue
      LogicalSize avail(childWM, INFINITE_ISIZE_COORD, NS_UNCONSTRAINEDSIZE);
      auto* rc = &aState.mRenderingContext;
      // XXX figure out if we can avoid/merge this reflow with the main reflow.
      // XXX (after bug 1174569 is sorted out)
      //
      // XXX How should we handle percentage padding here? (bug 1330866)
      // XXX (see ::ContentContribution and how it deals with percentages)
      // XXX What if the true baseline after line-breaking differs from this
      // XXX hypothetical baseline based on an infinite inline size?
      // XXX Maybe we should just call ::ContentContribution here instead?
      // XXX For now we just pass a zero-sized CB:
      LogicalSize cbSize(childWM, 0, 0);
      ::MeasuringReflow(child, aState.mReflowInput, rc, avail, cbSize);
      nscoord baseline;
      nsGridContainerFrame* grid = do_QueryFrame(child);
      if (state & ItemState::eFirstBaseline) {
        if (grid) {
          if (isOrthogonal == isInlineAxis) {
            grid->GetBBaseline(BaselineSharingGroup::eFirst, &baseline);
          } else {
            grid->GetIBaseline(BaselineSharingGroup::eFirst, &baseline);
          }
        }
        if (grid ||
            nsLayoutUtils::GetFirstLineBaseline(wm, child, &baseline)) {
          NS_ASSERTION(baseline != NS_INTRINSIC_WIDTH_UNKNOWN,
                       "about to use an unknown baseline");
          auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
          auto m = child->GetLogicalUsedMargin(wm);
          baseline += isInlineAxis ? m.IStart(wm) : m.BStart(wm);
          auto alignSize = frameSize + (isInlineAxis ? m.IStartEnd(wm)
                                                     : m.BStartEnd(wm));
          firstBaselineItems.AppendElement(ItemBaselineData(
            { baselineTrack, baseline, alignSize, &gridItem }));
        } else {
          state &= ~ItemState::eAllBaselineBits;
        }
      } else {
        if (grid) {
          if (isOrthogonal == isInlineAxis) {
            grid->GetBBaseline(BaselineSharingGroup::eLast, &baseline);
          } else {
            grid->GetIBaseline(BaselineSharingGroup::eLast, &baseline);
          }
        }
        if (grid ||
            nsLayoutUtils::GetLastLineBaseline(wm, child, &baseline)) {
          NS_ASSERTION(baseline != NS_INTRINSIC_WIDTH_UNKNOWN,
                       "about to use an unknown baseline");
          auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
          auto m = child->GetLogicalUsedMargin(wm);
          if (!grid) {
            // Convert to distance from border-box end.
            baseline = frameSize - baseline;
          }
          auto descent = baseline + (isInlineAxis ? m.IEnd(wm) : m.BEnd(wm));
          auto alignSize = frameSize + (isInlineAxis ? m.IStartEnd(wm)
                                                     : m.BStartEnd(wm));
          lastBaselineItems.AppendElement(ItemBaselineData(
            { baselineTrack, descent, alignSize, &gridItem }));
        } else {
          state &= ~ItemState::eAllBaselineBits;
        }
      }
    }
    MOZ_ASSERT((state &
                (ItemState::eFirstBaseline | ItemState::eLastBaseline)) !=
               (ItemState::eFirstBaseline | ItemState::eLastBaseline),
               "first/last baseline bits are mutually exclusive");
    MOZ_ASSERT((state &
                (ItemState::eSelfBaseline | ItemState::eContentBaseline)) !=
               (ItemState::eSelfBaseline | ItemState::eContentBaseline),
               "*-self and *-content baseline bits are mutually exclusive");
    MOZ_ASSERT(!(state &
                 (ItemState::eFirstBaseline | ItemState::eLastBaseline)) ==
               !(state &
                 (ItemState::eSelfBaseline | ItemState::eContentBaseline)),
               "first/last bit requires self/content bit and vice versa");
    gridItem.mState[mAxis] = state;
    gridItem.mBaselineOffset[mAxis] = nscoord(0);
  }

  if (firstBaselineItems.IsEmpty() && lastBaselineItems.IsEmpty()) {
    return;
  }

  // TODO: CSS Align spec issue - how to align a baseline subtree in a track?
  // https://lists.w3.org/Archives/Public/www-style/2016May/0141.html
  mBaselineSubtreeAlign[BaselineSharingGroup::eFirst] = NS_STYLE_ALIGN_START;
  mBaselineSubtreeAlign[BaselineSharingGroup::eLast] = NS_STYLE_ALIGN_END;

  CalculateItemBaselines(firstBaselineItems, BaselineSharingGroup::eFirst);
  CalculateItemBaselines(lastBaselineItems, BaselineSharingGroup::eLast);
}

void
nsGridContainerFrame::Tracks::AlignBaselineSubtree(
  const GridItemInfo& aGridItem) const
{
  auto state = aGridItem.mState[mAxis];
  if (!(state & ItemState::eIsBaselineAligned)) {
    return;
  }
  const GridArea& area = aGridItem.mArea;
  int32_t baselineTrack;
  const bool isFirstBaseline = state & ItemState::eFirstBaseline;
  if (isFirstBaseline) {
    baselineTrack = mAxis == eLogicalAxisBlock ? area.mRows.mStart
                                               : area.mCols.mStart;
  } else {
    baselineTrack = (mAxis == eLogicalAxisBlock ? area.mRows.mEnd
                                                : area.mCols.mEnd) - 1;
  }
  const TrackSize& sz = mSizes[baselineTrack];
  auto baselineGroup = isFirstBaseline ? BaselineSharingGroup::eFirst
                                       : BaselineSharingGroup::eLast;
  nscoord delta = sz.mBase - sz.mBaselineSubtreeSize[baselineGroup];
  const auto subtreeAlign = mBaselineSubtreeAlign[baselineGroup];
  switch (subtreeAlign) {
    case NS_STYLE_ALIGN_START:
      if (state & ItemState::eLastBaseline) {
        aGridItem.mBaselineOffset[mAxis] += delta;
      }
      break;
    case NS_STYLE_ALIGN_END:
      if (isFirstBaseline) {
        aGridItem.mBaselineOffset[mAxis] += delta;
      }
      break;
    case NS_STYLE_ALIGN_CENTER:
      aGridItem.mBaselineOffset[mAxis] += delta / 2;
      break;
    default:
      MOZ_ASSERT_UNREACHABLE("unexpected baseline subtree alignment");
  }
}

template<nsGridContainerFrame::Tracks::TrackSizingPhase phase>
bool
nsGridContainerFrame::Tracks::GrowSizeForSpanningItems(
  nsTArray<Step2ItemData>::iterator aIter,
  const nsTArray<Step2ItemData>::iterator aIterEnd,
  nsTArray<uint32_t>& aTracks,
  nsTArray<TrackSize>& aPlan,
  nsTArray<TrackSize>& aItemPlan,
  TrackSize::StateBits aSelector,
  const FitContentClamper& aFitContentClamper,
  bool aNeedInfinitelyGrowableFlag)
{
  constexpr bool isMaxSizingPhase =
    phase == TrackSizingPhase::eIntrinsicMaximums ||
    phase == TrackSizingPhase::eMaxContentMaximums;
  bool needToUpdateSizes = false;
  InitializePlan<phase>(aPlan);
  for (; aIter != aIterEnd; ++aIter) {
    const Step2ItemData& item = *aIter;
    if (!(item.mState & aSelector)) {
      continue;
    }
    if (isMaxSizingPhase) {
      for (auto j = item.mLineRange.mStart, end = item.mLineRange.mEnd; j < end; ++j) {
        aPlan[j].mState |= TrackSize::eModified;
      }
    }
    nscoord space = item.SizeContributionForPhase<phase>();
    if (space <= 0) {
      continue;
    }
    aTracks.ClearAndRetainStorage();
    space = CollectGrowable<phase>(space, item.mLineRange, aSelector,
                                   aTracks);
    if (space > 0) {
      DistributeToTrackSizes<phase>(space, aPlan, aItemPlan, aTracks, aSelector,
                                    aFitContentClamper);
      needToUpdateSizes = true;
    }
  }
  if (isMaxSizingPhase) {
    needToUpdateSizes = true;
  }
  if (needToUpdateSizes) {
    CopyPlanToSize<phase>(aPlan, aNeedInfinitelyGrowableFlag);
  }
  return needToUpdateSizes;
}

void
nsGridContainerFrame::Tracks::ResolveIntrinsicSize(
  GridReflowInput&            aState,
  nsTArray<GridItemInfo>&     aGridItems,
  const TrackSizingFunctions& aFunctions,
  LineRange GridArea::*       aRange,
  nscoord                     aPercentageBasis,
  SizingConstraint            aConstraint)
{

  // Resolve Intrinsic Track Sizes
  // http://dev.w3.org/csswg/css-grid/#algo-content
  // We're also setting eIsFlexing on the item state here to speed up
  // FindUsedFlexFraction later.
  AutoTArray<TrackSize::StateBits, 16> stateBitsPerSpan;
  nsTArray<Step2ItemData> step2Items;
  GridItemCSSOrderIterator& iter = aState.mIter;
  nsRenderingContext* rc = &aState.mRenderingContext;
  WritingMode wm = aState.mWM;
  uint32_t maxSpan = 0; // max span of the step2Items items
  // Setup track selector for step 2.2:
  const auto contentBasedMinSelector =
    aConstraint == SizingConstraint::eMinContent ?
    TrackSize::eIntrinsicMinSizing : TrackSize::eMinOrMaxContentMinSizing;
  // Setup track selector for step 2.3:
  const auto maxContentMinSelector =
    aConstraint == SizingConstraint::eMaxContent ?
    (TrackSize::eMaxContentMinSizing | TrackSize::eAutoMinSizing) :
    TrackSize::eMaxContentMinSizing;
  iter.Reset();
  for (; !iter.AtEnd(); iter.Next()) {
    auto& gridItem = aGridItems[iter.GridItemIndex()];

    MOZ_ASSERT(!(gridItem.mState[mAxis] &
                 (ItemState::eApplyAutoMinSize | ItemState::eIsFlexing |
                  ItemState::eClampMarginBoxMinSize)),
               "Why are any of these bits set already?");

    const GridArea& area = gridItem.mArea;
    const LineRange& lineRange = area.*aRange;
    uint32_t span = lineRange.Extent();
    if (span == 1) {
      // Step 1. Size tracks to fit non-spanning items.
      if (ResolveIntrinsicSizeStep1(aState, aFunctions, aPercentageBasis,
                                    aConstraint, lineRange, gridItem)) {
        gridItem.mState[mAxis] |= ItemState::eIsFlexing;
      }
    } else {
      TrackSize::StateBits state = StateBitsForRange(lineRange);

      // Check if we need to apply "Automatic Minimum Size" and cache it.
      if ((state & TrackSize::eAutoMinSizing) &&
          gridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) {
        gridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize;
      }

      if ((state & (TrackSize::eIntrinsicMinSizing |
                    TrackSize::eIntrinsicMaxSizing)) &&
          !(state & TrackSize::eFlexMaxSizing)) {
        // Collect data for Step 2.
        maxSpan = std::max(maxSpan, span);
        if (span >= stateBitsPerSpan.Length()) {
          uint32_t len = 2 * span;
          stateBitsPerSpan.SetCapacity(len);
          for (uint32_t i = stateBitsPerSpan.Length(); i < len; ++i) {
            stateBitsPerSpan.AppendElement(TrackSize::StateBits(0));
          }
        }
        stateBitsPerSpan[span] |= state;
        CachedIntrinsicSizes cache;
        // Calculate data for "Automatic Minimum Size" clamping, if needed.
        bool needed = ((state & TrackSize::eIntrinsicMinSizing) ||
                       aConstraint == SizingConstraint::eNoConstraint) &&
                      (gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize);
        if (needed && TrackSize::IsDefiniteMaxSizing(state)) {
          nscoord minSizeClamp = 0;
          for (auto i = lineRange.mStart, end = lineRange.mEnd; i < end; ++i) {
            auto maxCoord = aFunctions.MaxSizingFor(i);
            minSizeClamp +=
              nsRuleNode::ComputeCoordPercentCalc(maxCoord, aPercentageBasis);
          }
          minSizeClamp += mGridGap * (span - 1);
          cache.mMinSizeClamp = minSizeClamp;
          gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
        }
        // Collect the various grid item size contributions we need.
        nscoord minSize = 0;
        if (state & (TrackSize::eIntrinsicMinSizing |   // for 2.1
                     TrackSize::eIntrinsicMaxSizing)) { // for 2.5
          minSize = MinSize(gridItem, aState, rc, wm, mAxis, &cache);
        }
        nscoord minContent = 0;
        if (state & contentBasedMinSelector) { // for 2.2
          minContent = MinContentContribution(gridItem, aState,
                                              rc, wm, mAxis, &cache);
        }
        nscoord maxContent = 0;
        if (state & (maxContentMinSelector |                   // for 2.3
                     TrackSize::eAutoOrMaxContentMaxSizing)) { // for 2.6
          maxContent = MaxContentContribution(gridItem, aState,
                                              rc, wm, mAxis, &cache);
        }
        step2Items.AppendElement(
          Step2ItemData({span, state, lineRange, minSize,
                         minContent, maxContent, *iter}));
      } else {
        if (state & TrackSize::eFlexMaxSizing) {
          gridItem.mState[mAxis] |= ItemState::eIsFlexing;
        } else if (aConstraint == SizingConstraint::eNoConstraint &&
                   TrackSize::IsDefiniteMaxSizing(state) &&
                   (gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize)) {
          gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
        }
      }
    }
    MOZ_ASSERT(!(gridItem.mState[mAxis] & ItemState::eClampMarginBoxMinSize) ||
               (gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize),
               "clamping only applies to Automatic Minimum Size");
  }

  // Step 2.
  if (maxSpan) {
    auto fitContentClamper = [&aFunctions, aPercentageBasis] (uint32_t aTrack,
                                                              nscoord aMinSize,
                                                              nscoord* aSize)
    {
      nscoord fitContentLimit =
        ::ResolveToDefiniteSize(aFunctions.MaxSizingFor(aTrack), aPercentageBasis);
      if (*aSize > fitContentLimit) {
        *aSize = std::max(aMinSize, fitContentLimit);
        return true;
      }
      return false;
    };
    // Sort the collected items on span length, shortest first.
    std::stable_sort(step2Items.begin(), step2Items.end(),
                     Step2ItemData::IsSpanLessThan);

    nsTArray<uint32_t> tracks(maxSpan);
    nsTArray<TrackSize> plan(mSizes.Length());
    plan.SetLength(mSizes.Length());
    nsTArray<TrackSize> itemPlan(mSizes.Length());
    itemPlan.SetLength(mSizes.Length());
    // Start / end iterator for items of the same span length:
    auto spanGroupStart = step2Items.begin();
    auto spanGroupEnd = spanGroupStart;
    const auto end = step2Items.end();
    for (; spanGroupStart != end; spanGroupStart = spanGroupEnd) {
      while (spanGroupEnd != end &&
             !Step2ItemData::IsSpanLessThan(*spanGroupStart, *spanGroupEnd)) {
        ++spanGroupEnd;
      }

      const uint32_t span = spanGroupStart->mSpan;
      bool updatedBase = false; // Did we update any mBase in step 2.1 - 2.3?
      TrackSize::StateBits selector(TrackSize::eIntrinsicMinSizing);
      if (stateBitsPerSpan[span] & selector) {
        // Step 2.1 MinSize to intrinsic min-sizing.
        updatedBase =
          GrowSizeForSpanningItems<TrackSizingPhase::eIntrinsicMinimums>(
            spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
      }

      selector = contentBasedMinSelector;
      if (stateBitsPerSpan[span] & selector) {
        // Step 2.2 MinContentContribution to min-/max-content (and 'auto' when
        // sizing under a min-content constraint) min-sizing.
        updatedBase |=
          GrowSizeForSpanningItems<TrackSizingPhase::eContentBasedMinimums>(
            spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
      }

      selector = maxContentMinSelector;
      if (stateBitsPerSpan[span] & selector) {
        // Step 2.3 MaxContentContribution to max-content (and 'auto' when
        // sizing under a max-content constraint) min-sizing.
        updatedBase |=
          GrowSizeForSpanningItems<TrackSizingPhase::eMaxContentMinimums>(
            spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
      }

      if (updatedBase) {
        // Step 2.4
        for (TrackSize& sz : mSizes) {
          if (sz.mBase > sz.mLimit) {
            sz.mLimit = sz.mBase;
          }
        }
      }

      selector = TrackSize::eIntrinsicMaxSizing;
      if (stateBitsPerSpan[span] & selector) {
        const bool willRunStep2_6 =
          stateBitsPerSpan[span] & TrackSize::eAutoOrMaxContentMaxSizing;
        // Step 2.5 MinSize to intrinsic max-sizing.
        GrowSizeForSpanningItems<TrackSizingPhase::eIntrinsicMaximums>(
          spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector,
          fitContentClamper, willRunStep2_6);

        if (willRunStep2_6) {
          // Step 2.6 MaxContentContribution to max-content max-sizing.
          selector = TrackSize::eAutoOrMaxContentMaxSizing;
          GrowSizeForSpanningItems<TrackSizingPhase::eMaxContentMaximums>(
            spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector,
            fitContentClamper);
        }
      }
    }
  }

  // Step 3.
  for (TrackSize& sz : mSizes) {
    if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
      sz.mLimit = sz.mBase;
    }
  }
}

float
nsGridContainerFrame::Tracks::FindFrUnitSize(
  const LineRange&            aRange,
  const nsTArray<uint32_t>&   aFlexTracks,
  const TrackSizingFunctions& aFunctions,
  nscoord                     aSpaceToFill) const
{
  MOZ_ASSERT(aSpaceToFill > 0 && !aFlexTracks.IsEmpty());
  float flexFactorSum = 0.0f;
  nscoord leftOverSpace = aSpaceToFill;
  for (uint32_t i = aRange.mStart, end = aRange.mEnd; i < end; ++i) {
    const TrackSize& sz = mSizes[i];
    if (sz.mState & TrackSize::eFlexMaxSizing) {
      flexFactorSum += aFunctions.MaxSizingFor(i).GetFlexFractionValue();
    } else {
      leftOverSpace -= sz.mBase;
      if (leftOverSpace <= 0) {
        return 0.0f;
      }
    }
  }
  bool restart;
  float hypotheticalFrSize;
  nsTArray<uint32_t> flexTracks(aFlexTracks);
  uint32_t numFlexTracks = flexTracks.Length();
  do {
    restart = false;
    hypotheticalFrSize = leftOverSpace / std::max(flexFactorSum, 1.0f);
    for (uint32_t i = 0, len = flexTracks.Length(); i < len; ++i) {
      uint32_t track = flexTracks[i];
      if (track == kAutoLine) {
        continue; // Track marked as inflexible in a prev. iter of this loop.
      }
      float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue();
      const nscoord base = mSizes[track].mBase;
      if (flexFactor * hypotheticalFrSize < base) {
        // 12.7.1.4: Treat this track as inflexible.
        flexTracks[i] = kAutoLine;
        flexFactorSum -= flexFactor;
        leftOverSpace -= base;
        --numFlexTracks;
        if (numFlexTracks == 0 || leftOverSpace <= 0) {
          return 0.0f;
        }
        restart = true;
        // break; XXX (bug 1176621 comment 16) measure which is more common
      }
    }
  } while (restart);
  return hypotheticalFrSize;
}

float
nsGridContainerFrame::Tracks::FindUsedFlexFraction(
  GridReflowInput&            aState,
  nsTArray<GridItemInfo>&     aGridItems,
  const nsTArray<uint32_t>&   aFlexTracks,
  const TrackSizingFunctions& aFunctions,
  nscoord                     aAvailableSize) const
{
  if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
    // Use all of the grid tracks and a 'space to fill' of the available space.
    const TranslatedLineRange range(0, mSizes.Length());
    return FindFrUnitSize(range, aFlexTracks, aFunctions, aAvailableSize);
  }

  // The used flex fraction is the maximum of:
  // ... each flexible track's base size divided by its flex factor (which is
  // floored at 1).
  float fr = 0.0f;
  for (uint32_t track : aFlexTracks) {
    float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue();
    float possiblyDividedBaseSize = (flexFactor > 1.0f)
      ? mSizes[track].mBase / flexFactor
      : mSizes[track].mBase;
    fr = std::max(fr, possiblyDividedBaseSize);
  }
  WritingMode wm = aState.mWM;
  nsRenderingContext* rc = &aState.mRenderingContext;
  GridItemCSSOrderIterator& iter = aState.mIter;
  iter.Reset();
  // ... the result of 'finding the size of an fr' for each item that spans
  // a flex track with its max-content contribution as 'space to fill'
  for (; !iter.AtEnd(); iter.Next()) {
    const GridItemInfo& item = aGridItems[iter.GridItemIndex()];
    if (item.mState[mAxis] & ItemState::eIsFlexing) {
      // XXX optimize: bug 1194446
      auto pb = Some(aState.PercentageBasisFor(mAxis, item));
      nscoord spaceToFill = ContentContribution(item, aState, rc, wm, mAxis, pb,
                                                nsLayoutUtils::PREF_ISIZE);
      if (spaceToFill <= 0) {
        continue;
      }
      // ... and all its spanned tracks as input.
      const LineRange& range =
        mAxis == eLogicalAxisInline ? item.mArea.mCols : item.mArea.mRows;
      nsTArray<uint32_t> itemFlexTracks;
      for (uint32_t i = range.mStart, end = range.mEnd; i < end; ++i) {
        if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
          itemFlexTracks.AppendElement(i);
        }
      }
      float itemFr =
        FindFrUnitSize(range, itemFlexTracks, aFunctions, spaceToFill);
      fr = std::max(fr, itemFr);
    }
  }
  return fr;
}

void
nsGridContainerFrame::Tracks::StretchFlexibleTracks(
  GridReflowInput&            aState,
  nsTArray<GridItemInfo>&     aGridItems,
  const TrackSizingFunctions& aFunctions,
  nscoord                     aAvailableSize)
{
  if (aAvailableSize <= 0) {
    return;
  }
  nsTArray<uint32_t> flexTracks(mSizes.Length());
  for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
    if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
      flexTracks.AppendElement(i);
    }
  }
  if (flexTracks.IsEmpty()) {
    return;
  }
  nscoord minSize = 0;
  nscoord maxSize = NS_UNCONSTRAINEDSIZE;
  if (aState.mReflowInput) {
    auto* ri = aState.mReflowInput;
    minSize = mAxis == eLogicalAxisBlock ? ri->ComputedMinBSize()
                                         : ri->ComputedMinISize();
    maxSize = mAxis == eLogicalAxisBlock ? ri->ComputedMaxBSize()
                                         : ri->ComputedMaxISize();
  }
  Maybe<nsTArray<TrackSize>> origSizes;
  bool applyMinMax = (minSize != 0 || maxSize != NS_UNCONSTRAINEDSIZE) &&
                     aAvailableSize == NS_UNCONSTRAINEDSIZE;
  // We iterate twice at most.  The 2nd time if the grid size changed after
  // applying a min/max-size (can only occur if aAvailableSize is indefinite).
  while (true) {
    float fr = FindUsedFlexFraction(aState, aGridItems, flexTracks,
                                    aFunctions, aAvailableSize);
    if (fr != 0.0f) {
      for (uint32_t i : flexTracks) {
        float flexFactor = aFunctions.MaxSizingFor(i).GetFlexFractionValue();
        nscoord flexLength = NSToCoordRound(flexFactor * fr);
        nscoord& base = mSizes[i].mBase;
        if (flexLength > base) {
          if (applyMinMax && origSizes.isNothing()) {
            origSizes.emplace(mSizes);
          }
          base = flexLength;
        }
      }
    }
    if (applyMinMax) {
      applyMinMax = false;
      // https://drafts.csswg.org/css-grid/#algo-flex-tracks
      // "If using this flex fraction would cause the grid to be smaller than
      // the grid container’s min-width/height (or larger than the grid
      // container’s max-width/height), then redo this step, treating the free
      // space as definite [...]"
      nscoord newSize = 0;
      for (auto& sz : mSizes) {
        newSize += sz.mBase;
      }
      const auto sumOfGridGaps = SumOfGridGaps();
      newSize += sumOfGridGaps;
      if (newSize > maxSize) {
        aAvailableSize = maxSize;
      } else if (newSize < minSize) {
        aAvailableSize = minSize;
      }
      if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
        aAvailableSize = std::max(0, aAvailableSize - sumOfGridGaps);
        // Restart with the original track sizes and definite aAvailableSize.
        if (origSizes.isSome()) {
          mSizes = Move(*origSizes);
          origSizes.reset();
        } // else, no mSizes[].mBase were changed above so it's still correct
        if (aAvailableSize == 0) {
          break; // zero available size wouldn't change any sizes though...
        }
        continue;
      }
    }
    break;
  }
}

void
nsGridContainerFrame::Tracks::AlignJustifyContent(
  const nsStylePosition* aStyle,
  WritingMode            aWM,
  const LogicalSize&     aContainerSize)
{
  if (mSizes.IsEmpty()) {
    return;
  }

  const bool isAlign = mAxis == eLogicalAxisBlock;
  auto valueAndFallback = isAlign ? aStyle->mAlignContent :
                                    aStyle->mJustifyContent;
  bool overflowSafe;
  auto alignment = ::GetAlignJustifyValue(valueAndFallback, aWM, isAlign,
                                          &overflowSafe);
  if (alignment == NS_STYLE_ALIGN_NORMAL) {
    MOZ_ASSERT(valueAndFallback == NS_STYLE_ALIGN_NORMAL,
               "*-content:normal cannot be specified with explicit fallback");
    alignment = NS_STYLE_ALIGN_STRETCH;
    valueAndFallback = alignment; // we may need a fallback for 'stretch' below
  }

  // Compute the free space and count auto-sized tracks.
  size_t numAutoTracks = 0;
  nscoord space;
  if (alignment != NS_STYLE_ALIGN_START) {
    nscoord trackSizeSum = 0;
    for (const TrackSize& sz : mSizes) {
      trackSizeSum += sz.mBase;
      if (sz.mState & TrackSize::eAutoMaxSizing) {
        ++numAutoTracks;
      }
    }
    nscoord cbSize = isAlign ? aContainerSize.BSize(aWM)
                             : aContainerSize.ISize(aWM);
    space = cbSize - trackSizeSum - SumOfGridGaps();
    // Use the fallback value instead when applicable.
    if (space < 0 ||
        (alignment == NS_STYLE_ALIGN_SPACE_BETWEEN && mSizes.Length() == 1)) {
      auto fallback = ::GetAlignJustifyFallbackIfAny(valueAndFallback, aWM,
                                                     isAlign, &overflowSafe);
      if (fallback) {
        alignment = fallback;
      }
    }
    if (space == 0 || (space < 0 && overflowSafe)) {
      // XXX check that this makes sense also for [last ]baseline (bug 1151204).
      alignment = NS_STYLE_ALIGN_START;
    }
  }

  // Optimize the cases where we just need to set each track's position.
  nscoord pos = 0;
  bool distribute = true;
  switch (alignment) {
    case NS_STYLE_ALIGN_BASELINE:
    case NS_STYLE_ALIGN_LAST_BASELINE:
      NS_WARNING("NYI: 'first/last baseline' (bug 1151204)"); // XXX
      MOZ_FALLTHROUGH;
    case NS_STYLE_ALIGN_START:
      distribute = false;
      break;
    case NS_STYLE_ALIGN_END:
      pos = space;
      distribute = false;
      break;
    case NS_STYLE_ALIGN_CENTER:
      pos = space / 2;
      distribute = false;
      break;
    case NS_STYLE_ALIGN_STRETCH:
      distribute = numAutoTracks != 0;
      break;
  }
  if (!distribute) {
    for (TrackSize& sz : mSizes) {
      sz.mPosition = pos;
      pos += sz.mBase + mGridGap;
    }
    return;
  }

  // Distribute free space to/between tracks and set their position.
  MOZ_ASSERT(space > 0, "should've handled that on the fallback path above");
  nscoord between, roundingError;
  switch (alignment) {
    case NS_STYLE_ALIGN_STRETCH: {
      MOZ_ASSERT(numAutoTracks > 0, "we handled numAutoTracks == 0 above");
      nscoord spacePerTrack;
      roundingError = NSCoordDivRem(space, numAutoTracks, &spacePerTrack);
      for (TrackSize& sz : mSizes) {
        sz.mPosition = pos;
        if (!(sz.mState & TrackSize::eAutoMaxSizing)) {
          pos += sz.mBase + mGridGap;
          continue;
        }
        nscoord stretch = spacePerTrack;
        if (roundingError) {
          roundingError -= 1;
          stretch += 1;
        }
        nscoord newBase = sz.mBase + stretch;
        sz.mBase = newBase;
        pos += newBase + mGridGap;
      }
      MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
      return;
    }
    case NS_STYLE_ALIGN_SPACE_BETWEEN:
      MOZ_ASSERT(mSizes.Length() > 1, "should've used a fallback above");
      roundingError = NSCoordDivRem(space, mSizes.Length() - 1, &between);
      break;
    case NS_STYLE_ALIGN_SPACE_AROUND:
      roundingError = NSCoordDivRem(space, mSizes.Length(), &between);
      pos = between / 2;
      break;
    case NS_STYLE_ALIGN_SPACE_EVENLY:
      roundingError = NSCoordDivRem(space, mSizes.Length() + 1, &between);
      pos = between;
      break;
    default:
      MOZ_ASSERT_UNREACHABLE("unknown align-/justify-content value");
      between = 0; // just to avoid a compiler warning
      roundingError = 0; // just to avoid a compiler warning
  }
  between += mGridGap;
  for (TrackSize& sz : mSizes) {
    sz.mPosition = pos;
    nscoord spacing = between;
    if (roundingError) {
      roundingError -= 1;
      spacing += 1;
    }
    pos += sz.mBase + spacing;
  }
  MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
}

void
nsGridContainerFrame::LineRange::ToPositionAndLength(
  const nsTArray<TrackSize>& aTrackSizes, nscoord* aPos, nscoord* aLength) const
{
  MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
             "expected a definite LineRange");
  MOZ_ASSERT(mStart < mEnd);
  nscoord startPos = aTrackSizes[mStart].mPosition;
  const TrackSize& sz = aTrackSizes[mEnd - 1];
  *aPos = startPos;
  *aLength = (sz.mPosition + sz.mBase) - startPos;
}

nscoord
nsGridContainerFrame::LineRange::ToLength(
  const nsTArray<TrackSize>& aTrackSizes) const
{
  MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
             "expected a definite LineRange");
  MOZ_ASSERT(mStart < mEnd);
  nscoord startPos = aTrackSizes[mStart].mPosition;
  const TrackSize& sz = aTrackSizes[mEnd - 1];
  return (sz.mPosition + sz.mBase) - startPos;
}

void
nsGridContainerFrame::LineRange::ToPositionAndLengthForAbsPos(
  const Tracks& aTracks, nscoord aGridOrigin,
  nscoord* aPos, nscoord* aLength) const
{
  // kAutoLine for abspos children contributes the corresponding edge
  // of the grid container's padding-box.
  if (mEnd == kAutoLine) {
    if (mStart == kAutoLine) {
      // done
    } else {
      const nscoord endPos = *aPos + *aLength;
      auto side = mStart == aTracks.mSizes.Length() ? GridLineSide::eBeforeGridGap
                                                    : GridLineSide::eAfterGridGap;
      nscoord startPos = aTracks.GridLineEdge(mStart, side);
      *aPos = aGridOrigin + startPos;
      *aLength = std::max(endPos - *aPos, 0);
    }
  } else {
    if (mStart == kAutoLine) {
      auto side = mEnd == 0 ? GridLineSide::eAfterGridGap
                            : GridLineSide::eBeforeGridGap;
      nscoord endPos = aTracks.GridLineEdge(mEnd, side);
      *aLength = std::max(aGridOrigin + endPos, 0);
    } else if (MOZ_LIKELY(mStart != mEnd)) {
      nscoord pos;
      ToPositionAndLength(aTracks.mSizes, &pos, aLength);
      *aPos = aGridOrigin + pos;
    } else {
      // The grid area only covers removed 'auto-fit' tracks.
      nscoord pos = aTracks.GridLineEdge(mStart, GridLineSide::eBeforeGridGap);
      *aPos = aGridOrigin + pos;
      *aLength = nscoord(0);
    }
  }
}

LogicalSize
nsGridContainerFrame::GridReflowInput::PercentageBasisFor(
  LogicalAxis aAxis,
  const GridItemInfo& aGridItem) const
{
  auto wm = aGridItem.mFrame->GetWritingMode();
  if (aAxis == eLogicalAxisInline) {
    return LogicalSize(wm, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
  }
  // Note: for now, we only resolve transferred percentages to row sizing.
  // We may need to adjust these assertions once we implement bug 1300366.
  MOZ_ASSERT(mCols.mCanResolveLineRangeSize);
  MOZ_ASSERT(!mRows.mCanResolveLineRangeSize);
  nscoord colSize = aGridItem.mArea.mCols.ToLength(mCols.mSizes);
  nscoord rowSize = NS_UNCONSTRAINEDSIZE;
  return !wm.IsOrthogonalTo(mWM) ?
    LogicalSize(wm, colSize, rowSize) : LogicalSize(wm, rowSize, colSize);
}

LogicalRect
nsGridContainerFrame::GridReflowInput::ContainingBlockFor(const GridArea& aArea) const
{
  nscoord i, b, iSize, bSize;
  MOZ_ASSERT(aArea.mCols.Extent() > 0, "grid items cover at least one track");
  MOZ_ASSERT(aArea.mRows.Extent() > 0, "grid items cover at least one track");
  aArea.mCols.ToPositionAndLength(mCols.mSizes, &i, &iSize);
  aArea.mRows.ToPositionAndLength(mRows.mSizes, &b, &bSize);
  return LogicalRect(mWM, i, b, iSize, bSize);
}

LogicalRect
nsGridContainerFrame::GridReflowInput::ContainingBlockForAbsPos(
  const GridArea&     aArea,
  const LogicalPoint& aGridOrigin,
  const LogicalRect&  aGridCB) const
{
  nscoord i = aGridCB.IStart(mWM);
  nscoord b = aGridCB.BStart(mWM);
  nscoord iSize = aGridCB.ISize(mWM);
  nscoord bSize = aGridCB.BSize(mWM);
  aArea.mCols.ToPositionAndLengthForAbsPos(mCols, aGridOrigin.I(mWM),
                                           &i, &iSize);
  aArea.mRows.ToPositionAndLengthForAbsPos(mRows, aGridOrigin.B(mWM),
                                           &b, &bSize);
  return LogicalRect(mWM, i, b, iSize, bSize);
}

/**
 * Return a Fragmentainer object if we have a fragmentainer frame in our
 * ancestor chain of containing block (CB) reflow states.  We'll only
 * continue traversing the ancestor chain as long as the CBs have
 * the same writing-mode and have overflow:visible.
 */
Maybe<nsGridContainerFrame::Fragmentainer>
nsGridContainerFrame::GetNearestFragmentainer(const GridReflowInput& aState) const
{
  Maybe<nsGridContainerFrame::Fragmentainer> data;
  const ReflowInput* gridRI = aState.mReflowInput;
  if (gridRI->AvailableBSize() == NS_UNCONSTRAINEDSIZE) {
    return data;
  }
  WritingMode wm = aState.mWM;
  const ReflowInput* cbRI = gridRI->mCBReflowInput;
  for ( ; cbRI; cbRI = cbRI->mCBReflowInput) {
    nsIScrollableFrame* sf = do_QueryFrame(cbRI->mFrame);
    if (sf) {
      break;
    }
    if (wm.IsOrthogonalTo(cbRI->GetWritingMode())) {
      break;
    }
    nsIAtom* frameType = cbRI->mFrame->GetType();
    if ((frameType == nsGkAtoms::canvasFrame &&
         PresContext()->IsPaginated()) ||
        frameType == nsGkAtoms::columnSetFrame) {
      data.emplace();
      data->mIsTopOfPage = gridRI->mFlags.mIsTopOfPage;
      data->mToFragmentainerEnd = aState.mFragBStart +
        gridRI->AvailableBSize() - aState.mBorderPadding.BStart(wm);
      const auto numRows = aState.mRows.mSizes.Length();
      data->mCanBreakAtStart =
        numRows > 0 && aState.mRows.mSizes[0].mPosition > 0;
      nscoord bSize = gridRI->ComputedBSize();
      data->mIsAutoBSize = bSize == NS_AUTOHEIGHT;
      if (data->mIsAutoBSize) {
        bSize = gridRI->ComputedMinBSize();
      } else {
        bSize = NS_CSS_MINMAX(bSize,
                              gridRI->ComputedMinBSize(),
                              gridRI->ComputedMaxBSize());
      }
      nscoord gridEnd =
        aState.mRows.GridLineEdge(numRows, GridLineSide::eBeforeGridGap);
      data->mCanBreakAtEnd = bSize > gridEnd &&
                             bSize > aState.mFragBStart;
      break;
    }
  }
  return data;
}

void
nsGridContainerFrame::ReflowInFlowChild(nsIFrame*              aChild,
                                        const GridItemInfo*    aGridItemInfo,
                                        nsSize                 aContainerSize,
                                        Maybe<nscoord>         aStretchBSize,
                                        const Fragmentainer*   aFragmentainer,
                                        const GridReflowInput& aState,
                                        const LogicalRect&     aContentArea,
                                        ReflowOutput&   aDesiredSize,
                                        nsReflowStatus&        aStatus)
{
  nsPresContext* pc = PresContext();
  nsStyleContext* containerSC = StyleContext();
  WritingMode wm = aState.mReflowInput->GetWritingMode();
  LogicalMargin pad(aState.mReflowInput->ComputedLogicalPadding());
  const LogicalPoint padStart(wm, pad.IStart(wm), pad.BStart(wm));
  const bool isGridItem = !!aGridItemInfo;
  auto childType = aChild->GetType();
  MOZ_ASSERT(isGridItem == (childType != nsGkAtoms::placeholderFrame));
  LogicalRect cb(wm);
  WritingMode childWM = aChild->GetWritingMode();
  bool isConstrainedBSize = false;
  nscoord toFragmentainerEnd;
  // The part of the child's grid area that's in previous container fragments.
  nscoord consumedGridAreaBSize = 0;
  const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
  if (MOZ_LIKELY(isGridItem)) {
    MOZ_ASSERT(aGridItemInfo->mFrame == aChild);
    const GridArea& area = aGridItemInfo->mArea;
    MOZ_ASSERT(area.IsDefinite());
    cb = aState.ContainingBlockFor(area);
    isConstrainedBSize = aFragmentainer && !wm.IsOrthogonalTo(childWM);
    if (isConstrainedBSize) {
      // |gridAreaBOffset| is the offset of the child's grid area in this
      // container fragment (if negative, that distance is the child CB size
      // consumed in previous container fragments).  Note that cb.BStart
      // (initially) and aState.mFragBStart are in "global" grid coordinates
      // (like all track positions).
      nscoord gridAreaBOffset = cb.BStart(wm) - aState.mFragBStart;
      consumedGridAreaBSize = std::max(0, -gridAreaBOffset);
      cb.BStart(wm) = std::max(0, gridAreaBOffset);
      toFragmentainerEnd = aFragmentainer->mToFragmentainerEnd -
        aState.mFragBStart - cb.BStart(wm);
      toFragmentainerEnd = std::max(toFragmentainerEnd, 0);
    }
    cb += aContentArea.Origin(wm);
    aState.mRows.AlignBaselineSubtree(*aGridItemInfo);
    aState.mCols.AlignBaselineSubtree(*aGridItemInfo);
    // Setup [align|justify]-content:[last ]baseline related frame properties.
    // These are added to the padding in SizeComputationInput::InitOffsets.
    // (a negative value signals the value is for 'last baseline' and should be
    //  added to the (logical) end padding)
    typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
    auto SetProp = [aGridItemInfo, aChild] (LogicalAxis aGridAxis,
                                            Prop aProp) {
      auto state = aGridItemInfo->mState[aGridAxis];
      auto baselineAdjust = (state & ItemState::eContentBaseline) ?
             aGridItemInfo->mBaselineOffset[aGridAxis] : nscoord(0);
      if (baselineAdjust < nscoord(0)) {
        // This happens when the subtree overflows its track.
        // XXX spec issue? it's unclear how to handle this.
        baselineAdjust = nscoord(0);
      } else if (baselineAdjust > nscoord(0) &&
                 (state & ItemState::eLastBaseline)) {
        baselineAdjust = -baselineAdjust;
      }
      if (baselineAdjust != nscoord(0)) {
        aChild->SetProperty(aProp, baselineAdjust);
      } else {
        aChild->DeleteProperty(aProp);
      }
    };
    SetProp(eLogicalAxisBlock, isOrthogonal ? IBaselinePadProperty() :
                                              BBaselinePadProperty());
    SetProp(eLogicalAxisInline, isOrthogonal ? BBaselinePadProperty() :
                                               IBaselinePadProperty());
  } else {
    // By convention, for frames that perform CSS Box Alignment, we position
    // placeholder children at the start corner of their alignment container,
    // and in this case that's usually the grid's padding box.
    // ("Usually" - the exception is when the grid *also* forms the
    // abs.pos. containing block. In that case, the alignment container isn't
    // the padding box -- it's some grid area instead.  But that case doesn't
    // require any special handling here, because we handle it later using a
    // special flag (STATIC_POS_IS_CB_ORIGIN) which will make us ignore the
    // placeholder's position entirely.)
    cb = aContentArea - padStart;
    aChild->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
  }

  LogicalSize reflowSize(cb.Size(wm));
  if (isConstrainedBSize) {
    reflowSize.BSize(wm) = toFragmentainerEnd;
  }
  LogicalSize childCBSize = reflowSize.ConvertTo(childWM, wm);

  // Setup the ClampMarginBoxMinSize reflow flags and property, if needed.
  uint32_t flags = 0;
  if (aGridItemInfo) {
    auto childIAxis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
    if (aGridItemInfo->mState[childIAxis] & ItemState::eClampMarginBoxMinSize) {
      flags |= ReflowInput::I_CLAMP_MARGIN_BOX_MIN_SIZE;
    }
    auto childBAxis = GetOrthogonalAxis(childIAxis);
    if (aGridItemInfo->mState[childBAxis] & ItemState::eClampMarginBoxMinSize) {
      flags |= ReflowInput::B_CLAMP_MARGIN_BOX_MIN_SIZE;
      aChild->SetProperty(BClampMarginBoxMinSizeProperty(),
                          childCBSize.BSize(childWM));
    } else {
      aChild->DeleteProperty(BClampMarginBoxMinSizeProperty());
    }
    if ((aGridItemInfo->mState[childIAxis] & ItemState::eApplyAutoMinSize)) {
      flags |= ReflowInput::I_APPLY_AUTO_MIN_SIZE;
    }
  }

  if (!isConstrainedBSize) {
    childCBSize.BSize(childWM) = NS_UNCONSTRAINEDSIZE;
  }
  LogicalSize percentBasis(cb.Size(wm).ConvertTo(childWM, wm));
  ReflowInput childRI(pc, *aState.mReflowInput, aChild, childCBSize,
                      &percentBasis, flags);
  childRI.mFlags.mIsTopOfPage = aFragmentainer ? aFragmentainer->mIsTopOfPage : false;

  // A table-wrapper needs to propagate the CB size we give it to its
  // inner table frame later.  @see nsTableWrapperFrame::InitChildReflowInput.
  if (childType == nsGkAtoms::tableWrapperFrame) {
    LogicalSize* cb =
      aChild->GetProperty(nsTableWrapperFrame::GridItemCBSizeProperty());
    if (!cb) {
      cb = new LogicalSize(childWM);
      aChild->SetProperty(nsTableWrapperFrame::GridItemCBSizeProperty(), cb);
    }
    *cb = percentBasis;
  }

  // If the child is stretching in its block axis, and we might be fragmenting
  // it in that axis, then setup a frame property to tell
  // nsBlockFrame::ComputeFinalSize the size.
  if (isConstrainedBSize && !wm.IsOrthogonalTo(childWM)) {
    bool stretch = false;
    if (!childRI.mStyleMargin->HasBlockAxisAuto(childWM) &&
        childRI.mStylePosition->BSize(childWM).GetUnit() == eStyleUnit_Auto) {
      auto blockAxisAlignment =
        childRI.mStylePosition->UsedAlignSelf(StyleContext());
      if (blockAxisAlignment == NS_STYLE_ALIGN_NORMAL ||
          blockAxisAlignment == NS_STYLE_ALIGN_STRETCH) {
        stretch = true;
      }
    }
    if (stretch) {
      aChild->SetProperty(FragStretchBSizeProperty(), *aStretchBSize);
    } else {
      aChild->DeleteProperty(FragStretchBSizeProperty());
    }
  }

  // We need the width of the child before we can correctly convert
  // the writing-mode of its origin, so we reflow at (0, 0) using a dummy
  // aContainerSize, and then pass the correct position to FinishReflowChild.
  ReflowOutput childSize(childRI);
  const nsSize dummyContainerSize;
  ReflowChild(aChild, pc, childSize, childRI, childWM, LogicalPoint(childWM),
              dummyContainerSize, 0, aStatus);
  LogicalPoint childPos =
    cb.Origin(wm).ConvertTo(childWM, wm,
                            aContainerSize - childSize.PhysicalSize());
  // Apply align/justify-self and reflow again if that affects the size.
  if (MOZ_LIKELY(isGridItem)) {
    LogicalSize size = childSize.Size(childWM); // from the ReflowChild()
    if (NS_FRAME_IS_COMPLETE(aStatus)) {
      auto align = childRI.mStylePosition->UsedAlignSelf(containerSC);
      auto state = aGridItemInfo->mState[eLogicalAxisBlock];
      if (state & ItemState::eContentBaseline) {
        align = (state & ItemState::eFirstBaseline) ? NS_STYLE_ALIGN_SELF_START
                                                    : NS_STYLE_ALIGN_SELF_END;
      }
      nscoord cbsz = cb.BSize(wm) - consumedGridAreaBSize;
      AlignSelf(*aGridItemInfo, align, cbsz, wm, childRI, size, &childPos);
    }
    auto justify = childRI.mStylePosition->UsedJustifySelf(containerSC);
    auto state = aGridItemInfo->mState[eLogicalAxisInline];
    if (state & ItemState::eContentBaseline) {
      justify = (state & ItemState::eFirstBaseline) ? NS_STYLE_JUSTIFY_SELF_START
                                                    : NS_STYLE_JUSTIFY_SELF_END;
    }
    nscoord cbsz = cb.ISize(wm);
    JustifySelf(*aGridItemInfo, justify, cbsz, wm, childRI, size, &childPos);
  } // else, nsAbsoluteContainingBlock.cpp will handle align/justify-self.

  childRI.ApplyRelativePositioning(&childPos, aContainerSize);
  FinishReflowChild(aChild, pc, childSize, &childRI, childWM, childPos,
                    aContainerSize, 0);
  ConsiderChildOverflow(aDesiredSize.mOverflowAreas, aChild);
}

nscoord
nsGridContainerFrame::ReflowInFragmentainer(GridReflowInput&     aState,
                                            const LogicalRect&   aContentArea,
                                            ReflowOutput& aDesiredSize,
                                            nsReflowStatus&      aStatus,
                                            Fragmentainer&       aFragmentainer,
                                            const nsSize&        aContainerSize)
{
  MOZ_ASSERT(aStatus == NS_FRAME_COMPLETE);
  MOZ_ASSERT(aState.mReflowInput);

  // Collect our grid items and sort them in row order.  Collect placeholders
  // and put them in a separate array.
  nsTArray<const GridItemInfo*> sortedItems(aState.mGridItems.Length());
  nsTArray<nsIFrame*> placeholders(aState.mAbsPosItems.Length());
  aState.mIter.Reset(GridItemCSSOrderIterator::eIncludeAll);
  for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
    nsIFrame* child = *aState.mIter;
    if (child->GetType() != nsGkAtoms::placeholderFrame) {
      const GridItemInfo* info = &aState.mGridItems[aState.mIter.GridItemIndex()];
      sortedItems.AppendElement(info);
    } else {
      placeholders.AppendElement(child);
    }
  }
  // NOTE: no need to use stable_sort here, there are no dependencies on
  // having content order between items on the same row in the code below.
  std::sort(sortedItems.begin(), sortedItems.end(),
            GridItemInfo::IsStartRowLessThan);

  // Reflow our placeholder children; they must all be complete.
  for (auto child : placeholders) {
    nsReflowStatus childStatus;
    ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), &aFragmentainer,
                      aState, aContentArea, aDesiredSize, childStatus);
    MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childStatus),
               "nsPlaceholderFrame should never need to be fragmented");
  }

  // The available size for children - we'll set this to the edge of the last
  // row in most cases below, but for now use the full size.
  nscoord childAvailableSize = aFragmentainer.mToFragmentainerEnd;
  const uint32_t startRow = aState.mStartRow;
  const uint32_t numRows = aState.mRows.mSizes.Length();
  bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
                      StyleBoxDecorationBreak::Clone;
  nscoord bpBEnd = aState.mBorderPadding.BEnd(aState.mWM);

  // Set |endRow| to the first row that doesn't fit.
  uint32_t endRow = numRows;
  for (uint32_t row = startRow; row < numRows; ++row) {
    auto& sz = aState.mRows.mSizes[row];
    const nscoord bEnd = sz.mPosition + sz.mBase;
    nscoord remainingAvailableSize = childAvailableSize - bEnd;
    if (remainingAvailableSize < 0 ||
        (isBDBClone && remainingAvailableSize < bpBEnd)) {
      endRow = row;
      break;
    }
  }

  // Check for forced breaks on the items.
  const bool isTopOfPage = aFragmentainer.mIsTopOfPage;
  bool isForcedBreak = false;
  const bool avoidBreakInside = ShouldAvoidBreakInside(*aState.mReflowInput);
  for (const GridItemInfo* info : sortedItems) {
    uint32_t itemStartRow = info->mArea.mRows.mStart;
    if (itemStartRow == endRow) {
      break;
    }
    auto disp = info->mFrame->StyleDisplay();
    if (disp->mBreakBefore) {
      // Propagate break-before on the first row to the container unless we're
      // already at top-of-page.
      if ((itemStartRow == 0 && !isTopOfPage) || avoidBreakInside) {
        aStatus = NS_INLINE_LINE_BREAK_BEFORE();
        return aState.mFragBStart;
      }
      if ((itemStartRow > startRow ||
           (itemStartRow == startRow && !isTopOfPage)) &&
          itemStartRow < endRow) {
        endRow = itemStartRow;
        isForcedBreak = true;
        // reset any BREAK_AFTER we found on an earlier item
        aStatus = NS_FRAME_COMPLETE;
        break;  // we're done since the items are sorted in row order
      }
    }
    uint32_t itemEndRow = info->mArea.mRows.mEnd;
    if (disp->mBreakAfter) {
      if (itemEndRow != numRows) {
        if (itemEndRow > startRow && itemEndRow < endRow) {
          endRow = itemEndRow;
          isForcedBreak = true;
          // No "break;" here since later items with break-after may have
          // a shorter span.
        }
      } else {
        // Propagate break-after on the last row to the container, we may still
        // find a break-before on this row though (and reset aStatus).
        aStatus = NS_INLINE_LINE_BREAK_AFTER(aStatus); // tentative
      }
    }
  }

  // Consume at least one row in each fragment until we have consumed them all.
  // Except for the first row if there's a break opportunity before it.
  if (startRow == endRow && startRow != numRows &&
      (startRow != 0 || !aFragmentainer.mCanBreakAtStart)) {
    ++endRow;
  }

  // Honor break-inside:avoid if we can't fit all rows.
  if (avoidBreakInside && endRow < numRows) {
    aStatus = NS_INLINE_LINE_BREAK_BEFORE();
    return aState.mFragBStart;
  }

  // Calculate the block-size including this fragment.
  nscoord bEndRow =
    aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap);
  nscoord bSize;
  if (aFragmentainer.mIsAutoBSize) {
    // We only apply min-bsize once all rows are complete (when bsize is auto).
    if (endRow < numRows) {
      bSize = bEndRow;
      auto clampedBSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
      if (MOZ_UNLIKELY(clampedBSize != bSize)) {
        // We apply max-bsize in all fragments though.
        bSize = clampedBSize;
      } else if (!isBDBClone) {
        // The max-bsize won't make this fragment COMPLETE, so the block-end
        // border will be in a later fragment.
        bpBEnd = 0;
      }
    } else {
      bSize = NS_CSS_MINMAX(bEndRow,
                            aState.mReflowInput->ComputedMinBSize(),
                            aState.mReflowInput->ComputedMaxBSize());
    }
  } else {
    bSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
                          aState.mReflowInput->ComputedMinBSize(),
                          aState.mReflowInput->ComputedMaxBSize());
  }

  // Check for overflow and set aStatus INCOMPLETE if so.
  bool overflow = bSize + bpBEnd > childAvailableSize;
  if (overflow) {
    if (avoidBreakInside) {
      aStatus = NS_INLINE_LINE_BREAK_BEFORE();
      return aState.mFragBStart;
    }
    bool breakAfterLastRow = endRow == numRows && aFragmentainer.mCanBreakAtEnd;
    if (breakAfterLastRow) {
      MOZ_ASSERT(bEndRow < bSize, "bogus aFragmentainer.mCanBreakAtEnd");
      nscoord availableSize = childAvailableSize;
      if (isBDBClone) {
        availableSize -= bpBEnd;
      }
      // Pretend we have at least 1px available size, otherwise we'll never make
      // progress in consuming our bSize.
      availableSize = std::max(availableSize,
                               aState.mFragBStart + AppUnitsPerCSSPixel());
      // Fill the fragmentainer, but not more than our desired block-size and
      // at least to the size of the last row (even if that overflows).
      nscoord newBSize = std::min(bSize, availableSize);
      newBSize = std::max(newBSize, bEndRow);
      // If it's just the border+padding that is overflowing and we have
      // box-decoration-break:clone then we are technically COMPLETE.  There's
      // no point in creating another zero-bsize fragment in this case.
      if (newBSize < bSize || !isBDBClone) {
        NS_FRAME_SET_INCOMPLETE(aStatus);
      }
      bSize = newBSize;
    } else if (bSize <= bEndRow && startRow + 1 < endRow) {
      if (endRow == numRows) {
        // We have more than one row in this fragment, so we can break before
        // the last row instead.
        --endRow;
        bEndRow = aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap);
        bSize = bEndRow;
        if (aFragmentainer.mIsAutoBSize) {
          bSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
        }
      }
      NS_FRAME_SET_INCOMPLETE(aStatus);
    } else if (endRow < numRows) {
      bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
    } // else - no break opportunities.
  } else {
    // Even though our block-size fits we need to honor forced breaks, or if
    // a row doesn't fit in an auto-sized container (unless it's constrained
    // by a max-bsize which make us overflow-incomplete).
    if (endRow < numRows && (isForcedBreak ||
                             (aFragmentainer.mIsAutoBSize && bEndRow == bSize))) {
      bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
    }
  }

  // If we can't fit all rows then we're at least overflow-incomplete.
  if (endRow < numRows) {
    childAvailableSize = bEndRow;
    if (NS_FRAME_IS_COMPLETE(aStatus)) {
      NS_FRAME_SET_OVERFLOW_INCOMPLETE(aStatus);
      aStatus |= NS_FRAME_REFLOW_NEXTINFLOW;
    }
  } else {
    // Children always have the full size of the rows in this fragment.
    childAvailableSize = std::max(childAvailableSize, bEndRow);
  }

  return ReflowRowsInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
                                   aFragmentainer, aContainerSize, sortedItems,
                                   startRow, endRow, bSize, childAvailableSize);
}

nscoord
nsGridContainerFrame::ReflowRowsInFragmentainer(
  GridReflowInput&                     aState,
  const LogicalRect&                   aContentArea,
  ReflowOutput&                 aDesiredSize,
  nsReflowStatus&                      aStatus,
  Fragmentainer&                       aFragmentainer,
  const nsSize&                        aContainerSize,
  const nsTArray<const GridItemInfo*>& aSortedItems,
  uint32_t                             aStartRow,
  uint32_t                             aEndRow,
  nscoord                              aBSize,
  nscoord                              aAvailableSize)
{
  FrameHashtable pushedItems;
  FrameHashtable incompleteItems;
  FrameHashtable overflowIncompleteItems;
  bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
                      StyleBoxDecorationBreak::Clone;
  bool didGrowRow = false;
  // As we walk across rows, we track whether the current row is at the top
  // of its grid-fragment, to help decide whether we can break before it. When
  // this function starts, our row is at the top of the current fragment if:
  //  - we're starting with a nonzero row (i.e. we're a continuation)
  // OR:
  //  - we're starting with the first row, & we're not allowed to break before
  //    it (which makes it effectively at the top of its grid-fragment).
  bool isRowTopOfPage = aStartRow != 0 || !aFragmentainer.mCanBreakAtStart;
  const bool isStartRowTopOfPage = isRowTopOfPage;
  // Save our full available size for later.
  const nscoord gridAvailableSize = aFragmentainer.mToFragmentainerEnd;
  // Propagate the constrained size to our children.
  aFragmentainer.mToFragmentainerEnd = aAvailableSize;
  // Reflow the items in row order up to |aEndRow| and push items after that.
  uint32_t row = 0;
  // |i| is intentionally signed, so we can set it to -1 to restart the loop.
  for (int32_t i = 0, len = aSortedItems.Length(); i < len; ++i) {
    const GridItemInfo* const info = aSortedItems[i];
    nsIFrame* child = info->mFrame;
    row = info->mArea.mRows.mStart;
    MOZ_ASSERT(child->GetPrevInFlow() ? row < aStartRow : row >= aStartRow,
               "unexpected child start row");
    if (row >= aEndRow) {
      pushedItems.PutEntry(child);
      continue;
    }

    bool rowCanGrow = false;
    nscoord maxRowSize = 0;
    if (row >= aStartRow) {
      if (row > aStartRow) {
        isRowTopOfPage = false;
      }
      // Can we grow this row?  Only consider span=1 items per spec...
      rowCanGrow = !didGrowRow && info->mArea.mRows.Extent() == 1;
      if (rowCanGrow) {
        auto& sz = aState.mRows.mSizes[row];
        // and only min-/max-content rows or flex rows in an auto-sized container
        rowCanGrow = (sz.mState & TrackSize::eMinOrMaxContentMinSizing) ||
                     ((sz.mState & TrackSize::eFlexMaxSizing) &&
                      aFragmentainer.mIsAutoBSize);
        if (rowCanGrow) {
          if (isBDBClone) {
            maxRowSize = gridAvailableSize -
                         aState.mBorderPadding.BEnd(aState.mWM);
          } else {
            maxRowSize = gridAvailableSize;
          }
          maxRowSize -= sz.mPosition;
          // ...and only if there is space for it to grow.
          rowCanGrow = maxRowSize > sz.mBase;
        }
      }
    }

    // aFragmentainer.mIsTopOfPage is propagated to the child reflow state.
    // When it's false the child can request BREAK_BEFORE.  We intentionally
    // set it to false when the row is growable (as determined in CSS Grid
    // Fragmentation) and there is a non-zero space between it and the
    // fragmentainer end (that can be used to grow it).  If the child reports
    // a forced break in this case, we grow this row to fill the fragment and
    // restart the loop.  We also restart the loop with |aEndRow = row|
    // (but without growing any row) for a BREAK_BEFORE child if it spans
    // beyond the last row in this fragment.  This is to avoid fragmenting it.
    // We only restart the loop once.
    aFragmentainer.mIsTopOfPage = isRowTopOfPage && !rowCanGrow;
    nsReflowStatus childStatus;
    // Pass along how much to stretch this fragment, in case it's needed.
    nscoord bSize =
      aState.mRows.GridLineEdge(std::min(aEndRow, info->mArea.mRows.mEnd),
                                GridLineSide::eBeforeGridGap) -
      aState.mRows.GridLineEdge(std::max(aStartRow, row),
                                GridLineSide::eAfterGridGap);
    ReflowInFlowChild(child, info, aContainerSize, Some(bSize), &aFragmentainer,
                      aState, aContentArea, aDesiredSize, childStatus);
    MOZ_ASSERT(NS_INLINE_IS_BREAK_BEFORE(childStatus) ||
               !NS_FRAME_IS_FULLY_COMPLETE(childStatus) ||
               !child->GetNextInFlow(),
               "fully-complete reflow should destroy any NIFs");

    if (NS_INLINE_IS_BREAK_BEFORE(childStatus)) {
      MOZ_ASSERT(!child->GetPrevInFlow(),
                 "continuations should never report BREAK_BEFORE status");
      MOZ_ASSERT(!aFragmentainer.mIsTopOfPage,
                 "got NS_INLINE_IS_BREAK_BEFORE at top of page");
      if (!didGrowRow) {
        if (rowCanGrow) {
          // Grow this row and restart with the next row as |aEndRow|.
          aState.mRows.ResizeRow(row, maxRowSize);
          if (aState.mSharedGridData) {
            aState.mSharedGridData->mRows.ResizeRow(row, maxRowSize);
          }
          didGrowRow = true;
          aEndRow = row + 1;  // growing this row makes the next one not fit
          i = -1;  // i == 0 after the next loop increment
          isRowTopOfPage = isStartRowTopOfPage;
          overflowIncompleteItems.Clear();
          incompleteItems.Clear();
          nscoord bEndRow =
            aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap);
          aFragmentainer.mToFragmentainerEnd = bEndRow;
          if (aFragmentainer.mIsAutoBSize) {
            aBSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
          } else if (NS_FRAME_IS_NOT_COMPLETE(aStatus)) {
            aBSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
                                   aState.mReflowInput->ComputedMinBSize(),
                                   aState.mReflowInput->ComputedMaxBSize());
            aBSize = std::min(bEndRow, aBSize);
          }
          continue;
        }

        if (!isRowTopOfPage) {
          // We can break before this row - restart with it as the new end row.
          aEndRow = row;
          aBSize = aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap);
          i = -1;  // i == 0 after the next loop increment
          isRowTopOfPage = isStartRowTopOfPage;
          overflowIncompleteItems.Clear();
          incompleteItems.Clear();
          NS_FRAME_SET_INCOMPLETE(aStatus);
          continue;
        }
        NS_ERROR("got BREAK_BEFORE at top-of-page");
        childStatus = NS_FRAME_COMPLETE;
      } else {
        NS_ERROR("got BREAK_BEFORE again after growing the row?");
        NS_FRAME_SET_INCOMPLETE(childStatus);
      }
    } else if (NS_INLINE_IS_BREAK_AFTER(childStatus)) {
      MOZ_ASSERT_UNREACHABLE("unexpected child reflow status");
    }

    if (NS_FRAME_IS_NOT_COMPLETE(childStatus)) {
      incompleteItems.PutEntry(child);
    } else if (!NS_FRAME_IS_FULLY_COMPLETE(childStatus)) {
      overflowIncompleteItems.PutEntry(child);
    }
  }

  // Record a break before |aEndRow|.
  aState.mNextFragmentStartRow = aEndRow;
  if (aEndRow < aState.mRows.mSizes.Length()) {
    aState.mRows.BreakBeforeRow(aEndRow);
    if (aState.mSharedGridData) {
      aState.mSharedGridData->mRows.BreakBeforeRow(aEndRow);
    }
  }

  if (!pushedItems.IsEmpty() ||
      !incompleteItems.IsEmpty() ||
      !overflowIncompleteItems.IsEmpty()) {
    if (NS_FRAME_IS_COMPLETE(aStatus)) {
      NS_FRAME_SET_OVERFLOW_INCOMPLETE(aStatus);
      aStatus |= NS_FRAME_REFLOW_NEXTINFLOW;
    }
    // Iterate the children in normal document order and append them (or a NIF)
    // to one of the following frame lists according to their status.
    nsFrameList pushedList;
    nsFrameList incompleteList;
    nsFrameList overflowIncompleteList;
    auto* pc = PresContext();
    auto* fc = pc->PresShell()->FrameConstructor();
    for (nsIFrame* child = GetChildList(kPrincipalList).FirstChild(); child; ) {
      MOZ_ASSERT((pushedItems.Contains(child) ? 1 : 0) +
                 (incompleteItems.Contains(child) ? 1 : 0) +
                 (overflowIncompleteItems.Contains(child) ? 1 : 0) <= 1,
                 "child should only be in one of these sets");
      // Save the next-sibling so we can continue the loop if |child| is moved.
      nsIFrame* next = child->GetNextSibling();
      if (pushedItems.Contains(child)) {
        MOZ_ASSERT(child->GetParent() == this);
        StealFrame(child);
        pushedList.AppendFrame(nullptr, child);
      } else if (incompleteItems.Contains(child)) {
        nsIFrame* childNIF = child->GetNextInFlow();
        if (!childNIF) {
          childNIF = fc->CreateContinuingFrame(pc, child, this);
          incompleteList.AppendFrame(nullptr, childNIF);
        } else {
          auto parent = static_cast<nsGridContainerFrame*>(childNIF->GetParent());
          MOZ_ASSERT(parent != this || !mFrames.ContainsFrame(childNIF),
                     "child's NIF shouldn't be in the same principal list");
          // If child's existing NIF is an overflow container, convert it to an
          // actual NIF, since now |child| has non-overflow stuff to give it.
          // Or, if it's further away then our next-in-flow, then pull it up.
          if ((childNIF->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) ||
              (parent != this && parent != GetNextInFlow())) {
            parent->StealFrame(childNIF);
            childNIF->RemoveStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
            if (parent == this) {
              incompleteList.AppendFrame(nullptr, childNIF);
            } else {
              // If childNIF already lives on the next grid fragment, then we
              // don't need to reparent it, since we know it's destined to end
              // up there anyway.  Just move it to its parent's overflow list.
              if (parent == GetNextInFlow()) {
                nsFrameList toMove(childNIF, childNIF);
                parent->MergeSortedOverflow(toMove);
              } else {
                ReparentFrame(childNIF, parent, this);
                incompleteList.AppendFrame(nullptr, childNIF);
              }
            }
          }
        }
      } else if (overflowIncompleteItems.Contains(child)) {
        nsIFrame* childNIF = child->GetNextInFlow();
        if (!childNIF) {
          childNIF = fc->CreateContinuingFrame(pc, child, this);
          childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
          overflowIncompleteList.AppendFrame(nullptr, childNIF);
        } else {
          DebugOnly<nsGridContainerFrame*> lastParent = this;
          auto nif = static_cast<nsGridContainerFrame*>(GetNextInFlow());
          // If child has any non-overflow-container NIFs, convert them to
          // overflow containers, since that's all |child| needs now.
          while (childNIF &&
                 !childNIF->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
            auto parent = static_cast<nsGridContainerFrame*>(childNIF->GetParent());
            parent->StealFrame(childNIF);
            childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
            if (parent == this) {
              overflowIncompleteList.AppendFrame(nullptr, childNIF);
            } else {
              if (!nif || parent == nif) {
                nsFrameList toMove(childNIF, childNIF);
                parent->MergeSortedExcessOverflowContainers(toMove);
              } else {
                ReparentFrame(childNIF, parent, nif);
                nsFrameList toMove(childNIF, childNIF);
                nif->MergeSortedExcessOverflowContainers(toMove);
              }
              // We only need to reparent the first childNIF (or not at all if
              // its parent is our NIF).
              nif = nullptr;
            }
            lastParent = parent;
            childNIF = childNIF->GetNextInFlow();
          }
        }
      }
      child = next;
    }

    // Merge the results into our respective overflow child lists.
    if (!pushedList.IsEmpty()) {
      MergeSortedOverflow(pushedList);
      AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
      // NOTE since we messed with our child list here, we intentionally
      // make aState.mIter invalid to avoid any use of it after this point.
      aState.mIter.Invalidate();
    }
    if (!incompleteList.IsEmpty()) {
      MergeSortedOverflow(incompleteList);
      // NOTE since we messed with our child list here, we intentionally
      // make aState.mIter invalid to avoid any use of it after this point.
      aState.mIter.Invalidate();
    }
    if (!overflowIncompleteList.IsEmpty()) {
      MergeSortedExcessOverflowContainers(overflowIncompleteList);
    }
  }
  return aBSize;
}

nscoord
nsGridContainerFrame::ReflowChildren(GridReflowInput&     aState,
                                     const LogicalRect&   aContentArea,
                                     ReflowOutput& aDesiredSize,
                                     nsReflowStatus&      aStatus)
{
  MOZ_ASSERT(aState.mReflowInput);

  aStatus = NS_FRAME_COMPLETE;
  nsOverflowAreas ocBounds;
  nsReflowStatus ocStatus = NS_FRAME_COMPLETE;
  if (GetPrevInFlow()) {
    ReflowOverflowContainerChildren(PresContext(), *aState.mReflowInput,
                                    ocBounds, 0, ocStatus,
                                    MergeSortedFrameListsFor);
  }

  WritingMode wm = aState.mReflowInput->GetWritingMode();
  const nsSize containerSize =
    (aContentArea.Size(wm) + aState.mBorderPadding.Size(wm)).GetPhysicalSize(wm);

  nscoord bSize = aContentArea.BSize(wm);
  Maybe<Fragmentainer> fragmentainer = GetNearestFragmentainer(aState);
  if (MOZ_UNLIKELY(fragmentainer.isSome())) {
    aState.mInFragmentainer = true;
    bSize = ReflowInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
                                  *fragmentainer, containerSize);
  } else {
    aState.mIter.Reset(GridItemCSSOrderIterator::eIncludeAll);
    for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
      nsIFrame* child = *aState.mIter;
      const GridItemInfo* info = nullptr;
      if (child->GetType() != nsGkAtoms::placeholderFrame) {
        info = &aState.mGridItems[aState.mIter.GridItemIndex()];
      }
      ReflowInFlowChild(*aState.mIter, info, containerSize, Nothing(), nullptr,
                        aState, aContentArea, aDesiredSize, aStatus);
      MOZ_ASSERT(NS_FRAME_IS_COMPLETE(aStatus), "child should be complete "
                 "in unconstrained reflow");
    }
  }

  // Merge overflow container bounds and status.
  aDesiredSize.mOverflowAreas.UnionWith(ocBounds);
  NS_MergeReflowStatusInto(&aStatus, ocStatus);

  if (IsAbsoluteContainer()) {
    nsFrameList children(GetChildList(GetAbsoluteListID()));
    if (!children.IsEmpty()) {
      // 'gridOrigin' is the origin of the grid (the start of the first track),
      // with respect to the grid container's padding-box (CB).
      LogicalMargin pad(aState.mReflowInput->ComputedLogicalPadding());
      const LogicalPoint gridOrigin(wm, pad.IStart(wm), pad.BStart(wm));
      const LogicalRect gridCB(wm, 0, 0,
                               aContentArea.ISize(wm) + pad.IStartEnd(wm),
                               bSize + pad.BStartEnd(wm));
      const nsSize gridCBPhysicalSize = gridCB.Size(wm).GetPhysicalSize(wm);
      size_t i = 0;
      for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
        nsIFrame* child = e.get();
        MOZ_ASSERT(i < aState.mAbsPosItems.Length());
        MOZ_ASSERT(aState.mAbsPosItems[i].mFrame == child);
        GridArea& area = aState.mAbsPosItems[i].mArea;
        LogicalRect itemCB =
          aState.ContainingBlockForAbsPos(area, gridOrigin, gridCB);
        // nsAbsoluteContainingBlock::Reflow uses physical coordinates.
        nsRect* cb = child->GetProperty(GridItemContainingBlockRect());
        if (!cb) {
          cb = new nsRect;
          child->SetProperty(GridItemContainingBlockRect(), cb);
        }
        *cb = itemCB.GetPhysicalRect(wm, gridCBPhysicalSize);
      }
      // We pass a dummy rect as CB because each child has its own CB rect.
      // The eIsGridContainerCB flag tells nsAbsoluteContainingBlock::Reflow to
      // use those instead.
      nsRect dummyRect;
      AbsPosReflowFlags flags =
        AbsPosReflowFlags::eCBWidthAndHeightChanged; // XXX could be optimized
      flags |= AbsPosReflowFlags::eConstrainHeight;
      flags |= AbsPosReflowFlags::eIsGridContainerCB;
      GetAbsoluteContainingBlock()->Reflow(this, PresContext(),
                                           *aState.mReflowInput,
                                           aStatus, dummyRect, flags,
                                           &aDesiredSize.mOverflowAreas);
    }
  }
  return bSize;
}

void
nsGridContainerFrame::Reflow(nsPresContext*           aPresContext,
                             ReflowOutput&     aDesiredSize,
                             const ReflowInput& aReflowInput,
                             nsReflowStatus&          aStatus)
{
  MarkInReflow();
  DO_GLOBAL_REFLOW_COUNT("nsGridContainerFrame");
  DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus);

  if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) {
    return;
  }

  // First we gather child frames we should include in our reflow,
  // i.e. overflowed children from our prev-in-flow, and pushed first-in-flow
  // children (that might now fit). It's important to note that these children
  // can be in arbitrary order vis-a-vis the current children in our lists.
  // E.g. grid items in the document order: A, B, C may be placed in the rows
  // 3, 2, 1.  Assume each row goes in a separate grid container fragment,
  // and we reflow the second fragment.  Now if C (in fragment 1) overflows,
  // we can't just prepend it to our mFrames like we usually do because that
  // would violate the document order invariant that other code depends on.
  // Similarly if we pull up child A (from fragment 3) we can't just append
  // that for the same reason.  Instead, we must sort these children into
  // our child lists.  (The sorting is trivial given that both lists are
  // already fully sorted individually - it's just a merge.)
  //
  // The invariants that we maintain are that each grid container child list
  // is sorted in the normal document order at all times, but that children
  // in different grid container continuations may be in arbitrary order.

  auto prevInFlow = static_cast<nsGridContainerFrame*>(GetPrevInFlow());
  // Merge overflow frames from our prev-in-flow into our principal child list.
  if (prevInFlow) {
    AutoFrameListPtr overflow(aPresContext,
                              prevInFlow->StealOverflowFrames());
    if (overflow) {
      ReparentFrames(*overflow, prevInFlow, this);
      ::MergeSortedFrameLists(mFrames, *overflow, GetContent());

      // Move trailing next-in-flows into our overflow list.
      nsFrameList continuations;
      for (nsIFrame* f = mFrames.FirstChild(); f; ) {
        nsIFrame* next = f->GetNextSibling();
        nsIFrame* pif = f->GetPrevInFlow();
        if (pif && pif->GetParent() == this) {
          mFrames.RemoveFrame(f);
          continuations.AppendFrame(nullptr, f);
        }
        f = next;
      }
      MergeSortedOverflow(continuations);

      // Move trailing OC next-in-flows into our excess overflow containers list.
      nsFrameList* overflowContainers =
        GetPropTableFrames(OverflowContainersProperty());
      if (overflowContainers) {
        nsFrameList moveToEOC;
        for (nsIFrame* f = overflowContainers->FirstChild(); f; ) {
          nsIFrame* next = f->GetNextSibling();
          nsIFrame* pif = f->GetPrevInFlow();
          if (pif && pif->GetParent() == this) {
            overflowContainers->RemoveFrame(f);
            moveToEOC.AppendFrame(nullptr, f);
          }
          f = next;
        }
        if (overflowContainers->IsEmpty()) {
          DeleteProperty(OverflowContainersProperty());
        }
        MergeSortedExcessOverflowContainers(moveToEOC);
      }
    }
  }

  // Merge our own overflow frames into our principal child list,
  // except those that are a next-in-flow for one of our items.
  DebugOnly<bool> foundOwnPushedChild = false;
  {
    nsFrameList* ourOverflow = GetOverflowFrames();
    if (ourOverflow) {
      nsFrameList items;
      for (nsIFrame* f = ourOverflow->FirstChild(); f; ) {
        nsIFrame* next = f->GetNextSibling();
        nsIFrame* pif = f->GetPrevInFlow();
        if (!pif || pif->GetParent() != this) {
          MOZ_ASSERT(f->GetParent() == this);
          ourOverflow->RemoveFrame(f);
          items.AppendFrame(nullptr, f);
          if (!pif) {
            foundOwnPushedChild = true;
          }
        }
        f = next;
      }
      ::MergeSortedFrameLists(mFrames, items, GetContent());
      if (ourOverflow->IsEmpty()) {
        DestroyOverflowList();
      }
    }
  }

  // Pull up any first-in-flow children we might have pushed.
  if (HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) {
    RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
    nsFrameList items;
    auto nif = static_cast<nsGridContainerFrame*>(GetNextInFlow());
    auto firstNIF = nif;
    DebugOnly<bool> nifNeedPushedItem = false;
    while (nif) {
      nsFrameList nifItems;
      for (nsIFrame* nifChild = nif->GetChildList(kPrincipalList).FirstChild();
           nifChild; ) {
        nsIFrame* next = nifChild->GetNextSibling();
        if (!nifChild->GetPrevInFlow()) {
          nif->StealFrame(nifChild);
          ReparentFrame(nifChild, nif, this);
          nifItems.AppendFrame(nullptr, nifChild);
          nifNeedPushedItem = false;
        }
        nifChild = next;
      }
      ::MergeSortedFrameLists(items, nifItems, GetContent());

      if (!nif->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) {
        MOZ_ASSERT(!nifNeedPushedItem || mDidPushItemsBitMayLie,
                   "NS_STATE_GRID_DID_PUSH_ITEMS lied");
        break;
      }
      nifNeedPushedItem = true;

      for (nsIFrame* nifChild = nif->GetChildList(kOverflowList).FirstChild();
           nifChild; ) {
        nsIFrame* next = nifChild->GetNextSibling();
        if (!nifChild->GetPrevInFlow()) {
          nif->StealFrame(nifChild);
          ReparentFrame(nifChild, nif, this);
          nifItems.AppendFrame(nullptr, nifChild);
          nifNeedPushedItem = false;
        }
        nifChild = next;
      }
      ::MergeSortedFrameLists(items, nifItems, GetContent());

      nif->RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
      nif = static_cast<nsGridContainerFrame*>(nif->GetNextInFlow());
      MOZ_ASSERT(nif || !nifNeedPushedItem || mDidPushItemsBitMayLie,
                 "NS_STATE_GRID_DID_PUSH_ITEMS lied");
    }

    if (!items.IsEmpty()) {
      // Pull up the first next-in-flow of the pulled up items too, unless its
      // parent is our nif (to avoid leaving a hole there).
      nsFrameList childNIFs;
      nsFrameList childOCNIFs;
      for (auto child : items) {
        auto childNIF = child->GetNextInFlow();
        if (childNIF && childNIF->GetParent() != firstNIF) {
          auto parent = childNIF->GetParent();
          parent->StealFrame(childNIF);
          ReparentFrame(childNIF, parent, firstNIF);
          if ((childNIF->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER)) {
            childOCNIFs.AppendFrame(nullptr, childNIF);
          } else {
            childNIFs.AppendFrame(nullptr, childNIF);
          }
        }
      }
      // Merge items' NIFs into our NIF's respective overflow child lists.
      firstNIF->MergeSortedOverflow(childNIFs);
      firstNIF->MergeSortedExcessOverflowContainers(childOCNIFs);
    }

    MOZ_ASSERT(foundOwnPushedChild || !items.IsEmpty() || mDidPushItemsBitMayLie,
               "NS_STATE_GRID_DID_PUSH_ITEMS lied");
    ::MergeSortedFrameLists(mFrames, items, GetContent());
  }

  RenumberList();

#ifdef DEBUG
  mDidPushItemsBitMayLie = false;
  SanityCheckGridItemsBeforeReflow();
#endif // DEBUG

  mBaseline[0][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
  mBaseline[0][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
  mBaseline[1][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
  mBaseline[1][1] = NS_INTRINSIC_WIDTH_UNKNOWN;

  const nsStylePosition* stylePos = aReflowInput.mStylePosition;
  if (!prevInFlow) {
    InitImplicitNamedAreas(stylePos);
  }
  GridReflowInput gridReflowInput(this, aReflowInput);
  if (gridReflowInput.mIter.ItemsAreAlreadyInOrder()) {
    AddStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
  } else {
    RemoveStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
  }
  if (gridReflowInput.mIter.AtEnd()) {
    // We have no grid items, our parent should synthesize a baseline if needed.
    AddStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
  } else {
    RemoveStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
  }
  const nscoord computedBSize = aReflowInput.ComputedBSize();
  const nscoord computedISize = aReflowInput.ComputedISize();
  const WritingMode& wm = gridReflowInput.mWM;
  LogicalSize computedSize(wm, computedISize, computedBSize);

  nscoord consumedBSize = 0;
  nscoord bSize = 0;
  if (!prevInFlow) {
    Grid grid;
    grid.PlaceGridItems(gridReflowInput, aReflowInput.ComputedMinSize(),
                        computedSize, aReflowInput.ComputedMaxSize());

    gridReflowInput.CalculateTrackSizes(grid, computedSize,
                                        SizingConstraint::eNoConstraint);
    // Note: we can't use GridLineEdge here since we haven't calculated
    // the rows' mPosition yet (happens in AlignJustifyContent below).
    for (const auto& sz : gridReflowInput.mRows.mSizes) {
      bSize += sz.mBase;
    }
    bSize += gridReflowInput.mRows.SumOfGridGaps();
  } else {
    consumedBSize = GetConsumedBSize();
    gridReflowInput.InitializeForContinuation(this, consumedBSize);
    const uint32_t numRows = gridReflowInput.mRows.mSizes.Length();
    bSize = gridReflowInput.mRows.GridLineEdge(numRows,
                                               GridLineSide::eAfterGridGap);
  }
  if (computedBSize == NS_AUTOHEIGHT) {
    bSize = NS_CSS_MINMAX(bSize,
                          aReflowInput.ComputedMinBSize(),
                          aReflowInput.ComputedMaxBSize());
  } else {
    bSize = computedBSize;
  }
  bSize = std::max(bSize - consumedBSize, 0);
  auto& bp = gridReflowInput.mBorderPadding;
  LogicalRect contentArea(wm, bp.IStart(wm), bp.BStart(wm),
                          computedISize, bSize);

  if (!prevInFlow) {
    // Apply 'align/justify-content' to the grid.
    // CalculateTrackSizes did the columns.
    gridReflowInput.mRows.AlignJustifyContent(stylePos, wm, contentArea.Size(wm));
  }

  bSize = ReflowChildren(gridReflowInput, contentArea, aDesiredSize, aStatus);
  bSize = std::max(bSize - consumedBSize, 0);

  // Skip our block-end border if we're INCOMPLETE.
  if (!NS_FRAME_IS_COMPLETE(aStatus) &&
      !gridReflowInput.mSkipSides.BEnd() &&
      StyleBorder()->mBoxDecorationBreak !=
        StyleBoxDecorationBreak::Clone) {
    bp.BEnd(wm) = nscoord(0);
  }

  LogicalSize desiredSize(wm, computedISize + bp.IStartEnd(wm),
                              bSize         + bp.BStartEnd(wm));
  aDesiredSize.SetSize(wm, desiredSize);
  nsRect frameRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height());
  aDesiredSize.mOverflowAreas.UnionAllWith(frameRect);

  // Convert INCOMPLETE -> OVERFLOW_INCOMPLETE and zero bsize if we're an OC.
  if (HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
    if (!NS_FRAME_IS_COMPLETE(aStatus)) {
      NS_FRAME_SET_OVERFLOW_INCOMPLETE(aStatus);
      aStatus |= NS_FRAME_REFLOW_NEXTINFLOW;
    }
    bSize = 0;
    desiredSize.BSize(wm) = bSize + bp.BStartEnd(wm);
    aDesiredSize.SetSize(wm, desiredSize);
  }

  if (!gridReflowInput.mInFragmentainer) {
    MOZ_ASSERT(gridReflowInput.mIter.IsValid());
    auto sz = frameRect.Size();
    CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
                       &gridReflowInput.mGridItems, gridReflowInput.mCols,
                       0, gridReflowInput.mCols.mSizes.Length(),
                       wm, sz, bp.IStart(wm),
                       bp.IEnd(wm), desiredSize.ISize(wm));
    CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
                       &gridReflowInput.mGridItems, gridReflowInput.mRows,
                       0, gridReflowInput.mRows.mSizes.Length(),
                       wm, sz, bp.BStart(wm),
                       bp.BEnd(wm), desiredSize.BSize(wm));
  } else {
    // Only compute 'first baseline' if this fragment contains the first track.
    // XXXmats maybe remove this condition? bug 1306499
    BaselineSet baselines = BaselineSet::eNone;
    if (gridReflowInput.mStartRow == 0 &&
        gridReflowInput.mStartRow != gridReflowInput.mNextFragmentStartRow) {
      baselines = BaselineSet::eFirst;
    }
    // Only compute 'last baseline' if this fragment contains the last track.
    // XXXmats maybe remove this condition? bug 1306499
    uint32_t len = gridReflowInput.mRows.mSizes.Length();
    if (gridReflowInput.mStartRow != len &&
        gridReflowInput.mNextFragmentStartRow == len) {
      baselines = BaselineSet(baselines | BaselineSet::eLast);
    }
    Maybe<GridItemCSSOrderIterator> iter;
    Maybe<nsTArray<GridItemInfo>> gridItems;
    if (baselines != BaselineSet::eNone) {
      // We need to create a new iterator and GridItemInfo array because we
      // might have pushed some children at this point.
      // Even if the gridReflowInput iterator is invalid we can reuse its
      // state about order to optimize initialization of the new iterator.
      // An ordered child list can't become unordered by pushing frames.
      // An unordered list can become ordered in a number of cases, but we
      // ignore that here and guess that the child list is still unordered.
      // XXX this is O(n^2) in the number of items in this fragment: bug 1306705
      using Filter = GridItemCSSOrderIterator::ChildFilter;
      using Order = GridItemCSSOrderIterator::OrderState;
      bool ordered = gridReflowInput.mIter.ItemsAreAlreadyInOrder();
      auto orderState = ordered ? Order::eKnownOrdered : Order::eKnownUnordered;
      iter.emplace(this, kPrincipalList, Filter::eSkipPlaceholders, orderState);
      gridItems.emplace();
      for (; !iter->AtEnd(); iter->Next()) {
        auto child = **iter;
        for (const auto& info : gridReflowInput.mGridItems) {
          if (info.mFrame == child) {
            gridItems->AppendElement(info);
          }
        }
      }
    }
    auto sz = frameRect.Size();
    CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
                       gridReflowInput.mCols, 0,
                       gridReflowInput.mCols.mSizes.Length(), wm, sz,
                       bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm));
    CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
                       gridReflowInput.mRows, gridReflowInput.mStartRow,
                       gridReflowInput.mNextFragmentStartRow, wm, sz,
                       bp.BStart(wm), bp.BEnd(wm), desiredSize.BSize(wm));
  }

  if (HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES)) {
    // This state bit will never be cleared, since reflow can be called
    // multiple times in fragmented grids, and it's challenging to scope
    // the bit to only that sequence of calls. This is relatively harmless
    // since this bit is only set by accessing a ChromeOnly property, and
    // therefore can't unduly slow down normal web browsing.

    // Now that we know column and row sizes and positions, set
    // the ComputedGridTrackInfo and related properties

    uint32_t colTrackCount = gridReflowInput.mCols.mSizes.Length();
    nsTArray<nscoord> colTrackPositions(colTrackCount);
    nsTArray<nscoord> colTrackSizes(colTrackCount);
    nsTArray<uint32_t> colTrackStates(colTrackCount);
    nsTArray<bool> colRemovedRepeatTracks(
      gridReflowInput.mColFunctions.mRemovedRepeatTracks);
    uint32_t col = 0;
    for (const TrackSize& sz : gridReflowInput.mCols.mSizes) {
      colTrackPositions.AppendElement(sz.mPosition);
      colTrackSizes.AppendElement(sz.mBase);
      bool isRepeat = ((col >= gridReflowInput.mColFunctions.mRepeatAutoStart) &&
                       (col < gridReflowInput.mColFunctions.mRepeatAutoEnd));
      colTrackStates.AppendElement(
          isRepeat ?
          (uint32_t)mozilla::dom::GridTrackState::Repeat :
          (uint32_t)mozilla::dom::GridTrackState::Static
      );

      col++;
    }
    ComputedGridTrackInfo* colInfo = new ComputedGridTrackInfo(
      gridReflowInput.mColFunctions.mExplicitGridOffset,
      gridReflowInput.mColFunctions.NumExplicitTracks(),
      0,
      col,
      Move(colTrackPositions),
      Move(colTrackSizes),
      Move(colTrackStates),
      Move(colRemovedRepeatTracks),
      gridReflowInput.mColFunctions.mRepeatAutoStart);
    SetProperty(GridColTrackInfo(), colInfo);

    uint32_t rowTrackCount = gridReflowInput.mRows.mSizes.Length();
    nsTArray<nscoord> rowTrackPositions(rowTrackCount);
    nsTArray<nscoord> rowTrackSizes(rowTrackCount);
    nsTArray<uint32_t> rowTrackStates(rowTrackCount);
    nsTArray<bool> rowRemovedRepeatTracks(
      gridReflowInput.mRowFunctions.mRemovedRepeatTracks);
    uint32_t row = 0;
    for (const TrackSize& sz : gridReflowInput.mRows.mSizes) {
      rowTrackPositions.AppendElement(sz.mPosition);
      rowTrackSizes.AppendElement(sz.mBase);
      bool isRepeat = ((row >= gridReflowInput.mRowFunctions.mRepeatAutoStart) &&
                       (row < gridReflowInput.mRowFunctions.mRepeatAutoEnd));
      rowTrackStates.AppendElement(
        isRepeat ?
        (uint32_t)mozilla::dom::GridTrackState::Repeat :
        (uint32_t)mozilla::dom::GridTrackState::Static
      );

      row++;
    }
    // Row info has to accomodate fragmentation of the grid, which may happen in
    // later calls to Reflow. For now, presume that no more fragmentation will
    // occur.
    ComputedGridTrackInfo* rowInfo = new ComputedGridTrackInfo(
      gridReflowInput.mRowFunctions.mExplicitGridOffset,
      gridReflowInput.mRowFunctions.NumExplicitTracks(),
      gridReflowInput.mStartRow,
      row,
      Move(rowTrackPositions),
      Move(rowTrackSizes),
      Move(rowTrackStates),
      Move(rowRemovedRepeatTracks),
      gridReflowInput.mRowFunctions.mRepeatAutoStart);
    SetProperty(GridRowTrackInfo(), rowInfo);

    if (prevInFlow) {
      // This frame is fragmenting rows from a previous frame, so patch up
      // the prior GridRowTrackInfo with a new end row.

      // FIXME: This can be streamlined and/or removed when bug 1151204 lands.

      ComputedGridTrackInfo* priorRowInfo =
        prevInFlow->GetProperty(GridRowTrackInfo());

      // Adjust track positions based on the first track in this fragment.
      if (priorRowInfo->mPositions.Length() >
          priorRowInfo->mStartFragmentTrack) {
        nscoord delta =
          priorRowInfo->mPositions[priorRowInfo->mStartFragmentTrack];
        for (nscoord& pos : priorRowInfo->mPositions) {
          pos -= delta;
        }
      }

      ComputedGridTrackInfo* revisedPriorRowInfo = new ComputedGridTrackInfo(
        priorRowInfo->mNumLeadingImplicitTracks,
        priorRowInfo->mNumExplicitTracks,
        priorRowInfo->mStartFragmentTrack,
        gridReflowInput.mStartRow,
        Move(priorRowInfo->mPositions),
        Move(priorRowInfo->mSizes),
        Move(priorRowInfo->mStates),
        Move(priorRowInfo->mRemovedRepeatTracks),
        priorRowInfo->mRepeatFirstTrack);
      prevInFlow->SetProperty(GridRowTrackInfo(), revisedPriorRowInfo);
    }

    // Generate the line info properties. We need to provide the number of
    // repeat tracks produced in the reflow. Only explicit names are assigned
    // to lines here; the mozilla::dom::GridLines class will later extract
    // implicit names from grid areas and assign them to the appropriate lines.

    // Generate column lines first.
    uint32_t capacity = gridReflowInput.mCols.mSizes.Length();
    const nsStyleGridTemplate& gridColTemplate =
      gridReflowInput.mGridStyle->mGridTemplateColumns;
    nsTArray<nsTArray<nsString>> columnLineNames(capacity);
    for (col = 0; col <= gridReflowInput.mCols.mSizes.Length(); col++) {
      // Offset col by the explicit grid offset, to get the original names.
      nsTArray<nsString> explicitNames =
        gridReflowInput.mCols.GetExplicitLineNamesAtIndex(
          gridColTemplate,
          gridReflowInput.mColFunctions,
          col - gridReflowInput.mColFunctions.mExplicitGridOffset);

      columnLineNames.AppendElement(explicitNames);
    }
    ComputedGridLineInfo* columnLineInfo = new ComputedGridLineInfo(
      Move(columnLineNames),
      gridColTemplate.mRepeatAutoLineNameListBefore,
      gridColTemplate.mRepeatAutoLineNameListAfter);
    SetProperty(GridColumnLineInfo(), columnLineInfo);

    // Generate row lines next.
    capacity = gridReflowInput.mRows.mSizes.Length();
    const nsStyleGridTemplate& gridRowTemplate =
      gridReflowInput.mGridStyle->mGridTemplateRows;
    nsTArray<nsTArray<nsString>> rowLineNames(capacity);
    for (row = 0; row <= gridReflowInput.mRows.mSizes.Length(); row++) {
      // Offset row by the explicit grid offset, to get the original names.
      nsTArray<nsString> explicitNames =
        gridReflowInput.mRows.GetExplicitLineNamesAtIndex(
          gridRowTemplate,
          gridReflowInput.mRowFunctions,
          row - gridReflowInput.mRowFunctions.mExplicitGridOffset);

      rowLineNames.AppendElement(explicitNames);
    }
    ComputedGridLineInfo* rowLineInfo = new ComputedGridLineInfo(
      Move(rowLineNames),
      gridRowTemplate.mRepeatAutoLineNameListBefore,
      gridRowTemplate.mRepeatAutoLineNameListAfter);
    SetProperty(GridRowLineInfo(), rowLineInfo);

    // Generate area info for explicit areas. Implicit areas are handled
    // elsewhere.
    if (gridReflowInput.mGridStyle->mGridTemplateAreas) {
      nsTArray<css::GridNamedArea>* areas = new nsTArray<css::GridNamedArea>(
          gridReflowInput.mGridStyle->mGridTemplateAreas->mNamedAreas);
      SetProperty(ExplicitNamedAreasProperty(), areas);
    } else {
      DeleteProperty(ExplicitNamedAreasProperty());
    }
  }

  if (!prevInFlow) {
    SharedGridData* sharedGridData = GetProperty(SharedGridData::Prop());
    if (!NS_FRAME_IS_FULLY_COMPLETE(aStatus)) {
      if (!sharedGridData) {
        sharedGridData = new SharedGridData;
        SetProperty(SharedGridData::Prop(), sharedGridData);
      }
      sharedGridData->mCols.mSizes.Clear();
      sharedGridData->mCols.mSizes.SwapElements(gridReflowInput.mCols.mSizes);
      sharedGridData->mCols.mContentBoxSize = gridReflowInput.mCols.mContentBoxSize;
      sharedGridData->mCols.mBaselineSubtreeAlign[0] =
        gridReflowInput.mCols.mBaselineSubtreeAlign[0];
      sharedGridData->mCols.mBaselineSubtreeAlign[1] =
        gridReflowInput.mCols.mBaselineSubtreeAlign[1];
      sharedGridData->mRows.mSizes.Clear();
      sharedGridData->mRows.mSizes.SwapElements(gridReflowInput.mRows.mSizes);
      // Save the original row grid sizes and gaps so we can restore them later
      // in GridReflowInput::Initialize for the continuations.
      auto& origRowData = sharedGridData->mOriginalRowData;
      origRowData.ClearAndRetainStorage();
      origRowData.SetCapacity(sharedGridData->mRows.mSizes.Length());
      nscoord prevTrackEnd = 0;
      for (auto& sz : sharedGridData->mRows.mSizes) {
        SharedGridData::RowData data = {sz.mBase, sz.mPosition - prevTrackEnd};
        origRowData.AppendElement(data);
        prevTrackEnd = sz.mPosition + sz.mBase;
      }
      sharedGridData->mRows.mContentBoxSize = gridReflowInput.mRows.mContentBoxSize;
      sharedGridData->mRows.mBaselineSubtreeAlign[0] =
        gridReflowInput.mRows.mBaselineSubtreeAlign[0];
      sharedGridData->mRows.mBaselineSubtreeAlign[1] =
        gridReflowInput.mRows.mBaselineSubtreeAlign[1];
      sharedGridData->mGridItems.Clear();
      sharedGridData->mGridItems.SwapElements(gridReflowInput.mGridItems);
      sharedGridData->mAbsPosItems.Clear();
      sharedGridData->mAbsPosItems.SwapElements(gridReflowInput.mAbsPosItems);

      sharedGridData->mGenerateComputedGridInfo =
          HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES);
    } else if (sharedGridData && !GetNextInFlow()) {
      DeleteProperty(SharedGridData::Prop());
    }
  }

  FinishAndStoreOverflow(&aDesiredSize);
  NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize);
}

nscoord
nsGridContainerFrame::IntrinsicISize(nsRenderingContext* aRenderingContext,
                                     IntrinsicISizeType  aType)
{
  RenumberList();

  // Calculate the sum of column sizes under intrinsic sizing.
  // http://dev.w3.org/csswg/css-grid/#intrinsic-sizes
  GridReflowInput state(this, *aRenderingContext);
  InitImplicitNamedAreas(state.mGridStyle); // XXX optimize

  auto GetDefiniteSizes = [] (const nsStyleCoord& aMinCoord,
                              const nsStyleCoord& aSizeCoord,
                              const nsStyleCoord& aMaxCoord,
                              nscoord* aMin,
                              nscoord* aSize,
                              nscoord* aMax) {
    if (aMinCoord.ConvertsToLength()) {
      *aMin = aMinCoord.ToLength();
    }
    if (aMaxCoord.ConvertsToLength()) {
      *aMax = std::max(*aMin, aMaxCoord.ToLength());
    }
    if (aSizeCoord.ConvertsToLength()) {
      *aSize = Clamp(aSizeCoord.ToLength(), *aMin, *aMax);
    }
  };
  // The min/sz/max sizes are the input to the "repeat-to-fill" algorithm:
  // https://drafts.csswg.org/css-grid/#auto-repeat
  // They're only used for auto-repeat so we skip computing them otherwise.
  LogicalSize min(state.mWM, 0, 0);
  LogicalSize sz(state.mWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
  LogicalSize max(state.mWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
  if (state.mColFunctions.mHasRepeatAuto) {
    GetDefiniteSizes(state.mGridStyle->MinISize(state.mWM),
                     state.mGridStyle->ISize(state.mWM),
                     state.mGridStyle->MaxISize(state.mWM),
                     &min.ISize(state.mWM),
                     &sz.ISize(state.mWM),
                     &max.ISize(state.mWM));
  }
  if (state.mRowFunctions.mHasRepeatAuto &&
      !(state.mGridStyle->mGridAutoFlow & NS_STYLE_GRID_AUTO_FLOW_ROW)) {
    // Only 'grid-auto-flow:column' can create new implicit columns, so that's
    // the only case where our block-size can affect the number of columns.
    GetDefiniteSizes(state.mGridStyle->MinBSize(state.mWM),
                     state.mGridStyle->BSize(state.mWM),
                     state.mGridStyle->MaxBSize(state.mWM),
                     &min.BSize(state.mWM),
                     &sz.BSize(state.mWM),
                     &max.BSize(state.mWM));
  }

  Grid grid;
  grid.PlaceGridItems(state, min, sz, max);  // XXX optimize
  if (grid.mGridColEnd == 0) {
    return 0;
  }
  state.mCols.Initialize(state.mColFunctions, state.mGridStyle->mGridColumnGap,
                         grid.mGridColEnd, NS_UNCONSTRAINEDSIZE);
  auto constraint = aType == nsLayoutUtils::MIN_ISIZE ?
    SizingConstraint::eMinContent : SizingConstraint::eMaxContent;
  state.mCols.CalculateSizes(state, state.mGridItems, state.mColFunctions,
                             NS_UNCONSTRAINEDSIZE, &GridArea::mCols,
                             constraint);
  state.mCols.mGridGap =
    nsLayoutUtils::ResolveGapToLength(state.mGridStyle->mGridColumnGap,
                                      NS_UNCONSTRAINEDSIZE);
  nscoord length = 0;
  for (const TrackSize& sz : state.mCols.mSizes) {
    length += sz.mBase;
  }
  return length + state.mCols.SumOfGridGaps();
}

nscoord
nsGridContainerFrame::GetMinISize(nsRenderingContext* aRC)
{
  DISPLAY_MIN_WIDTH(this, mCachedMinISize);
  if (mCachedMinISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
    mCachedMinISize = IntrinsicISize(aRC, nsLayoutUtils::MIN_ISIZE);
  }
  return mCachedMinISize;
}

nscoord
nsGridContainerFrame::GetPrefISize(nsRenderingContext* aRC)
{
  DISPLAY_PREF_WIDTH(this, mCachedPrefISize);
  if (mCachedPrefISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
    mCachedPrefISize = IntrinsicISize(aRC, nsLayoutUtils::PREF_ISIZE);
  }
  return mCachedPrefISize;
}

void
nsGridContainerFrame::MarkIntrinsicISizesDirty()
{
  mCachedMinISize = NS_INTRINSIC_WIDTH_UNKNOWN;
  mCachedPrefISize = NS_INTRINSIC_WIDTH_UNKNOWN;
  mBaseline[0][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
  mBaseline[0][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
  mBaseline[1][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
  mBaseline[1][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
  nsContainerFrame::MarkIntrinsicISizesDirty();
}

nsIAtom*
nsGridContainerFrame::GetType() const
{
  return nsGkAtoms::gridContainerFrame;
}

void
nsGridContainerFrame::BuildDisplayList(nsDisplayListBuilder*   aBuilder,
                                       const nsDisplayListSet& aLists)
{
  DisplayBorderBackgroundOutline(aBuilder, aLists);
  if (GetPrevInFlow()) {
    DisplayOverflowContainers(aBuilder, aLists);
  }

  // Our children are all grid-level boxes, which behave the same as
  // inline-blocks in painting, so their borders/backgrounds all go on
  // the BlockBorderBackgrounds list.
  typedef GridItemCSSOrderIterator::OrderState OrderState;
  OrderState order = HasAnyStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
                       ? OrderState::eKnownOrdered
                       : OrderState::eKnownUnordered;
  GridItemCSSOrderIterator iter(this, kPrincipalList,
                                GridItemCSSOrderIterator::eIncludeAll, order);
  for (; !iter.AtEnd(); iter.Next()) {
    nsIFrame* child = *iter;
    BuildDisplayListForChild(aBuilder, child, aLists, ::GetDisplayFlagsForGridItem(child));
  }
}

bool
nsGridContainerFrame::DrainSelfOverflowList()
{
  // Unlike nsContainerFrame::DrainSelfOverflowList we need to merge these lists
  // so that the resulting mFrames is in document content order.
  // NOTE: nsContainerFrame::AppendFrames/InsertFrames calls this method.
  AutoFrameListPtr overflowFrames(PresContext(), StealOverflowFrames());
  if (overflowFrames) {
    ::MergeSortedFrameLists(mFrames, *overflowFrames, GetContent());
    return true;
  }
  return false;
}

void
nsGridContainerFrame::AppendFrames(ChildListID aListID, nsFrameList& aFrameList)
{
  NoteNewChildren(aListID, aFrameList);
  nsContainerFrame::AppendFrames(aListID, aFrameList);
}

void
nsGridContainerFrame::InsertFrames(ChildListID aListID, nsIFrame* aPrevFrame,
                                   nsFrameList& aFrameList)
{
  NoteNewChildren(aListID, aFrameList);
  nsContainerFrame::InsertFrames(aListID, aPrevFrame, aFrameList);
}

void
nsGridContainerFrame::RemoveFrame(ChildListID aListID, nsIFrame* aOldFrame)
{
#ifdef DEBUG
  ChildListIDs supportedLists =
    kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList;
  MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list");

  // Note that kPrincipalList doesn't mean aOldFrame must be on that list.
  // It can also be on kOverflowList, in which case it might be a pushed
  // item, and if it's the only pushed item our DID_PUSH_ITEMS bit will lie.
  if (aListID == kPrincipalList && !aOldFrame->GetPrevInFlow()) {
    // Since the bit may lie, set the mDidPushItemsBitMayLie value to true for
    // ourself and for all our contiguous previous-in-flow nsGridContainerFrames.
    nsGridContainerFrame* frameThatMayLie = this;
    do {
      frameThatMayLie->mDidPushItemsBitMayLie = true;
      frameThatMayLie = static_cast<nsGridContainerFrame*>(
        frameThatMayLie->GetPrevInFlow());
    } while (frameThatMayLie);
  }
#endif

  nsContainerFrame::RemoveFrame(aListID, aOldFrame);
}

uint16_t
nsGridContainerFrame::CSSAlignmentForAbsPosChild(const ReflowInput& aChildRI,
                                                 LogicalAxis aLogicalAxis) const
{
  MOZ_ASSERT(aChildRI.mFrame->IsAbsolutelyPositioned(),
             "This method should only be called for abspos children");

  uint16_t alignment = (aLogicalAxis == eLogicalAxisInline) ?
    aChildRI.mStylePosition->UsedJustifySelf(StyleContext()) :
    aChildRI.mStylePosition->UsedAlignSelf(StyleContext());

  // XXX strip off <overflow-position> bits until we implement it
  // (bug 1311892)
  alignment &= ~NS_STYLE_ALIGN_FLAG_BITS;

  if (alignment == NS_STYLE_ALIGN_NORMAL) {
    // "the 'normal' keyword behaves as 'start' on replaced
    // absolutely-positioned boxes, and behaves as 'stretch' on all other
    // absolutely-positioned boxes."
    // https://drafts.csswg.org/css-align/#align-abspos
    // https://drafts.csswg.org/css-align/#justify-abspos
    alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced) ?
      NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_STRETCH;
  } else if (alignment == NS_STYLE_ALIGN_FLEX_START) {
    alignment = NS_STYLE_ALIGN_START;
  } else if (alignment == NS_STYLE_ALIGN_FLEX_END) {
    alignment = NS_STYLE_ALIGN_END;
  } else if (alignment == NS_STYLE_ALIGN_LEFT ||
             alignment == NS_STYLE_ALIGN_RIGHT) {
    if (aLogicalAxis == eLogicalAxisInline) {
      const bool isLeft = (alignment == NS_STYLE_ALIGN_LEFT);
      WritingMode wm = GetWritingMode();
      alignment = (isLeft == wm.IsBidiLTR()) ? NS_STYLE_ALIGN_START
                                             : NS_STYLE_ALIGN_END;
    } else {
      alignment = NS_STYLE_ALIGN_START;
    }
  } else if (alignment == NS_STYLE_ALIGN_BASELINE) {
    alignment = NS_STYLE_ALIGN_START;
  } else if (alignment == NS_STYLE_ALIGN_LAST_BASELINE) {
    alignment = NS_STYLE_ALIGN_END;
  }

  return alignment;
}

nscoord
nsGridContainerFrame::SynthesizeBaseline(
  const FindItemInGridOrderResult& aGridOrderItem,
  LogicalAxis          aAxis,
  BaselineSharingGroup aGroup,
  const nsSize&        aCBPhysicalSize,
  nscoord              aCBSize,
  WritingMode          aCBWM)
{
  if (MOZ_UNLIKELY(!aGridOrderItem.mItem)) {
    // No item in this fragment - synthesize a baseline from our border-box.
    return ::SynthesizeBaselineFromBorderBox(aGroup, aCBWM, aCBSize);
  }
  auto GetBBaseline = [] (BaselineSharingGroup aGroup, WritingMode aWM,
                          const nsIFrame* aFrame, nscoord* aBaseline) {
    return aGroup == BaselineSharingGroup::eFirst ?
      nsLayoutUtils::GetFirstLineBaseline(aWM, aFrame, aBaseline) :
      nsLayoutUtils::GetLastLineBaseline(aWM, aFrame, aBaseline);
  };
  nsIFrame* child = aGridOrderItem.mItem->mFrame;
  nsGridContainerFrame* grid = do_QueryFrame(child);
  auto childWM = child->GetWritingMode();
  bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
  nscoord baseline;
  nscoord start;
  nscoord size;
  if (aAxis == eLogicalAxisBlock) {
    start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).B(aCBWM);
    size = child->BSize(aCBWM);
    if (grid && aGridOrderItem.mIsInEdgeTrack) {
      isOrthogonal ? grid->GetIBaseline(aGroup, &baseline) :
                     grid->GetBBaseline(aGroup, &baseline);
    } else if (!isOrthogonal && aGridOrderItem.mIsInEdgeTrack) {
      baseline = child->BaselineBOffset(childWM, aGroup, AlignmentContext::eGrid);
    } else {
      baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
    }
  } else {
    start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).I(aCBWM);
    size = child->ISize(aCBWM);
    if (grid && aGridOrderItem.mIsInEdgeTrack) {
      isOrthogonal ? grid->GetBBaseline(aGroup, &baseline) :
                     grid->GetIBaseline(aGroup, &baseline);
    } else if (isOrthogonal && aGridOrderItem.mIsInEdgeTrack &&
               GetBBaseline(aGroup, childWM, child, &baseline)) {
      if (aGroup == BaselineSharingGroup::eLast) {
        baseline = size - baseline; // convert to distance from border-box end
      }
    } else {
      baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
    }
  }
  return aGroup == BaselineSharingGroup::eFirst ? start + baseline :
    aCBSize - start - size + baseline;
}

void
nsGridContainerFrame::CalculateBaselines(
  BaselineSet                   aBaselineSet,
  GridItemCSSOrderIterator*     aIter,
  const nsTArray<GridItemInfo>* aGridItems,
  const Tracks&    aTracks,
  uint32_t         aFragmentStartTrack,
  uint32_t         aFirstExcludedTrack,
  WritingMode      aWM,
  const nsSize&    aCBPhysicalSize,
  nscoord          aCBBorderPaddingStart,
  nscoord          aCBBorderPaddingEnd,
  nscoord          aCBSize)
{
  const auto axis = aTracks.mAxis;
  auto firstBaseline = aTracks.mBaseline[BaselineSharingGroup::eFirst];
  if (!(aBaselineSet & BaselineSet::eFirst)) {
    mBaseline[axis][BaselineSharingGroup::eFirst] =
      ::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::eFirst, aWM,
                                        aCBSize);
  } else if (firstBaseline == NS_INTRINSIC_WIDTH_UNKNOWN) {
    FindItemInGridOrderResult gridOrderFirstItem =
      FindFirstItemInGridOrder(*aIter, *aGridItems,
        axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
        axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
        aFragmentStartTrack);
    mBaseline[axis][BaselineSharingGroup::eFirst] =
      SynthesizeBaseline(gridOrderFirstItem,
                         axis,
                         BaselineSharingGroup::eFirst,
                         aCBPhysicalSize,
                         aCBSize,
                         aWM);
  } else {
    // We have a 'first baseline' group in the start track in this fragment.
    // Convert it from track to grid container border-box coordinates.
    MOZ_ASSERT(!aGridItems->IsEmpty());
    nscoord gapBeforeStartTrack = aFragmentStartTrack == 0 ?
      aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::eAfterGridGap) :
      nscoord(0); // no content gap at start of fragment
    mBaseline[axis][BaselineSharingGroup::eFirst] =
      aCBBorderPaddingStart + gapBeforeStartTrack + firstBaseline;
  }

  auto lastBaseline = aTracks.mBaseline[BaselineSharingGroup::eLast];
  if (!(aBaselineSet & BaselineSet::eLast)) {
    mBaseline[axis][BaselineSharingGroup::eLast] =
      ::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::eLast, aWM,
                                        aCBSize);
  } else if (lastBaseline == NS_INTRINSIC_WIDTH_UNKNOWN) {
    // For finding items for the 'last baseline' we need to create a reverse
    // iterator ('aIter' is the forward iterator from the GridReflowInput).
    using Iter = ReverseGridItemCSSOrderIterator;
    auto orderState = aIter->ItemsAreAlreadyInOrder() ?
      Iter::OrderState::eKnownOrdered : Iter::OrderState::eKnownUnordered;
    Iter iter(this, kPrincipalList, Iter::ChildFilter::eSkipPlaceholders,
              orderState);
    iter.SetGridItemCount(aGridItems->Length());
    FindItemInGridOrderResult gridOrderLastItem =
      FindLastItemInGridOrder(iter, *aGridItems,
        axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
        axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
        aFragmentStartTrack, aFirstExcludedTrack);
    mBaseline[axis][BaselineSharingGroup::eLast] =
      SynthesizeBaseline(gridOrderLastItem,
                         axis,
                         BaselineSharingGroup::eLast,
                         aCBPhysicalSize,
                         aCBSize,
                         aWM);
  } else {
    // We have a 'last baseline' group in the end track in this fragment.
    // Convert it from track to grid container border-box coordinates.
    MOZ_ASSERT(!aGridItems->IsEmpty());
    auto borderBoxStartToEndOfEndTrack = aCBBorderPaddingStart +
      aTracks.GridLineEdge(aFirstExcludedTrack, GridLineSide::eBeforeGridGap) -
      aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::eBeforeGridGap);
    mBaseline[axis][BaselineSharingGroup::eLast] =
      (aCBSize - borderBoxStartToEndOfEndTrack) + lastBaseline;
  }
}

#ifdef DEBUG_FRAME_DUMP
nsresult
nsGridContainerFrame::GetFrameName(nsAString& aResult) const
{
  return MakeFrameName(NS_LITERAL_STRING("GridContainer"), aResult);
}
#endif

void
nsGridContainerFrame::NoteNewChildren(ChildListID aListID,
                                      const nsFrameList& aFrameList)
{
#ifdef DEBUG
  ChildListIDs supportedLists =
    kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList;
  MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list");
#endif

  nsIPresShell* shell = PresContext()->PresShell();
  for (auto pif = GetPrevInFlow(); pif; pif = pif->GetPrevInFlow()) {
    if (aListID == kPrincipalList) {
      pif->AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
    }
    shell->FrameNeedsReflow(pif, nsIPresShell::eTreeChange, NS_FRAME_IS_DIRTY);
  }
}

void
nsGridContainerFrame::MergeSortedOverflow(nsFrameList& aList)
{
  if (aList.IsEmpty()) {
    return;
  }
  MOZ_ASSERT(!aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER),
             "this is the wrong list to put this child frame");
  MOZ_ASSERT(aList.FirstChild()->GetParent() == this);
  nsFrameList* overflow = GetOverflowFrames();
  if (overflow) {
    ::MergeSortedFrameLists(*overflow, aList, GetContent());
  } else {
    SetOverflowFrames(aList);
  }
}

void
nsGridContainerFrame::MergeSortedExcessOverflowContainers(nsFrameList& aList)
{
  if (aList.IsEmpty()) {
    return;
  }
  MOZ_ASSERT(aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER),
             "this is the wrong list to put this child frame");
  MOZ_ASSERT(aList.FirstChild()->GetParent() == this);
  nsFrameList* eoc = GetPropTableFrames(ExcessOverflowContainersProperty());
  if (eoc) {
    ::MergeSortedFrameLists(*eoc, aList, GetContent());
  } else {
    SetPropTableFrames(new (PresContext()->PresShell()) nsFrameList(aList),
                       ExcessOverflowContainersProperty());
  }
}

/* static */ nsGridContainerFrame::FindItemInGridOrderResult
nsGridContainerFrame::FindFirstItemInGridOrder(
  GridItemCSSOrderIterator& aIter,
  const nsTArray<GridItemInfo>& aGridItems,
  LineRange GridArea::* aMajor,
  LineRange GridArea::* aMinor,
  uint32_t aFragmentStartTrack)
{
  FindItemInGridOrderResult result = { nullptr, false };
  uint32_t minMajor = kTranslatedMaxLine + 1;
  uint32_t minMinor = kTranslatedMaxLine + 1;
  aIter.Reset();
  for (; !aIter.AtEnd(); aIter.Next()) {
    const GridItemInfo& item = aGridItems[aIter.GridItemIndex()];
    if ((item.mArea.*aMajor).mEnd <= aFragmentStartTrack) {
      continue; // item doesn't span any track in this fragment
    }
    uint32_t major = (item.mArea.*aMajor).mStart;
    uint32_t minor = (item.mArea.*aMinor).mStart;
    if (major < minMajor || (major == minMajor && minor < minMinor)) {
      minMajor = major;
      minMinor = minor;
      result.mItem = &item;
      result.mIsInEdgeTrack = major == 0U;
    }
  }
  return result;
}

/* static */ nsGridContainerFrame::FindItemInGridOrderResult
nsGridContainerFrame::FindLastItemInGridOrder(
  ReverseGridItemCSSOrderIterator& aIter,
  const nsTArray<GridItemInfo>& aGridItems,
  LineRange GridArea::* aMajor,
  LineRange GridArea::* aMinor,
  uint32_t aFragmentStartTrack,
  uint32_t aFirstExcludedTrack)
{
  FindItemInGridOrderResult result = { nullptr, false };
  int32_t maxMajor = -1;
  int32_t maxMinor = -1;
  aIter.Reset();
  int32_t lastMajorTrack = int32_t(aFirstExcludedTrack) - 1;
  for (; !aIter.AtEnd(); aIter.Next()) {
    const GridItemInfo& item = aGridItems[aIter.GridItemIndex()];
    // Subtract 1 from the end line to get the item's last track index.
    int32_t major = (item.mArea.*aMajor).mEnd - 1;
    // Currently, this method is only called with aFirstExcludedTrack ==
    // the first track in the next fragment, so we take the opportunity
    // to assert this item really belongs to this fragment.
    MOZ_ASSERT((item.mArea.*aMajor).mStart < aFirstExcludedTrack,
               "found an item that belongs to some later fragment");
    if (major < int32_t(aFragmentStartTrack)) {
      continue; // item doesn't span any track in this fragment
    }
    int32_t minor = (item.mArea.*aMinor).mEnd - 1;
    MOZ_ASSERT(minor >= 0 && major >= 0, "grid item must have span >= 1");
    if (major > maxMajor || (major == maxMajor && minor > maxMinor)) {
      maxMajor = major;
      maxMinor = minor;
      result.mItem = &item;
      result.mIsInEdgeTrack = major == lastMajorTrack;
    }
  }
  return result;
}

#ifdef DEBUG
void
nsGridContainerFrame::SetInitialChildList(ChildListID  aListID,
                                          nsFrameList& aChildList)
{
  ChildListIDs supportedLists = kAbsoluteList | kFixedList | kPrincipalList;
  MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list");

  return nsContainerFrame::SetInitialChildList(aListID, aChildList);
}

void
nsGridContainerFrame::SanityCheckGridItemsBeforeReflow() const
{
  ChildListIDs absLists = kAbsoluteList | kFixedList |
    kOverflowContainersList | kExcessOverflowContainersList;
  ChildListIDs itemLists = kPrincipalList | kOverflowList;
  for (const nsIFrame* f = this; f; f = f->GetNextInFlow()) {
    MOZ_ASSERT(!f->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS),
               "At start of reflow, we should've pulled items back from all "
               "NIFs and cleared NS_STATE_GRID_DID_PUSH_ITEMS in the process");
    for (nsIFrame::ChildListIterator childLists(f);
         !childLists.IsDone(); childLists.Next()) {
      if (!itemLists.Contains(childLists.CurrentID())) {
        MOZ_ASSERT(absLists.Contains(childLists.CurrentID()),
                   "unexpected non-empty child list");
        continue;
      }
      for (auto child : childLists.CurrentList()) {
        MOZ_ASSERT(f == this || child->GetPrevInFlow(),
                   "all pushed items must be pulled up before reflow");
      }
    }
  }
  // If we have a prev-in-flow, each of its children's next-in-flow
  // should be one of our children or be null.
  const auto pif = static_cast<nsGridContainerFrame*>(GetPrevInFlow());
  if (pif) {
    const nsFrameList* oc =
      GetPropTableFrames(OverflowContainersProperty());
    const nsFrameList* eoc =
      GetPropTableFrames(ExcessOverflowContainersProperty());
    const nsFrameList* pifEOC =
      pif->GetPropTableFrames(ExcessOverflowContainersProperty());
    for (const nsIFrame* child : pif->GetChildList(kPrincipalList)) {
      const nsIFrame* childNIF = child->GetNextInFlow();
      MOZ_ASSERT(!childNIF || mFrames.ContainsFrame(childNIF) ||
                 (pifEOC && pifEOC->ContainsFrame(childNIF)) ||
                 (oc && oc->ContainsFrame(childNIF)) ||
                 (eoc && eoc->ContainsFrame(childNIF)));
    }
  }
}

void
nsGridContainerFrame::TrackSize::Dump() const
{
  printf("mPosition=%d mBase=%d mLimit=%d", mPosition, mBase, mLimit);

  printf(" min:");
  if (mState & eAutoMinSizing) {
    printf("auto ");
  } else if (mState & eMinContentMinSizing) {
    printf("min-content ");
  } else if (mState & eMaxContentMinSizing) {
    printf("max-content ");
  }

  printf(" max:");
  if (mState & eAutoMaxSizing) {
    printf("auto ");
  } else if (mState & eMinContentMaxSizing) {
    printf("min-content ");
  } else if (mState & eMaxContentMaxSizing) {
    printf("max-content ");
  } else if (mState & eFlexMaxSizing) {
    printf("flex ");
  }

  if (mState & eFrozen) {
    printf("frozen ");
  }
  if (mState & eModified) {
    printf("modified ");
  }
  if (mState & eBreakBefore) {
    printf("break-before ");
  }
}

#endif // DEBUG

nsGridContainerFrame*
nsGridContainerFrame::GetGridFrameWithComputedInfo(nsIFrame* aFrame)
{
  // Prepare a lambda function that we may need to call multiple times.
  auto GetGridContainerFrame = [](nsIFrame *aFrame) {
    // Return the aFrame's content insertion frame, iff it is
    // a grid container.
    nsGridContainerFrame* gridFrame = nullptr;

    if (aFrame) {
      nsIFrame* contentFrame = aFrame->GetContentInsertionFrame();
      if (contentFrame &&
          (contentFrame->GetType() == nsGkAtoms::gridContainerFrame)) {
        gridFrame = static_cast<nsGridContainerFrame*>(contentFrame);
      }
    }
    return gridFrame;
  };

  nsGridContainerFrame* gridFrame = GetGridContainerFrame(aFrame);
  if (gridFrame) {
    // if any of our properties are missing, generate them
    bool reflowNeeded = (!gridFrame->HasProperty(GridColTrackInfo()) ||
                         !gridFrame->HasProperty(GridRowTrackInfo()) ||
                         !gridFrame->HasProperty(GridColumnLineInfo()) ||
                         !gridFrame->HasProperty(GridRowLineInfo()));

    if (reflowNeeded) {
      // Trigger a reflow that generates additional grid property data.
      nsIPresShell* shell = gridFrame->PresContext()->PresShell();
      gridFrame->AddStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES);
      shell->FrameNeedsReflow(gridFrame,
                              nsIPresShell::eResize,
                              NS_FRAME_IS_DIRTY);
      shell->FlushPendingNotifications(Flush_Layout);

      // Since the reflow may have side effects, get the grid frame again.
      gridFrame = GetGridContainerFrame(aFrame);

      // Assert the grid properties are present
      MOZ_ASSERT(!gridFrame ||
                  gridFrame->HasProperty(GridColTrackInfo()));
      MOZ_ASSERT(!gridFrame ||
                  gridFrame->HasProperty(GridRowTrackInfo()));
      MOZ_ASSERT(!gridFrame ||
                  gridFrame->HasProperty(GridColumnLineInfo()));
      MOZ_ASSERT(!gridFrame ||
                  gridFrame->HasProperty(GridRowLineInfo()));
    }
  }

  return gridFrame;
}