summaryrefslogtreecommitdiffstats
path: root/js/src/vm/Stopwatch.cpp
blob: 46841b27f831d5a1d701f6a490ad1dfc316024ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "vm/Stopwatch.h"

#include "mozilla/ArrayUtils.h"
#include "mozilla/IntegerTypeTraits.h"
#include "mozilla/Unused.h"

#if defined(XP_WIN)
#include <processthreadsapi.h>
#include <windows.h>
#endif // defined(XP_WIN)

#include "jscompartment.h"

#include "gc/Zone.h"
#include "vm/Runtime.h"


namespace js {

bool
PerformanceMonitoring::addRecentGroup(PerformanceGroup* group)
{
    if (group->isUsedInThisIteration())
        return true;

    group->setIsUsedInThisIteration(true);
    return recentGroups_.append(group);
}

void
PerformanceMonitoring::reset()
{
    // All ongoing measures are dependent on the current iteration#.
    // By incrementing it, we mark all data as stale. Stale data will
    // be overwritten progressively during the execution.
    ++iteration_;
    recentGroups_.clear();

    // Every so often, we will be rescheduled to another CPU. If this
    // happens, we may end up with an entirely unsynchronized
    // timestamp counter. If we do not reset
    // `highestTimestampCounter_`, we could end up ignoring entirely
    // valid sets of measures just because we are on a CPU that has a
    // lower RDTSC.
    highestTimestampCounter_ = 0;
}

void
PerformanceMonitoring::start()
{
    if (!isMonitoringJank_)
        return;

    if (iteration_ == startedAtIteration_) {
        // The stopwatch is already started for this iteration.
        return;
    }

    startedAtIteration_ = iteration_;
    if (stopwatchStartCallback)
        stopwatchStartCallback(iteration_, stopwatchStartClosure);
}

// Commit the data that has been collected during the iteration
// into the actual `PerformanceData`.
//
// We use the proportion of cycles-spent-in-group over
// cycles-spent-in-toplevel-group as an approximation to allocate
// system (kernel) time and user (CPU) time to each group. Note
// that cycles are not an exact measure:
//
// 1. if the computer has gone to sleep, the clock may be reset to 0;
// 2. if the process is moved between CPUs/cores, it may end up on a CPU
//    or core with an unsynchronized clock;
// 3. the mapping between clock cycles and walltime varies with the current
//    frequency of the CPU;
// 4. other threads/processes using the same CPU will also increment
//    the counter.
//
// ** Effect of 1. (computer going to sleep)
//
// We assume that this will happen very seldom. Since the final numbers
// are bounded by the CPU time and Kernel time reported by `getresources`,
// the effect will be contained to a single iteration of the event loop.
//
// ** Effect of 2. (moving between CPUs/cores)
//
// On platforms that support it, we only measure the number of cycles
// if we start and end execution of a group on the same
// CPU/core. While there is a small window (a few cycles) during which
// the thread can be migrated without us noticing, we expect that this
// will happen rarely enough that this won't affect the statistics
// meaningfully.
//
// On other platforms, assuming that the probability of jumping
// between CPUs/cores during a given (real) cycle is constant, and
// that the distribution of differences between clocks is even, the
// probability that the number of cycles reported by a measure is
// modified by X cycles should be a gaussian distribution, with groups
// with longer execution having a larger amplitude than groups with
// shorter execution. Since we discard measures that result in a
// negative number of cycles, this distribution is actually skewed
// towards over-estimating the number of cycles of groups that already
// have many cycles and under-estimating the number of cycles that
// already have fewer cycles.
//
// Since the final numbers are bounded by the CPU time and Kernel time
// reported by `getresources`, we accept this bias.
//
// ** Effect of 3. (mapping between clock cycles and walltime)
//
// Assuming that this is evenly distributed, we expect that this will
// eventually balance out.
//
// ** Effect of 4. (cycles increase with system activity)
//
// Assuming that, within an iteration of the event loop, this happens
// unformly over time, this will skew towards over-estimating the number
// of cycles of groups that already have many cycles and under-estimating
// the number of cycles that already have fewer cycles.
//
// Since the final numbers are bounded by the CPU time and Kernel time
// reported by `getresources`, we accept this bias.
//
// ** Big picture
//
// Computing the number of cycles is fast and should be accurate
// enough in practice. Alternatives (such as calling `getresources`
// all the time or sampling from another thread) are very expensive
// in system calls and/or battery and not necessarily more accurate.
bool
PerformanceMonitoring::commit()
{
    // Maximal initialization size, in elements for the vector of groups.
    static const size_t MAX_GROUPS_INIT_CAPACITY = 1024;

#if !defined(MOZ_HAVE_RDTSC)
    // The AutoStopwatch is only executed if `MOZ_HAVE_RDTSC`.
    return false;
#endif // !defined(MOZ_HAVE_RDTSC)

    if (!isMonitoringJank_) {
        // Either we have not started monitoring or monitoring has
        // been cancelled during the iteration.
        return true;
    }

    if (startedAtIteration_ != iteration_) {
        // No JS code has been monitored during this iteration.
        return true;
    }

    // The move operation is generally constant time, unless
    // `recentGroups_.length()` is very small, in which case
    // it's fast just because it's small.
    PerformanceGroupVector recentGroups(Move(recentGroups_));
    recentGroups_ = PerformanceGroupVector(); // Reconstruct after `Move`.

    bool success = true;
    if (stopwatchCommitCallback)
        success = stopwatchCommitCallback(iteration_, recentGroups, stopwatchCommitClosure);

    // Heuristic: we expect to have roughly the same number of groups as in
    // the previous iteration.
    const size_t capacity = recentGroups.capacity() < MAX_GROUPS_INIT_CAPACITY ?
                            recentGroups.capacity() :
                            MAX_GROUPS_INIT_CAPACITY;
    success = recentGroups_.reserve(capacity)
            && success;

    // Reset immediately, to make sure that we're not hit by the end
    // of a nested event loop (which would cause `commit` to be called
    // twice in succession).
    reset();
    return success;
}

uint64_t
PerformanceMonitoring::monotonicReadTimestampCounter()
{
#if defined(MOZ_HAVE_RDTSC)
    const uint64_t hardware = ReadTimestampCounter();
    if (highestTimestampCounter_ < hardware)
        highestTimestampCounter_ = hardware;
    return highestTimestampCounter_;
#else
    return 0;
#endif // defined(MOZ_HAVE_RDTSC)
}

void
PerformanceMonitoring::dispose(JSRuntime* rt)
{
    reset();
    for (CompartmentsIter c(rt, SkipAtoms); !c.done(); c.next()) {
        c->performanceMonitoring.unlink();
    }
}

PerformanceGroupHolder::~PerformanceGroupHolder()
{
    unlink();
}

void
PerformanceGroupHolder::unlink()
{
    initialized_ = false;
    groups_.clear();
}

const PerformanceGroupVector*
PerformanceGroupHolder::getGroups(JSContext* cx)
{
    if (initialized_)
        return &groups_;

    if (!runtime_->performanceMonitoring.getGroupsCallback)
        return nullptr;

    if (!runtime_->performanceMonitoring.getGroupsCallback(cx, groups_, runtime_->performanceMonitoring.getGroupsClosure))
        return nullptr;

    initialized_ = true;
    return &groups_;
}

AutoStopwatch::AutoStopwatch(JSContext* cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_IN_IMPL)
  : cx_(cx)
  , iteration_(0)
  , isMonitoringJank_(false)
  , isMonitoringCPOW_(false)
  , cyclesStart_(0)
  , CPOWTimeStart_(0)
{
    MOZ_GUARD_OBJECT_NOTIFIER_INIT;

    JSCompartment* compartment = cx_->compartment();
    if (MOZ_UNLIKELY(compartment->scheduledForDestruction))
        return;

    JSRuntime* runtime = cx_->runtime();
    iteration_ = runtime->performanceMonitoring.iteration();

    const PerformanceGroupVector* groups = compartment->performanceMonitoring.getGroups(cx);
    if (!groups) {
      // Either the embedding has not provided any performance
      // monitoring logistics or there was an error that prevents
      // performance monitoring.
      return;
    }
    for (auto group = groups->begin(); group < groups->end(); group++) {
      auto acquired = acquireGroup(*group);
      if (acquired) {
          if (!groups_.append(acquired))
              MOZ_CRASH();
      }
    }
    if (groups_.length() == 0) {
      // We are not in charge of monitoring anything.
      return;
    }

    // Now that we are sure that JS code is being executed,
    // initialize the stopwatch for this iteration, lazily.
    runtime->performanceMonitoring.start();
    enter();
}

AutoStopwatch::~AutoStopwatch()
{
    if (groups_.length() == 0) {
        // We are not in charge of monitoring anything.
        return;
    }

    JSCompartment* compartment = cx_->compartment();
    if (MOZ_UNLIKELY(compartment->scheduledForDestruction))
        return;

    JSRuntime* runtime = cx_->runtime();
    if (MOZ_UNLIKELY(iteration_ != runtime->performanceMonitoring.iteration())) {
        // We have entered a nested event loop at some point.
        // Any information we may have is obsolete.
        return;
    }

    mozilla::Unused << exit(); // Sadly, there is nothing we can do about an error at this point.

    for (auto group = groups_.begin(); group < groups_.end(); group++)
        releaseGroup(*group);
}

void
AutoStopwatch::enter()
{
    JSRuntime* runtime = cx_->runtime();

    if (runtime->performanceMonitoring.isMonitoringCPOW()) {
        CPOWTimeStart_ = runtime->performanceMonitoring.totalCPOWTime;
        isMonitoringCPOW_ = true;
    }

    if (runtime->performanceMonitoring.isMonitoringJank()) {
        cyclesStart_ = this->getCycles(runtime);
        cpuStart_ = this->getCPU();
        isMonitoringJank_ = true;
    }
}

bool
AutoStopwatch::exit()
{
    JSRuntime* runtime = cx_->runtime();

    uint64_t cyclesDelta = 0;
    if (isMonitoringJank_ && runtime->performanceMonitoring.isMonitoringJank()) {
        // We were monitoring jank when we entered and we still are.

        // If possible, discard results when we don't end on the
        // same CPU as we started.  Note that we can be
        // rescheduled to another CPU beween `getCycles()` and
        // `getCPU()`.  We hope that this will happen rarely
        // enough that the impact on our statistics will remain
        // limited.
        const cpuid_t cpuEnd = this->getCPU();
        if (isSameCPU(cpuStart_, cpuEnd)) {
            const uint64_t cyclesEnd = getCycles(runtime);
            cyclesDelta = cyclesEnd - cyclesStart_; // Always >= 0 by definition of `getCycles`.
        }
    }

    uint64_t CPOWTimeDelta = 0;
    if (isMonitoringCPOW_ && runtime->performanceMonitoring.isMonitoringCPOW()) {
        // We were monitoring CPOW when we entered and we still are.
        const uint64_t CPOWTimeEnd = runtime->performanceMonitoring.totalCPOWTime;
        CPOWTimeDelta = getDelta(CPOWTimeEnd, CPOWTimeStart_);
    }
    return addToGroups(cyclesDelta, CPOWTimeDelta);
}

PerformanceGroup*
AutoStopwatch::acquireGroup(PerformanceGroup* group)
{
    MOZ_ASSERT(group);

    if (group->isAcquired(iteration_))
        return nullptr;

    if (!group->isActive())
        return nullptr;

    group->acquire(iteration_, this);
    return group;
}

void
AutoStopwatch::releaseGroup(PerformanceGroup* group)
{
    MOZ_ASSERT(group);
        group->release(iteration_, this);
}

bool
AutoStopwatch::addToGroups(uint64_t cyclesDelta, uint64_t CPOWTimeDelta)
{
  JSRuntime* runtime = cx_->runtime();

    for (auto group = groups_.begin(); group < groups_.end(); ++group) {
      if (!addToGroup(runtime, cyclesDelta, CPOWTimeDelta, *group))
        return false;
    }
    return true;
}

bool
AutoStopwatch::addToGroup(JSRuntime* runtime, uint64_t cyclesDelta, uint64_t CPOWTimeDelta, PerformanceGroup* group)
{
    MOZ_ASSERT(group);
    MOZ_ASSERT(group->isAcquired(iteration_, this));

    if (!runtime->performanceMonitoring.addRecentGroup(group))
      return false;
    group->addRecentTicks(iteration_, 1);
    group->addRecentCycles(iteration_, cyclesDelta);
    group->addRecentCPOW(iteration_, CPOWTimeDelta);
    return true;
}

uint64_t
AutoStopwatch::getDelta(const uint64_t end, const uint64_t start) const
{
    if (start >= end)
      return 0;
    return end - start;
}

uint64_t
AutoStopwatch::getCycles(JSRuntime* runtime) const
{
    return runtime->performanceMonitoring.monotonicReadTimestampCounter();
}

cpuid_t inline
AutoStopwatch::getCPU() const
{
#if defined(XP_WIN) && WINVER >= _WIN32_WINNT_VISTA
    PROCESSOR_NUMBER proc;
    GetCurrentProcessorNumberEx(&proc);

    cpuid_t result(proc.Group, proc.Number);
    return result;
#else
    return {};
#endif // defined(XP_WIN)
}

bool inline
AutoStopwatch::isSameCPU(const cpuid_t& a, const cpuid_t& b) const
{
#if defined(XP_WIN)  && WINVER >= _WIN32_WINNT_VISTA
    return a.group_ == b.group_ && a.number_ == b.number_;
#else
    return true;
#endif
}

PerformanceGroup::PerformanceGroup()
    : recentCycles_(0)
    , recentTicks_(0)
    , recentCPOW_(0)
    , iteration_(0)
    , isActive_(false)
    , isUsedInThisIteration_(false)
    , owner_(nullptr)
    , refCount_(0)
{ }

uint64_t
PerformanceGroup::iteration() const
{
    return iteration_;
}


bool
PerformanceGroup::isAcquired(uint64_t it) const
{
    return owner_ != nullptr && iteration_ == it;
}

bool
PerformanceGroup::isAcquired(uint64_t it, const AutoStopwatch* owner) const
{
    return owner_ == owner && iteration_ == it;
}

void
PerformanceGroup::acquire(uint64_t it, const AutoStopwatch* owner)
{
    if (iteration_ != it) {
        // Any data that pretends to be recent is actually bound
        // to an older iteration and therefore stale.
        resetRecentData();
    }
    iteration_ = it;
    owner_ = owner;
}

void
PerformanceGroup::release(uint64_t it, const AutoStopwatch* owner)
{
    if (iteration_ != it)
        return;

    MOZ_ASSERT(owner == owner_ || owner_ == nullptr);
    owner_ = nullptr;
}

void
PerformanceGroup::resetRecentData()
{
    recentCycles_ = 0;
    recentTicks_ = 0;
    recentCPOW_ = 0;
    isUsedInThisIteration_ = false;
}


uint64_t
PerformanceGroup::recentCycles(uint64_t iteration) const
{
    MOZ_ASSERT(iteration == iteration_);
    return recentCycles_;
}

void
PerformanceGroup::addRecentCycles(uint64_t iteration, uint64_t cycles)
{
    MOZ_ASSERT(iteration == iteration_);
    recentCycles_ += cycles;
}

uint64_t
PerformanceGroup::recentTicks(uint64_t iteration) const
{
    MOZ_ASSERT(iteration == iteration_);
    return recentTicks_;
}

void
PerformanceGroup::addRecentTicks(uint64_t iteration, uint64_t ticks)
{
    MOZ_ASSERT(iteration == iteration_);
    recentTicks_ += ticks;
}


uint64_t
PerformanceGroup::recentCPOW(uint64_t iteration) const
{
    MOZ_ASSERT(iteration == iteration_);
    return recentCPOW_;
}

void
PerformanceGroup::addRecentCPOW(uint64_t iteration, uint64_t CPOW)
{
    MOZ_ASSERT(iteration == iteration_);
    recentCPOW_ += CPOW;
}


bool
PerformanceGroup::isActive() const
{
    return isActive_;
}

void
PerformanceGroup::setIsActive(bool value)
{
  isActive_ = value;
}

void
PerformanceGroup::setIsUsedInThisIteration(bool value)
{
  isUsedInThisIteration_ = value;
}
bool
PerformanceGroup::isUsedInThisIteration() const
{
  return isUsedInThisIteration_;
}

void
PerformanceGroup::AddRef()
{
    ++refCount_;
}

void
PerformanceGroup::Release()
{
    MOZ_ASSERT(refCount_ > 0);
    --refCount_;
    if (refCount_ > 0)
        return;

    this->Delete();
}

JS_PUBLIC_API(bool)
SetStopwatchStartCallback(JSContext* cx, StopwatchStartCallback cb, void* closure)
{
    cx->performanceMonitoring.setStopwatchStartCallback(cb, closure);
    return true;
}

JS_PUBLIC_API(bool)
SetStopwatchCommitCallback(JSContext* cx, StopwatchCommitCallback cb, void* closure)
{
    cx->performanceMonitoring.setStopwatchCommitCallback(cb, closure);
    return true;
}

JS_PUBLIC_API(bool)
SetGetPerformanceGroupsCallback(JSContext* cx, GetGroupsCallback cb, void* closure)
{
    cx->performanceMonitoring.setGetGroupsCallback(cb, closure);
    return true;
}

JS_PUBLIC_API(bool)
FlushPerformanceMonitoring(JSContext* cx)
{
    return cx->performanceMonitoring.commit();
}
JS_PUBLIC_API(void)
ResetPerformanceMonitoring(JSContext* cx)
{
    return cx->performanceMonitoring.reset();
}
JS_PUBLIC_API(void)
DisposePerformanceMonitoring(JSContext* cx)
{
    return cx->performanceMonitoring.dispose(cx);
}

JS_PUBLIC_API(bool)
SetStopwatchIsMonitoringJank(JSContext* cx, bool value)
{
    return cx->performanceMonitoring.setIsMonitoringJank(value);
}
JS_PUBLIC_API(bool)
GetStopwatchIsMonitoringJank(JSContext* cx)
{
    return cx->performanceMonitoring.isMonitoringJank();
}

JS_PUBLIC_API(bool)
SetStopwatchIsMonitoringCPOW(JSContext* cx, bool value)
{
    return cx->performanceMonitoring.setIsMonitoringCPOW(value);
}
JS_PUBLIC_API(bool)
GetStopwatchIsMonitoringCPOW(JSContext* cx)
{
    return cx->performanceMonitoring.isMonitoringCPOW();
}

JS_PUBLIC_API(void)
AddCPOWPerformanceDelta(JSContext* cx, uint64_t delta)
{
    cx->performanceMonitoring.totalCPOWTime += delta;
}


} // namespace js