1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/x86-shared/Lowering-x86-shared.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/MIR.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::Abs;
using mozilla::FloorLog2;
using mozilla::Swap;
LTableSwitch*
LIRGeneratorX86Shared::newLTableSwitch(const LAllocation& in, const LDefinition& inputCopy,
MTableSwitch* tableswitch)
{
return new(alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch);
}
LTableSwitchV*
LIRGeneratorX86Shared::newLTableSwitchV(MTableSwitch* tableswitch)
{
return new(alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)),
temp(), tempDouble(), temp(), tableswitch);
}
void
LIRGeneratorX86Shared::visitGuardShape(MGuardShape* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
LGuardShape* guard = new(alloc()) LGuardShape(useRegisterAtStart(ins->object()));
assignSnapshot(guard, ins->bailoutKind());
add(guard, ins);
redefine(ins, ins->object());
}
void
LIRGeneratorX86Shared::visitGuardObjectGroup(MGuardObjectGroup* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
LGuardObjectGroup* guard = new(alloc()) LGuardObjectGroup(useRegisterAtStart(ins->object()));
assignSnapshot(guard, ins->bailoutKind());
add(guard, ins);
redefine(ins, ins->object());
}
void
LIRGeneratorX86Shared::visitPowHalf(MPowHalf* ins)
{
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType::Double);
LPowHalfD* lir = new(alloc()) LPowHalfD(useRegisterAtStart(input));
define(lir, ins);
}
void
LIRGeneratorX86Shared::lowerForShift(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs)
{
ins->setOperand(0, useRegisterAtStart(lhs));
// shift operator should be constant or in register ecx
// x86 can't shift a non-ecx register
if (rhs->isConstant())
ins->setOperand(1, useOrConstantAtStart(rhs));
else
ins->setOperand(1, lhs != rhs ? useFixed(rhs, ecx) : useFixedAtStart(rhs, ecx));
defineReuseInput(ins, mir, 0);
}
template<size_t Temps>
void
LIRGeneratorX86Shared::lowerForShiftInt64(LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
{
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
#if defined(JS_NUNBOX32)
if (mir->isRotate())
ins->setTemp(0, temp());
#endif
static_assert(LShiftI64::Rhs == INT64_PIECES, "Assume Rhs is located at INT64_PIECES.");
static_assert(LRotateI64::Count == INT64_PIECES, "Assume Count is located at INT64_PIECES.");
// shift operator should be constant or in register ecx
// x86 can't shift a non-ecx register
if (rhs->isConstant()) {
ins->setOperand(INT64_PIECES, useOrConstantAtStart(rhs));
} else {
// The operands are int64, but we only care about the lower 32 bits of
// the RHS. On 32-bit, the code below will load that part in ecx and
// will discard the upper half.
ensureDefined(rhs);
LUse use(ecx);
use.setVirtualRegister(rhs->virtualRegister());
ins->setOperand(INT64_PIECES, use);
}
defineInt64ReuseInput(ins, mir, 0);
}
template void LIRGeneratorX86Shared::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES+1, 0>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs);
template void LIRGeneratorX86Shared::lowerForShiftInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES+1, 1>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs);
void
LIRGeneratorX86Shared::lowerForALU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir,
MDefinition* input)
{
ins->setOperand(0, useRegisterAtStart(input));
defineReuseInput(ins, mir, 0);
}
void
LIRGeneratorX86Shared::lowerForALU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs)
{
ins->setOperand(0, useRegisterAtStart(lhs));
ins->setOperand(1, lhs != rhs ? useOrConstant(rhs) : useOrConstantAtStart(rhs));
defineReuseInput(ins, mir, 0);
}
template<size_t Temps>
void
LIRGeneratorX86Shared::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
{
// Without AVX, we'll need to use the x86 encodings where one of the
// inputs must be the same location as the output.
if (!Assembler::HasAVX()) {
ins->setOperand(0, useRegisterAtStart(lhs));
ins->setOperand(1, lhs != rhs ? use(rhs) : useAtStart(rhs));
defineReuseInput(ins, mir, 0);
} else {
ins->setOperand(0, useRegisterAtStart(lhs));
ins->setOperand(1, useAtStart(rhs));
define(ins, mir);
}
}
template void LIRGeneratorX86Shared::lowerForFPU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs);
template void LIRGeneratorX86Shared::lowerForFPU(LInstructionHelper<1, 2, 1>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs);
void
LIRGeneratorX86Shared::lowerForCompIx4(LSimdBinaryCompIx4* ins, MSimdBinaryComp* mir, MDefinition* lhs, MDefinition* rhs)
{
lowerForALU(ins, mir, lhs, rhs);
}
void
LIRGeneratorX86Shared::lowerForCompFx4(LSimdBinaryCompFx4* ins, MSimdBinaryComp* mir, MDefinition* lhs, MDefinition* rhs)
{
// Swap the operands around to fit the instructions that x86 actually has.
// We do this here, before register allocation, so that we don't need
// temporaries and copying afterwards.
switch (mir->operation()) {
case MSimdBinaryComp::greaterThan:
case MSimdBinaryComp::greaterThanOrEqual:
mir->reverse();
Swap(lhs, rhs);
break;
default:
break;
}
lowerForFPU(ins, mir, lhs, rhs);
}
void
LIRGeneratorX86Shared::lowerForBitAndAndBranch(LBitAndAndBranch* baab, MInstruction* mir,
MDefinition* lhs, MDefinition* rhs)
{
baab->setOperand(0, useRegisterAtStart(lhs));
baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
add(baab, mir);
}
void
LIRGeneratorX86Shared::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs)
{
// Note: If we need a negative zero check, lhs is used twice.
LAllocation lhsCopy = mul->canBeNegativeZero() ? use(lhs) : LAllocation();
LMulI* lir = new(alloc()) LMulI(useRegisterAtStart(lhs), useOrConstant(rhs), lhsCopy);
if (mul->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineReuseInput(lir, mul, 0);
}
void
LIRGeneratorX86Shared::lowerDivI(MDiv* div)
{
if (div->isUnsigned()) {
lowerUDiv(div);
return;
}
// Division instructions are slow. Division by constant denominators can be
// rewritten to use other instructions.
if (div->rhs()->isConstant()) {
int32_t rhs = div->rhs()->toConstant()->toInt32();
// Division by powers of two can be done by shifting, and division by
// other numbers can be done by a reciprocal multiplication technique.
int32_t shift = FloorLog2(Abs(rhs));
if (rhs != 0 && uint32_t(1) << shift == Abs(rhs)) {
LAllocation lhs = useRegisterAtStart(div->lhs());
LDivPowTwoI* lir;
if (!div->canBeNegativeDividend()) {
// Numerator is unsigned, so does not need adjusting.
lir = new(alloc()) LDivPowTwoI(lhs, lhs, shift, rhs < 0);
} else {
// Numerator is signed, and needs adjusting, and an extra
// lhs copy register is needed.
lir = new(alloc()) LDivPowTwoI(lhs, useRegister(div->lhs()), shift, rhs < 0);
}
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineReuseInput(lir, div, 0);
return;
}
if (rhs != 0) {
LDivOrModConstantI* lir;
lir = new(alloc()) LDivOrModConstantI(useRegister(div->lhs()), rhs, tempFixed(eax));
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, div, LAllocation(AnyRegister(edx)));
return;
}
}
LDivI* lir = new(alloc()) LDivI(useRegister(div->lhs()), useRegister(div->rhs()),
tempFixed(edx));
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, div, LAllocation(AnyRegister(eax)));
}
void
LIRGeneratorX86Shared::lowerModI(MMod* mod)
{
if (mod->isUnsigned()) {
lowerUMod(mod);
return;
}
if (mod->rhs()->isConstant()) {
int32_t rhs = mod->rhs()->toConstant()->toInt32();
int32_t shift = FloorLog2(Abs(rhs));
if (rhs != 0 && uint32_t(1) << shift == Abs(rhs)) {
LModPowTwoI* lir = new(alloc()) LModPowTwoI(useRegisterAtStart(mod->lhs()), shift);
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineReuseInput(lir, mod, 0);
return;
}
if (rhs != 0) {
LDivOrModConstantI* lir;
lir = new(alloc()) LDivOrModConstantI(useRegister(mod->lhs()), rhs, tempFixed(edx));
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, mod, LAllocation(AnyRegister(eax)));
return;
}
}
LModI* lir = new(alloc()) LModI(useRegister(mod->lhs()),
useRegister(mod->rhs()),
tempFixed(eax));
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, mod, LAllocation(AnyRegister(edx)));
}
void
LIRGeneratorX86Shared::visitWasmSelect(MWasmSelect* ins)
{
if (ins->type() == MIRType::Int64) {
auto* lir = new(alloc()) LWasmSelectI64(useInt64RegisterAtStart(ins->trueExpr()),
useInt64(ins->falseExpr()),
useRegister(ins->condExpr()));
defineInt64ReuseInput(lir, ins, LWasmSelectI64::TrueExprIndex);
return;
}
auto* lir = new(alloc()) LWasmSelect(useRegisterAtStart(ins->trueExpr()),
use(ins->falseExpr()),
useRegister(ins->condExpr()));
defineReuseInput(lir, ins, LWasmSelect::TrueExprIndex);
}
void
LIRGeneratorX86Shared::visitAsmJSNeg(MAsmJSNeg* ins)
{
switch (ins->type()) {
case MIRType::Int32:
defineReuseInput(new(alloc()) LNegI(useRegisterAtStart(ins->input())), ins, 0);
break;
case MIRType::Float32:
defineReuseInput(new(alloc()) LNegF(useRegisterAtStart(ins->input())), ins, 0);
break;
case MIRType::Double:
defineReuseInput(new(alloc()) LNegD(useRegisterAtStart(ins->input())), ins, 0);
break;
default:
MOZ_CRASH();
}
}
void
LIRGeneratorX86Shared::lowerWasmLoad(MWasmLoad* ins)
{
MOZ_ASSERT(ins->type() != MIRType::Int64);
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
auto* lir = new(alloc()) LWasmLoad(useRegisterOrZeroAtStart(base));
define(lir, ins);
}
void
LIRGeneratorX86Shared::lowerUDiv(MDiv* div)
{
if (div->rhs()->isConstant()) {
uint32_t rhs = div->rhs()->toConstant()->toInt32();
int32_t shift = FloorLog2(rhs);
LAllocation lhs = useRegisterAtStart(div->lhs());
if (rhs != 0 && uint32_t(1) << shift == rhs) {
LDivPowTwoI* lir = new(alloc()) LDivPowTwoI(lhs, lhs, shift, false);
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineReuseInput(lir, div, 0);
} else {
LUDivOrModConstant* lir = new(alloc()) LUDivOrModConstant(useRegister(div->lhs()),
rhs, tempFixed(eax));
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, div, LAllocation(AnyRegister(edx)));
}
return;
}
LUDivOrMod* lir = new(alloc()) LUDivOrMod(useRegister(div->lhs()),
useRegister(div->rhs()),
tempFixed(edx));
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, div, LAllocation(AnyRegister(eax)));
}
void
LIRGeneratorX86Shared::lowerUMod(MMod* mod)
{
if (mod->rhs()->isConstant()) {
uint32_t rhs = mod->rhs()->toConstant()->toInt32();
int32_t shift = FloorLog2(rhs);
if (rhs != 0 && uint32_t(1) << shift == rhs) {
LModPowTwoI* lir = new(alloc()) LModPowTwoI(useRegisterAtStart(mod->lhs()), shift);
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineReuseInput(lir, mod, 0);
} else {
LUDivOrModConstant* lir = new(alloc()) LUDivOrModConstant(useRegister(mod->lhs()),
rhs, tempFixed(edx));
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, mod, LAllocation(AnyRegister(eax)));
}
return;
}
LUDivOrMod* lir = new(alloc()) LUDivOrMod(useRegister(mod->lhs()),
useRegister(mod->rhs()),
tempFixed(eax));
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, mod, LAllocation(AnyRegister(edx)));
}
void
LIRGeneratorX86Shared::lowerUrshD(MUrsh* mir)
{
MDefinition* lhs = mir->lhs();
MDefinition* rhs = mir->rhs();
MOZ_ASSERT(lhs->type() == MIRType::Int32);
MOZ_ASSERT(rhs->type() == MIRType::Int32);
MOZ_ASSERT(mir->type() == MIRType::Double);
#ifdef JS_CODEGEN_X64
MOZ_ASSERT(ecx == rcx);
#endif
LUse lhsUse = useRegisterAtStart(lhs);
LAllocation rhsAlloc = rhs->isConstant() ? useOrConstant(rhs) : useFixed(rhs, ecx);
LUrshD* lir = new(alloc()) LUrshD(lhsUse, rhsAlloc, tempCopy(lhs, 0));
define(lir, mir);
}
void
LIRGeneratorX86Shared::lowerTruncateDToInt32(MTruncateToInt32* ins)
{
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double);
LDefinition maybeTemp = Assembler::HasSSE3() ? LDefinition::BogusTemp() : tempDouble();
define(new(alloc()) LTruncateDToInt32(useRegister(opd), maybeTemp), ins);
}
void
LIRGeneratorX86Shared::lowerTruncateFToInt32(MTruncateToInt32* ins)
{
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Float32);
LDefinition maybeTemp = Assembler::HasSSE3() ? LDefinition::BogusTemp() : tempFloat32();
define(new(alloc()) LTruncateFToInt32(useRegister(opd), maybeTemp), ins);
}
void
LIRGeneratorX86Shared::lowerCompareExchangeTypedArrayElement(MCompareExchangeTypedArrayElement* ins,
bool useI386ByteRegisters)
{
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
// If the target is a floating register then we need a temp at the
// lower level; that temp must be eax.
//
// Otherwise the target (if used) is an integer register, which
// must be eax. If the target is not used the machine code will
// still clobber eax, so just pretend it's used.
//
// oldval must be in a register.
//
// newval must be in a register. If the source is a byte array
// then newval must be a register that has a byte size: on x86
// this must be ebx, ecx, or edx (eax is taken for the output).
//
// Bug #1077036 describes some further optimization opportunities.
bool fixedOutput = false;
LDefinition tempDef = LDefinition::BogusTemp();
LAllocation newval;
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
tempDef = tempFixed(eax);
newval = useRegister(ins->newval());
} else {
fixedOutput = true;
if (useI386ByteRegisters && ins->isByteArray())
newval = useFixed(ins->newval(), ebx);
else
newval = useRegister(ins->newval());
}
const LAllocation oldval = useRegister(ins->oldval());
LCompareExchangeTypedArrayElement* lir =
new(alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval, newval, tempDef);
if (fixedOutput)
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
else
define(lir, ins);
}
void
LIRGeneratorX86Shared::lowerAtomicExchangeTypedArrayElement(MAtomicExchangeTypedArrayElement* ins,
bool useI386ByteRegisters)
{
MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
const LAllocation value = useRegister(ins->value());
// The underlying instruction is XCHG, which can operate on any
// register.
//
// If the target is a floating register (for Uint32) then we need
// a temp into which to exchange.
//
// If the source is a byte array then we need a register that has
// a byte size; in this case -- on x86 only -- pin the output to
// an appropriate register and use that as a temp in the back-end.
LDefinition tempDef = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32) {
// This restriction is bug 1077305.
MOZ_ASSERT(ins->type() == MIRType::Double);
tempDef = temp();
}
LAtomicExchangeTypedArrayElement* lir =
new(alloc()) LAtomicExchangeTypedArrayElement(elements, index, value, tempDef);
if (useI386ByteRegisters && ins->isByteArray())
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
else
define(lir, ins);
}
void
LIRGeneratorX86Shared::lowerAtomicTypedArrayElementBinop(MAtomicTypedArrayElementBinop* ins,
bool useI386ByteRegisters)
{
MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
// Case 1: the result of the operation is not used.
//
// We'll emit a single instruction: LOCK ADD, LOCK SUB, LOCK AND,
// LOCK OR, or LOCK XOR. We can do this even for the Uint32 case.
if (!ins->hasUses()) {
LAllocation value;
if (useI386ByteRegisters && ins->isByteArray() && !ins->value()->isConstant())
value = useFixed(ins->value(), ebx);
else
value = useRegisterOrConstant(ins->value());
LAtomicTypedArrayElementBinopForEffect* lir =
new(alloc()) LAtomicTypedArrayElementBinopForEffect(elements, index, value);
add(lir, ins);
return;
}
// Case 2: the result of the operation is used.
//
// For ADD and SUB we'll use XADD:
//
// movl src, output
// lock xaddl output, mem
//
// For the 8-bit variants XADD needs a byte register for the output.
//
// For AND/OR/XOR we need to use a CMPXCHG loop:
//
// movl *mem, eax
// L: mov eax, temp
// andl src, temp
// lock cmpxchg temp, mem ; reads eax also
// jnz L
// ; result in eax
//
// Note the placement of L, cmpxchg will update eax with *mem if
// *mem does not have the expected value, so reloading it at the
// top of the loop would be redundant.
//
// If the array is not a uint32 array then:
// - eax should be the output (one result of the cmpxchg)
// - there is a temp, which must have a byte register if
// the array has 1-byte elements elements
//
// If the array is a uint32 array then:
// - eax is the first temp
// - we also need a second temp
//
// There are optimization opportunities:
// - better register allocation in the x86 8-bit case, Bug #1077036.
bool bitOp = !(ins->operation() == AtomicFetchAddOp || ins->operation() == AtomicFetchSubOp);
bool fixedOutput = true;
bool reuseInput = false;
LDefinition tempDef1 = LDefinition::BogusTemp();
LDefinition tempDef2 = LDefinition::BogusTemp();
LAllocation value;
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
value = useRegisterOrConstant(ins->value());
fixedOutput = false;
if (bitOp) {
tempDef1 = tempFixed(eax);
tempDef2 = temp();
} else {
tempDef1 = temp();
}
} else if (useI386ByteRegisters && ins->isByteArray()) {
if (ins->value()->isConstant())
value = useRegisterOrConstant(ins->value());
else
value = useFixed(ins->value(), ebx);
if (bitOp)
tempDef1 = tempFixed(ecx);
} else if (bitOp) {
value = useRegisterOrConstant(ins->value());
tempDef1 = temp();
} else if (ins->value()->isConstant()) {
fixedOutput = false;
value = useRegisterOrConstant(ins->value());
} else {
fixedOutput = false;
reuseInput = true;
value = useRegisterAtStart(ins->value());
}
LAtomicTypedArrayElementBinop* lir =
new(alloc()) LAtomicTypedArrayElementBinop(elements, index, value, tempDef1, tempDef2);
if (fixedOutput)
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
else if (reuseInput)
defineReuseInput(lir, ins, LAtomicTypedArrayElementBinop::valueOp);
else
define(lir, ins);
}
void
LIRGeneratorX86Shared::visitSimdInsertElement(MSimdInsertElement* ins)
{
MOZ_ASSERT(IsSimdType(ins->type()));
LUse vec = useRegisterAtStart(ins->vector());
LUse val = useRegister(ins->value());
switch (ins->type()) {
case MIRType::Int8x16:
case MIRType::Bool8x16:
// When SSE 4.1 is not available, we need to go via the stack.
// This requires the value to be inserted to be in %eax-%edx.
// Pick %ebx since other instructions use %eax or %ecx hard-wired.
#if defined(JS_CODEGEN_X86)
if (!AssemblerX86Shared::HasSSE41())
val = useFixed(ins->value(), ebx);
#endif
defineReuseInput(new(alloc()) LSimdInsertElementI(vec, val), ins, 0);
break;
case MIRType::Int16x8:
case MIRType::Int32x4:
case MIRType::Bool16x8:
case MIRType::Bool32x4:
defineReuseInput(new(alloc()) LSimdInsertElementI(vec, val), ins, 0);
break;
case MIRType::Float32x4:
defineReuseInput(new(alloc()) LSimdInsertElementF(vec, val), ins, 0);
break;
default:
MOZ_CRASH("Unknown SIMD kind when generating constant");
}
}
void
LIRGeneratorX86Shared::visitSimdExtractElement(MSimdExtractElement* ins)
{
MOZ_ASSERT(IsSimdType(ins->input()->type()));
MOZ_ASSERT(!IsSimdType(ins->type()));
switch (ins->input()->type()) {
case MIRType::Int8x16:
case MIRType::Int16x8:
case MIRType::Int32x4: {
MOZ_ASSERT(ins->signedness() != SimdSign::NotApplicable);
LUse use = useRegisterAtStart(ins->input());
if (ins->type() == MIRType::Double) {
// Extract an Uint32 lane into a double.
MOZ_ASSERT(ins->signedness() == SimdSign::Unsigned);
define(new (alloc()) LSimdExtractElementU2D(use, temp()), ins);
} else {
auto* lir = new (alloc()) LSimdExtractElementI(use);
#if defined(JS_CODEGEN_X86)
// On x86 (32-bit), we may need to use movsbl or movzbl instructions
// to sign or zero extend the extracted lane to 32 bits. The 8-bit
// version of these instructions require a source register that is
// %al, %bl, %cl, or %dl.
// Fix it to %ebx since we can't express that constraint better.
if (ins->input()->type() == MIRType::Int8x16) {
defineFixed(lir, ins, LAllocation(AnyRegister(ebx)));
return;
}
#endif
define(lir, ins);
}
break;
}
case MIRType::Float32x4: {
MOZ_ASSERT(ins->signedness() == SimdSign::NotApplicable);
LUse use = useRegisterAtStart(ins->input());
define(new(alloc()) LSimdExtractElementF(use), ins);
break;
}
case MIRType::Bool8x16:
case MIRType::Bool16x8:
case MIRType::Bool32x4: {
MOZ_ASSERT(ins->signedness() == SimdSign::NotApplicable);
LUse use = useRegisterAtStart(ins->input());
define(new(alloc()) LSimdExtractElementB(use), ins);
break;
}
default:
MOZ_CRASH("Unknown SIMD kind when extracting element");
}
}
void
LIRGeneratorX86Shared::visitSimdBinaryArith(MSimdBinaryArith* ins)
{
MOZ_ASSERT(IsSimdType(ins->lhs()->type()));
MOZ_ASSERT(IsSimdType(ins->rhs()->type()));
MOZ_ASSERT(IsSimdType(ins->type()));
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
if (ins->isCommutative())
ReorderCommutative(&lhs, &rhs, ins);
switch (ins->type()) {
case MIRType::Int8x16: {
LSimdBinaryArithIx16* lir = new (alloc()) LSimdBinaryArithIx16();
lir->setTemp(0, LDefinition::BogusTemp());
lowerForFPU(lir, ins, lhs, rhs);
return;
}
case MIRType::Int16x8: {
LSimdBinaryArithIx8* lir = new (alloc()) LSimdBinaryArithIx8();
lir->setTemp(0, LDefinition::BogusTemp());
lowerForFPU(lir, ins, lhs, rhs);
return;
}
case MIRType::Int32x4: {
LSimdBinaryArithIx4* lir = new (alloc()) LSimdBinaryArithIx4();
bool needsTemp =
ins->operation() == MSimdBinaryArith::Op_mul && !MacroAssembler::HasSSE41();
lir->setTemp(0, needsTemp ? temp(LDefinition::SIMD128INT) : LDefinition::BogusTemp());
lowerForFPU(lir, ins, lhs, rhs);
return;
}
case MIRType::Float32x4: {
LSimdBinaryArithFx4* lir = new (alloc()) LSimdBinaryArithFx4();
bool needsTemp = ins->operation() == MSimdBinaryArith::Op_max ||
ins->operation() == MSimdBinaryArith::Op_minNum ||
ins->operation() == MSimdBinaryArith::Op_maxNum;
lir->setTemp(0,
needsTemp ? temp(LDefinition::SIMD128FLOAT) : LDefinition::BogusTemp());
lowerForFPU(lir, ins, lhs, rhs);
return;
}
default:
MOZ_CRASH("unknown simd type on binary arith operation");
}
}
void
LIRGeneratorX86Shared::visitSimdBinarySaturating(MSimdBinarySaturating* ins)
{
MOZ_ASSERT(IsSimdType(ins->lhs()->type()));
MOZ_ASSERT(IsSimdType(ins->rhs()->type()));
MOZ_ASSERT(IsSimdType(ins->type()));
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
if (ins->isCommutative())
ReorderCommutative(&lhs, &rhs, ins);
LSimdBinarySaturating* lir = new (alloc()) LSimdBinarySaturating();
lowerForFPU(lir, ins, lhs, rhs);
}
void
LIRGeneratorX86Shared::visitSimdSelect(MSimdSelect* ins)
{
MOZ_ASSERT(IsSimdType(ins->type()));
LSimdSelect* lins = new(alloc()) LSimdSelect;
MDefinition* r0 = ins->getOperand(0);
MDefinition* r1 = ins->getOperand(1);
MDefinition* r2 = ins->getOperand(2);
lins->setOperand(0, useRegister(r0));
lins->setOperand(1, useRegister(r1));
lins->setOperand(2, useRegister(r2));
lins->setTemp(0, temp(LDefinition::SIMD128FLOAT));
define(lins, ins);
}
void
LIRGeneratorX86Shared::visitSimdSplat(MSimdSplat* ins)
{
LAllocation x = useRegisterAtStart(ins->getOperand(0));
switch (ins->type()) {
case MIRType::Int8x16:
define(new (alloc()) LSimdSplatX16(x), ins);
break;
case MIRType::Int16x8:
define(new (alloc()) LSimdSplatX8(x), ins);
break;
case MIRType::Int32x4:
case MIRType::Float32x4:
case MIRType::Bool8x16:
case MIRType::Bool16x8:
case MIRType::Bool32x4:
// Use the SplatX4 instruction for all boolean splats. Since the input
// value is a 32-bit int that is either 0 or -1, the X4 splat gives
// the right result for all boolean geometries.
// For floats, (Non-AVX) codegen actually wants the input and the output
// to be in the same register, but we can't currently use
// defineReuseInput because they have different types (scalar vs
// vector), so a spill slot for one may not be suitable for the other.
define(new (alloc()) LSimdSplatX4(x), ins);
break;
default:
MOZ_CRASH("Unknown SIMD kind");
}
}
void
LIRGeneratorX86Shared::visitSimdValueX4(MSimdValueX4* ins)
{
switch (ins->type()) {
case MIRType::Float32x4: {
// Ideally, x would be used at start and reused for the output, however
// register allocation currently doesn't permit us to tie together two
// virtual registers with different types.
LAllocation x = useRegister(ins->getOperand(0));
LAllocation y = useRegister(ins->getOperand(1));
LAllocation z = useRegister(ins->getOperand(2));
LAllocation w = useRegister(ins->getOperand(3));
LDefinition t = temp(LDefinition::SIMD128FLOAT);
define(new (alloc()) LSimdValueFloat32x4(x, y, z, w, t), ins);
break;
}
case MIRType::Bool32x4:
case MIRType::Int32x4: {
// No defineReuseInput => useAtStart for everyone.
LAllocation x = useRegisterAtStart(ins->getOperand(0));
LAllocation y = useRegisterAtStart(ins->getOperand(1));
LAllocation z = useRegisterAtStart(ins->getOperand(2));
LAllocation w = useRegisterAtStart(ins->getOperand(3));
define(new(alloc()) LSimdValueInt32x4(x, y, z, w), ins);
break;
}
default:
MOZ_CRASH("Unknown SIMD kind");
}
}
void
LIRGeneratorX86Shared::visitSimdSwizzle(MSimdSwizzle* ins)
{
MOZ_ASSERT(IsSimdType(ins->input()->type()));
MOZ_ASSERT(IsSimdType(ins->type()));
if (IsIntegerSimdType(ins->input()->type())) {
LUse use = useRegisterAtStart(ins->input());
LSimdSwizzleI* lir = new (alloc()) LSimdSwizzleI(use);
define(lir, ins);
// We need a GPR temp register for pre-SSSE3 codegen (no vpshufb).
if (Assembler::HasSSSE3()) {
lir->setTemp(0, LDefinition::BogusTemp());
} else {
// The temp must be a GPR usable with 8-bit loads and stores.
#if defined(JS_CODEGEN_X86)
lir->setTemp(0, tempFixed(ebx));
#else
lir->setTemp(0, temp());
#endif
}
} else if (ins->input()->type() == MIRType::Float32x4) {
LUse use = useRegisterAtStart(ins->input());
LSimdSwizzleF* lir = new (alloc()) LSimdSwizzleF(use);
define(lir, ins);
lir->setTemp(0, LDefinition::BogusTemp());
} else {
MOZ_CRASH("Unknown SIMD kind when getting lane");
}
}
void
LIRGeneratorX86Shared::visitSimdShuffle(MSimdShuffle* ins)
{
MOZ_ASSERT(IsSimdType(ins->lhs()->type()));
MOZ_ASSERT(IsSimdType(ins->rhs()->type()));
MOZ_ASSERT(IsSimdType(ins->type()));
if (ins->type() == MIRType::Int32x4 || ins->type() == MIRType::Float32x4) {
bool zFromLHS = ins->lane(2) < 4;
bool wFromLHS = ins->lane(3) < 4;
uint32_t lanesFromLHS = (ins->lane(0) < 4) + (ins->lane(1) < 4) + zFromLHS + wFromLHS;
LSimdShuffleX4* lir = new (alloc()) LSimdShuffleX4();
lowerForFPU(lir, ins, ins->lhs(), ins->rhs());
// See codegen for requirements details.
LDefinition temp =
(lanesFromLHS == 3) ? tempCopy(ins->rhs(), 1) : LDefinition::BogusTemp();
lir->setTemp(0, temp);
} else {
MOZ_ASSERT(ins->type() == MIRType::Int8x16 || ins->type() == MIRType::Int16x8);
LSimdShuffle* lir = new (alloc()) LSimdShuffle();
lir->setOperand(0, useRegister(ins->lhs()));
lir->setOperand(1, useRegister(ins->rhs()));
define(lir, ins);
// We need a GPR temp register for pre-SSSE3 codegen, and an SSE temp
// when using pshufb.
if (Assembler::HasSSSE3()) {
lir->setTemp(0, temp(LDefinition::SIMD128INT));
} else {
// The temp must be a GPR usable with 8-bit loads and stores.
#if defined(JS_CODEGEN_X86)
lir->setTemp(0, tempFixed(ebx));
#else
lir->setTemp(0, temp());
#endif
}
}
}
void
LIRGeneratorX86Shared::visitSimdGeneralShuffle(MSimdGeneralShuffle* ins)
{
MOZ_ASSERT(IsSimdType(ins->type()));
LSimdGeneralShuffleBase* lir;
if (IsIntegerSimdType(ins->type())) {
#if defined(JS_CODEGEN_X86)
// The temp register must be usable with 8-bit load and store
// instructions, so one of %eax-%edx.
LDefinition t;
if (ins->type() == MIRType::Int8x16)
t = tempFixed(ebx);
else
t = temp();
#else
LDefinition t = temp();
#endif
lir = new (alloc()) LSimdGeneralShuffleI(t);
} else if (ins->type() == MIRType::Float32x4) {
lir = new (alloc()) LSimdGeneralShuffleF(temp());
} else {
MOZ_CRASH("Unknown SIMD kind when doing a shuffle");
}
if (!lir->init(alloc(), ins->numVectors() + ins->numLanes()))
return;
for (unsigned i = 0; i < ins->numVectors(); i++) {
MOZ_ASSERT(IsSimdType(ins->vector(i)->type()));
lir->setOperand(i, useRegister(ins->vector(i)));
}
for (unsigned i = 0; i < ins->numLanes(); i++) {
MOZ_ASSERT(ins->lane(i)->type() == MIRType::Int32);
// Note that there can be up to 16 lane arguments, so we can't assume
// that they all get an allocated register.
lir->setOperand(i + ins->numVectors(), use(ins->lane(i)));
}
assignSnapshot(lir, Bailout_BoundsCheck);
define(lir, ins);
}
void
LIRGeneratorX86Shared::visitCopySign(MCopySign* ins)
{
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(IsFloatingPointType(lhs->type()));
MOZ_ASSERT(lhs->type() == rhs->type());
MOZ_ASSERT(lhs->type() == ins->type());
LInstructionHelper<1, 2, 2>* lir;
if (lhs->type() == MIRType::Double)
lir = new(alloc()) LCopySignD();
else
lir = new(alloc()) LCopySignF();
// As lowerForFPU, but we want rhs to be in a FP register too.
lir->setOperand(0, useRegisterAtStart(lhs));
lir->setOperand(1, lhs != rhs ? useRegister(rhs) : useRegisterAtStart(rhs));
if (!Assembler::HasAVX())
defineReuseInput(lir, ins, 0);
else
define(lir, ins);
}
|