1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_mips32_Architecture_mips32_h
#define jit_mips32_Architecture_mips32_h
#include "mozilla/MathAlgorithms.h"
#include <limits.h>
#include <stdint.h>
#include "jit/mips-shared/Architecture-mips-shared.h"
#include "js/Utility.h"
namespace js {
namespace jit {
// Shadow stack space is not required on MIPS.
static const uint32_t ShadowStackSpace = 4 * sizeof(uintptr_t);
// These offsets are specific to nunboxing, and capture offsets into the
// components of a js::Value.
// Size of MIPS32 general purpose registers is 32 bits.
static const int32_t NUNBOX32_TYPE_OFFSET = 4;
static const int32_t NUNBOX32_PAYLOAD_OFFSET = 0;
// Size of each bailout table entry.
// For MIPS this is 2 instructions relative call.
static const uint32_t BAILOUT_TABLE_ENTRY_SIZE = 2 * sizeof(void*);
// MIPS32 can have two types of floating-point coprocessors:
// - 32 bit floating-point coprocessor - In this case, there are 32 single
// precision registers and pairs of even and odd float registers are used as
// double precision registers. Example: f0 (double) is composed of
// f0 and f1 (single).
// - 64 bit floating-point coprocessor - In this case, there are 32 double
// precision register which can also be used as single precision registers.
// When using O32 ABI, floating-point coprocessor is 32 bit.
// When using N32 ABI, floating-point coprocessor is 64 bit.
class FloatRegisters : public FloatRegistersMIPSShared
{
public:
static const char* GetName(uint32_t i) {
MOZ_ASSERT(i < Total);
return FloatRegistersMIPSShared::GetName(Code(i % 32));
}
static Code FromName(const char* name);
static const uint32_t Total = 64;
static const uint32_t TotalDouble = 16;
static const uint32_t RegisterIdLimit = 32;
// Workarounds: On Loongson CPU-s the odd FP registers behave differently
// in fp-32 mode than standard MIPS.
#if defined(_MIPS_ARCH_LOONGSON3A)
static const uint32_t TotalSingle = 16;
static const uint32_t Allocatable = 28;
static const SetType AllSingleMask = 0x55555555ULL;
#else
static const uint32_t TotalSingle = 32;
static const uint32_t Allocatable = 42;
static const SetType AllSingleMask = (1ULL << 32) - 1;
#endif
// When saving all registers we only need to do is save double registers.
static const uint32_t TotalPhys = 16;
static_assert(sizeof(SetType) * 8 >= Total,
"SetType should be large enough to enumerate all registers.");
static const SetType AllDoubleMask = 0x55555555ULL << 32;
static const SetType AllMask = AllDoubleMask | AllSingleMask;
static const SetType NonVolatileDoubleMask =
((1ULL << FloatRegisters::f20) |
(1ULL << FloatRegisters::f22) |
(1ULL << FloatRegisters::f24) |
(1ULL << FloatRegisters::f26) |
(1ULL << FloatRegisters::f28) |
(1ULL << FloatRegisters::f30)) << 32;
// f20-single and f21-single alias f20-double ...
static const SetType NonVolatileMask =
NonVolatileDoubleMask |
(1ULL << FloatRegisters::f20) |
(1ULL << FloatRegisters::f21) |
(1ULL << FloatRegisters::f22) |
(1ULL << FloatRegisters::f23) |
(1ULL << FloatRegisters::f24) |
(1ULL << FloatRegisters::f25) |
(1ULL << FloatRegisters::f26) |
(1ULL << FloatRegisters::f27) |
(1ULL << FloatRegisters::f28) |
(1ULL << FloatRegisters::f29) |
(1ULL << FloatRegisters::f30) |
(1ULL << FloatRegisters::f31);
static const SetType VolatileMask = AllMask & ~NonVolatileMask;
static const SetType VolatileDoubleMask = AllDoubleMask & ~NonVolatileDoubleMask;
static const SetType WrapperMask = VolatileMask;
static const SetType NonAllocatableDoubleMask =
((1ULL << FloatRegisters::f16) |
(1ULL << FloatRegisters::f18)) << 32;
// f16-single and f17-single alias f16-double ...
static const SetType NonAllocatableMask =
NonAllocatableDoubleMask |
(1ULL << FloatRegisters::f16) |
(1ULL << FloatRegisters::f17) |
(1ULL << FloatRegisters::f18) |
(1ULL << FloatRegisters::f19);
// Registers that can be allocated without being saved, generally.
static const SetType TempMask = VolatileMask & ~NonAllocatableMask;
static const SetType AllocatableMask = AllMask & ~NonAllocatableMask;
};
class FloatRegister : public FloatRegisterMIPSShared
{
public:
enum RegType {
Single = 0x0,
Double = 0x1,
};
typedef FloatRegisters Codes;
typedef Codes::Code Code;
typedef Codes::Encoding Encoding;
uint32_t code_ : 6;
protected:
RegType kind_ : 1;
public:
constexpr FloatRegister(uint32_t code, RegType kind = Double)
: code_ (Code(code)), kind_(kind)
{ }
constexpr FloatRegister()
: code_(Code(FloatRegisters::invalid_freg)), kind_(Double)
{ }
bool operator==(const FloatRegister& other) const {
MOZ_ASSERT(!isInvalid());
MOZ_ASSERT(!other.isInvalid());
return kind_ == other.kind_ && code_ == other.code_;
}
bool equiv(const FloatRegister& other) const { return other.kind_ == kind_; }
size_t size() const { return (kind_ == Double) ? 8 : 4; }
bool isInvalid() const {
return code_ == FloatRegisters::invalid_freg;
}
bool isSingle() const { return kind_ == Single; }
bool isDouble() const { return kind_ == Double; }
FloatRegister doubleOverlay(unsigned int which = 0) const;
FloatRegister singleOverlay(unsigned int which = 0) const;
FloatRegister sintOverlay(unsigned int which = 0) const;
FloatRegister uintOverlay(unsigned int which = 0) const;
FloatRegister asSingle() const { return singleOverlay(); }
FloatRegister asDouble() const { return doubleOverlay(); }
FloatRegister asSimd128() const { MOZ_CRASH("NYI"); }
Code code() const {
MOZ_ASSERT(!isInvalid());
return Code(code_ | (kind_ << 5));
}
Encoding encoding() const {
MOZ_ASSERT(!isInvalid());
return Encoding(code_);
}
uint32_t id() const {
return code_;
}
static FloatRegister FromCode(uint32_t i) {
uint32_t code = i & 31;
uint32_t kind = i >> 5;
return FloatRegister(code, RegType(kind));
}
// This is similar to FromCode except for double registers on O32.
static FloatRegister FromIndex(uint32_t index, RegType kind) {
#if defined(USES_O32_ABI)
// Only even FP registers are avaiable for Loongson on O32.
# if defined(_MIPS_ARCH_LOONGSON3A)
return FloatRegister(index * 2, kind);
# else
if (kind == Double)
return FloatRegister(index * 2, kind);
# endif
#endif
return FloatRegister(index, kind);
}
bool volatile_() const {
if (isDouble())
return !!((1ULL << code_) & FloatRegisters::VolatileMask);
return !!((1ULL << (code_ & ~1)) & FloatRegisters::VolatileMask);
}
const char* name() const {
return FloatRegisters::GetName(code_);
}
bool operator != (const FloatRegister& other) const {
return other.kind_ != kind_ || code_ != other.code_;
}
bool aliases(const FloatRegister& other) {
if (kind_ == other.kind_)
return code_ == other.code_;
return doubleOverlay() == other.doubleOverlay();
}
uint32_t numAliased() const {
if (isDouble()) {
MOZ_ASSERT((code_ & 1) == 0);
return 3;
}
return 2;
}
void aliased(uint32_t aliasIdx, FloatRegister* ret) {
if (aliasIdx == 0) {
*ret = *this;
return;
}
if (isDouble()) {
MOZ_ASSERT((code_ & 1) == 0);
MOZ_ASSERT(aliasIdx <= 2);
*ret = singleOverlay(aliasIdx - 1);
return;
}
MOZ_ASSERT(aliasIdx == 1);
*ret = doubleOverlay(aliasIdx - 1);
}
uint32_t numAlignedAliased() const {
if (isDouble()) {
MOZ_ASSERT((code_ & 1) == 0);
return 2;
}
// f1-float32 has 0 other aligned aliases, 1 total.
// f0-float32 has 1 other aligned alias, 2 total.
return 2 - (code_ & 1);
}
// | f0-double |
// | f0-float32 | f1-float32 |
// We only push double registers on MIPS. So, if we've stored f0-double
// we also want to f0-float32 is stored there.
void alignedAliased(uint32_t aliasIdx, FloatRegister* ret) {
MOZ_ASSERT(isDouble());
MOZ_ASSERT((code_ & 1) == 0);
if (aliasIdx == 0) {
*ret = *this;
return;
}
MOZ_ASSERT(aliasIdx == 1);
*ret = singleOverlay(aliasIdx - 1);
}
SetType alignedOrDominatedAliasedSet() const {
if (isSingle())
return SetType(1) << code_;
MOZ_ASSERT(isDouble());
return SetType(0b11) << code_;
}
static Code FromName(const char* name) {
return FloatRegisters::FromName(name);
}
static TypedRegisterSet<FloatRegister> ReduceSetForPush(const TypedRegisterSet<FloatRegister>& s);
static uint32_t GetPushSizeInBytes(const TypedRegisterSet<FloatRegister>& s);
uint32_t getRegisterDumpOffsetInBytes();
};
// In order to handle functions such as int(*)(int, double) where the first
// argument is a general purpose register, and the second argument is a floating
// point register, we have to store the double content into 2 general purpose
// registers, namely a2 and a3.
#define JS_CODEGEN_REGISTER_PAIR 1
} // namespace jit
} // namespace js
#endif /* jit_mips32_Architecture_mips32_h */
|