1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/arm/MoveEmitter-arm.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace js::jit;
MoveEmitterARM::MoveEmitterARM(MacroAssembler& masm)
: inCycle_(0),
masm(masm),
pushedAtCycle_(-1),
pushedAtSpill_(-1),
spilledReg_(InvalidReg),
spilledFloatReg_(InvalidFloatReg)
{
pushedAtStart_ = masm.framePushed();
}
void
MoveEmitterARM::emit(const MoveResolver& moves)
{
if (moves.numCycles()) {
// Reserve stack for cycle resolution
masm.reserveStack(moves.numCycles() * sizeof(double));
pushedAtCycle_ = masm.framePushed();
}
for (size_t i = 0; i < moves.numMoves(); i++)
emit(moves.getMove(i));
}
MoveEmitterARM::~MoveEmitterARM()
{
assertDone();
}
Address
MoveEmitterARM::cycleSlot(uint32_t slot, uint32_t subslot) const
{
int32_t offset = masm.framePushed() - pushedAtCycle_;
MOZ_ASSERT(offset < 4096 && offset > -4096);
return Address(StackPointer, offset + slot * sizeof(double) + subslot);
}
Address
MoveEmitterARM::spillSlot() const
{
int32_t offset = masm.framePushed() - pushedAtSpill_;
MOZ_ASSERT(offset < 4096 && offset > -4096);
return Address(StackPointer, offset);
}
Address
MoveEmitterARM::toAddress(const MoveOperand& operand) const
{
MOZ_ASSERT(operand.isMemoryOrEffectiveAddress());
if (operand.base() != StackPointer) {
MOZ_ASSERT(operand.disp() < 1024 && operand.disp() > -1024);
return Operand(operand.base(), operand.disp()).toAddress();
}
MOZ_ASSERT(operand.disp() >= 0);
// Otherwise, the stack offset may need to be adjusted.
return Address(StackPointer, operand.disp() + (masm.framePushed() - pushedAtStart_));
}
Register
MoveEmitterARM::tempReg()
{
if (spilledReg_ != InvalidReg)
return spilledReg_;
// For now, just pick r12/ip as the eviction point. This is totally random,
// and if it ends up being bad, we can use actual heuristics later. r12 is
// actually a bad choice. It is the scratch register, which is frequently
// used for address computations, such as those found when we attempt to
// access values more than 4096 off of the stack pointer. Instead, use lr,
// the LinkRegister.
spilledReg_ = r14;
if (pushedAtSpill_ == -1) {
masm.Push(spilledReg_);
pushedAtSpill_ = masm.framePushed();
} else {
ScratchRegisterScope scratch(masm);
masm.ma_str(spilledReg_, spillSlot(), scratch);
}
return spilledReg_;
}
void
MoveEmitterARM::breakCycle(const MoveOperand& from, const MoveOperand& to,
MoveOp::Type type, uint32_t slotId)
{
// There is some pattern:
// (A -> B)
// (B -> A)
//
// This case handles (A -> B), which we reach first. We save B, then allow
// the original move to continue.
ScratchRegisterScope scratch(masm);
switch (type) {
case MoveOp::FLOAT32:
if (to.isMemory()) {
ScratchFloat32Scope scratchFloat32(masm);
masm.ma_vldr(toAddress(to), scratchFloat32, scratch);
// Since it is uncertain if the load will be aligned or not
// just fill both of them with the same value.
masm.ma_vstr(scratchFloat32, cycleSlot(slotId, 0), scratch);
masm.ma_vstr(scratchFloat32, cycleSlot(slotId, 4), scratch);
} else if (to.isGeneralReg()) {
// Since it is uncertain if the load will be aligned or not
// just fill both of them with the same value.
masm.ma_str(to.reg(), cycleSlot(slotId, 0), scratch);
masm.ma_str(to.reg(), cycleSlot(slotId, 4), scratch);
} else {
FloatRegister src = to.floatReg();
// Just always store the largest possible size. Currently, this is
// a double. When SIMD is added, two doubles will need to be stored.
masm.ma_vstr(src.doubleOverlay(), cycleSlot(slotId, 0), scratch);
}
break;
case MoveOp::DOUBLE:
if (to.isMemory()) {
ScratchDoubleScope scratchDouble(masm);
masm.ma_vldr(toAddress(to), scratchDouble, scratch);
masm.ma_vstr(scratchDouble, cycleSlot(slotId, 0), scratch);
} else if (to.isGeneralRegPair()) {
ScratchDoubleScope scratchDouble(masm);
masm.ma_vxfer(to.evenReg(), to.oddReg(), scratchDouble);
masm.ma_vstr(scratchDouble, cycleSlot(slotId, 0), scratch);
} else {
masm.ma_vstr(to.floatReg().doubleOverlay(), cycleSlot(slotId, 0), scratch);
}
break;
case MoveOp::INT32:
case MoveOp::GENERAL:
// an non-vfp value
if (to.isMemory()) {
Register temp = tempReg();
masm.ma_ldr(toAddress(to), temp, scratch);
masm.ma_str(temp, cycleSlot(0,0), scratch);
} else {
if (to.reg() == spilledReg_) {
// If the destination was spilled, restore it first.
masm.ma_ldr(spillSlot(), spilledReg_, scratch);
spilledReg_ = InvalidReg;
}
masm.ma_str(to.reg(), cycleSlot(0,0), scratch);
}
break;
default:
MOZ_CRASH("Unexpected move type");
}
}
void
MoveEmitterARM::completeCycle(const MoveOperand& from, const MoveOperand& to, MoveOp::Type type, uint32_t slotId)
{
// There is some pattern:
// (A -> B)
// (B -> A)
//
// This case handles (B -> A), which we reach last. We emit a move from the
// saved value of B, to A.
ScratchRegisterScope scratch(masm);
switch (type) {
case MoveOp::FLOAT32:
MOZ_ASSERT(!to.isGeneralRegPair());
if (to.isMemory()) {
ScratchFloat32Scope scratchFloat32(masm);
masm.ma_vldr(cycleSlot(slotId, 0), scratchFloat32, scratch);
masm.ma_vstr(scratchFloat32, toAddress(to), scratch);
} else if (to.isGeneralReg()) {
MOZ_ASSERT(type == MoveOp::FLOAT32);
masm.ma_ldr(toAddress(from), to.reg(), scratch);
} else {
uint32_t offset = 0;
if ((!from.isMemory()) && from.floatReg().numAlignedAliased() == 1)
offset = sizeof(float);
masm.ma_vldr(cycleSlot(slotId, offset), to.floatReg(), scratch);
}
break;
case MoveOp::DOUBLE:
MOZ_ASSERT(!to.isGeneralReg());
if (to.isMemory()) {
ScratchDoubleScope scratchDouble(masm);
masm.ma_vldr(cycleSlot(slotId, 0), scratchDouble, scratch);
masm.ma_vstr(scratchDouble, toAddress(to), scratch);
} else if (to.isGeneralRegPair()) {
MOZ_ASSERT(type == MoveOp::DOUBLE);
ScratchDoubleScope scratchDouble(masm);
masm.ma_vldr(toAddress(from), scratchDouble, scratch);
masm.ma_vxfer(scratchDouble, to.evenReg(), to.oddReg());
} else {
uint32_t offset = 0;
if ((!from.isMemory()) && from.floatReg().numAlignedAliased() == 1)
offset = sizeof(float);
masm.ma_vldr(cycleSlot(slotId, offset), to.floatReg(), scratch);
}
break;
case MoveOp::INT32:
case MoveOp::GENERAL:
MOZ_ASSERT(slotId == 0);
if (to.isMemory()) {
Register temp = tempReg();
masm.ma_ldr(cycleSlot(slotId, 0), temp, scratch);
masm.ma_str(temp, toAddress(to), scratch);
} else {
if (to.reg() == spilledReg_) {
// Make sure we don't re-clobber the spilled register later.
spilledReg_ = InvalidReg;
}
masm.ma_ldr(cycleSlot(slotId, 0), to.reg(), scratch);
}
break;
default:
MOZ_CRASH("Unexpected move type");
}
}
void
MoveEmitterARM::emitMove(const MoveOperand& from, const MoveOperand& to)
{
// Register pairs are used to store Double values during calls.
MOZ_ASSERT(!from.isGeneralRegPair());
MOZ_ASSERT(!to.isGeneralRegPair());
ScratchRegisterScope scratch(masm);
if (to.isGeneralReg() && to.reg() == spilledReg_) {
// If the destination is the spilled register, make sure we
// don't re-clobber its value.
spilledReg_ = InvalidReg;
}
if (from.isGeneralReg()) {
if (from.reg() == spilledReg_) {
// If the source is a register that has been spilled, make sure
// to load the source back into that register.
masm.ma_ldr(spillSlot(), spilledReg_, scratch);
spilledReg_ = InvalidReg;
}
if (to.isMemoryOrEffectiveAddress())
masm.ma_str(from.reg(), toAddress(to), scratch);
else
masm.ma_mov(from.reg(), to.reg());
} else if (to.isGeneralReg()) {
MOZ_ASSERT(from.isMemoryOrEffectiveAddress());
if (from.isMemory())
masm.ma_ldr(toAddress(from), to.reg(), scratch);
else
masm.ma_add(from.base(), Imm32(from.disp()), to.reg(), scratch);
} else {
// Memory to memory gpr move.
Register reg = tempReg();
MOZ_ASSERT(from.isMemoryOrEffectiveAddress());
if (from.isMemory())
masm.ma_ldr(toAddress(from), reg, scratch);
else
masm.ma_add(from.base(), Imm32(from.disp()), reg, scratch);
MOZ_ASSERT(to.base() != reg);
masm.ma_str(reg, toAddress(to), scratch);
}
}
void
MoveEmitterARM::emitFloat32Move(const MoveOperand& from, const MoveOperand& to)
{
// Register pairs are used to store Double values during calls.
MOZ_ASSERT(!from.isGeneralRegPair());
MOZ_ASSERT(!to.isGeneralRegPair());
ScratchRegisterScope scratch(masm);
if (from.isFloatReg()) {
if (to.isFloatReg())
masm.ma_vmov_f32(from.floatReg(), to.floatReg());
else if (to.isGeneralReg())
masm.ma_vxfer(from.floatReg(), to.reg());
else
masm.ma_vstr(VFPRegister(from.floatReg()).singleOverlay(), toAddress(to), scratch);
} else if (from.isGeneralReg()) {
if (to.isFloatReg()) {
masm.ma_vxfer(from.reg(), to.floatReg());
} else if (to.isGeneralReg()) {
masm.ma_mov(from.reg(), to.reg());
} else {
masm.ma_str(from.reg(), toAddress(to), scratch);
}
} else if (to.isFloatReg()) {
masm.ma_vldr(toAddress(from), VFPRegister(to.floatReg()).singleOverlay(), scratch);
} else if (to.isGeneralReg()) {
masm.ma_ldr(toAddress(from), to.reg(), scratch);
} else {
// Memory to memory move.
MOZ_ASSERT(from.isMemory());
ScratchFloat32Scope scratchFloat32(masm);
masm.ma_vldr(toAddress(from), scratchFloat32, scratch);
masm.ma_vstr(scratchFloat32, toAddress(to), scratch);
}
}
void
MoveEmitterARM::emitDoubleMove(const MoveOperand& from, const MoveOperand& to)
{
// Registers are used to store pointers / int32 / float32 values.
MOZ_ASSERT(!from.isGeneralReg());
MOZ_ASSERT(!to.isGeneralReg());
ScratchRegisterScope scratch(masm);
if (from.isFloatReg()) {
if (to.isFloatReg())
masm.ma_vmov(from.floatReg(), to.floatReg());
else if (to.isGeneralRegPair())
masm.ma_vxfer(from.floatReg(), to.evenReg(), to.oddReg());
else
masm.ma_vstr(from.floatReg(), toAddress(to), scratch);
} else if (from.isGeneralRegPair()) {
if (to.isFloatReg())
masm.ma_vxfer(from.evenReg(), from.oddReg(), to.floatReg());
else if (to.isGeneralRegPair()) {
MOZ_ASSERT(!from.aliases(to));
masm.ma_mov(from.evenReg(), to.evenReg());
masm.ma_mov(from.oddReg(), to.oddReg());
} else {
ScratchDoubleScope scratchDouble(masm);
masm.ma_vxfer(from.evenReg(), from.oddReg(), scratchDouble);
masm.ma_vstr(scratchDouble, toAddress(to), scratch);
}
} else if (to.isFloatReg()) {
masm.ma_vldr(toAddress(from), to.floatReg(), scratch);
} else if (to.isGeneralRegPair()) {
MOZ_ASSERT(from.isMemory());
Address src = toAddress(from);
// Note: We can safely use the MoveOperand's displacement here,
// even if the base is SP: MoveEmitter::toOperand adjusts
// SP-relative operands by the difference between the current
// stack usage and stackAdjust, which emitter.finish() resets to
// 0.
//
// Warning: if the offset isn't within [-255,+255] then this
// will assert-fail (or, if non-debug, load the wrong words).
// Nothing uses such an offset at the time of this writing.
masm.ma_ldrd(EDtrAddr(src.base, EDtrOffImm(src.offset)), to.evenReg(), to.oddReg());
} else {
// Memory to memory move.
MOZ_ASSERT(from.isMemory());
ScratchDoubleScope scratchDouble(masm);
masm.ma_vldr(toAddress(from), scratchDouble, scratch);
masm.ma_vstr(scratchDouble, toAddress(to), scratch);
}
}
void
MoveEmitterARM::emit(const MoveOp& move)
{
const MoveOperand& from = move.from();
const MoveOperand& to = move.to();
if (move.isCycleEnd() && move.isCycleBegin()) {
// A fun consequence of aliased registers is you can have multiple
// cycles at once, and one can end exactly where another begins.
breakCycle(from, to, move.endCycleType(), move.cycleBeginSlot());
completeCycle(from, to, move.type(), move.cycleEndSlot());
return;
}
if (move.isCycleEnd()) {
MOZ_ASSERT(inCycle_);
completeCycle(from, to, move.type(), move.cycleEndSlot());
MOZ_ASSERT(inCycle_ > 0);
inCycle_--;
return;
}
if (move.isCycleBegin()) {
breakCycle(from, to, move.endCycleType(), move.cycleBeginSlot());
inCycle_++;
}
switch (move.type()) {
case MoveOp::FLOAT32:
emitFloat32Move(from, to);
break;
case MoveOp::DOUBLE:
emitDoubleMove(from, to);
break;
case MoveOp::INT32:
case MoveOp::GENERAL:
emitMove(from, to);
break;
default:
MOZ_CRASH("Unexpected move type");
}
}
void
MoveEmitterARM::assertDone()
{
MOZ_ASSERT(inCycle_ == 0);
}
void
MoveEmitterARM::finish()
{
assertDone();
if (pushedAtSpill_ != -1 && spilledReg_ != InvalidReg) {
ScratchRegisterScope scratch(masm);
masm.ma_ldr(spillSlot(), spilledReg_, scratch);
}
masm.freeStack(masm.framePushed() - pushedAtStart_);
}
|