summaryrefslogtreecommitdiffstats
path: root/js/src/jit/BacktrackingAllocator.h
blob: ef3c2a572022dee3fffa1ba9843446fb9c6e2ee2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_BacktrackingAllocator_h
#define jit_BacktrackingAllocator_h

#include "mozilla/Array.h"

#include "ds/PriorityQueue.h"
#include "ds/SplayTree.h"
#include "jit/RegisterAllocator.h"
#include "jit/StackSlotAllocator.h"

// Backtracking priority queue based register allocator based on that described
// in the following blog post:
//
// http://blog.llvm.org/2011/09/greedy-register-allocation-in-llvm-30.html

namespace js {
namespace jit {

class Requirement
{
  public:
    enum Kind {
        NONE,
        REGISTER,
        FIXED,
        MUST_REUSE_INPUT
    };

    Requirement()
      : kind_(NONE)
    { }

    explicit Requirement(Kind kind)
      : kind_(kind)
    {
        // These have dedicated constructors.
        MOZ_ASSERT(kind != FIXED && kind != MUST_REUSE_INPUT);
    }

    Requirement(Kind kind, CodePosition at)
      : kind_(kind),
        position_(at)
    {
        // These have dedicated constructors.
        MOZ_ASSERT(kind != FIXED && kind != MUST_REUSE_INPUT);
    }

    explicit Requirement(LAllocation fixed)
      : kind_(FIXED),
        allocation_(fixed)
    {
        MOZ_ASSERT(!fixed.isBogus() && !fixed.isUse());
    }

    // Only useful as a hint, encodes where the fixed requirement is used to
    // avoid allocating a fixed register too early.
    Requirement(LAllocation fixed, CodePosition at)
      : kind_(FIXED),
        allocation_(fixed),
        position_(at)
    {
        MOZ_ASSERT(!fixed.isBogus() && !fixed.isUse());
    }

    Requirement(uint32_t vreg, CodePosition at)
      : kind_(MUST_REUSE_INPUT),
        allocation_(LUse(vreg, LUse::ANY)),
        position_(at)
    { }

    Kind kind() const {
        return kind_;
    }

    LAllocation allocation() const {
        MOZ_ASSERT(!allocation_.isBogus() && !allocation_.isUse());
        return allocation_;
    }

    uint32_t virtualRegister() const {
        MOZ_ASSERT(allocation_.isUse());
        MOZ_ASSERT(kind() == MUST_REUSE_INPUT);
        return allocation_.toUse()->virtualRegister();
    }

    CodePosition pos() const {
        return position_;
    }

    int priority() const;

    MOZ_MUST_USE bool merge(const Requirement& newRequirement) {
        // Merge newRequirement with any existing requirement, returning false
        // if the new and old requirements conflict.
        MOZ_ASSERT(newRequirement.kind() != Requirement::MUST_REUSE_INPUT);

        if (newRequirement.kind() == Requirement::FIXED) {
            if (kind() == Requirement::FIXED)
                return newRequirement.allocation() == allocation();
            *this = newRequirement;
            return true;
        }

        MOZ_ASSERT(newRequirement.kind() == Requirement::REGISTER);
        if (kind() == Requirement::FIXED)
            return allocation().isRegister();

        *this = newRequirement;
        return true;
    }

    void dump() const;

  private:
    Kind kind_;
    LAllocation allocation_;
    CodePosition position_;
};

struct UsePosition : public TempObject,
                     public InlineForwardListNode<UsePosition>
{
  private:
    // Packed LUse* with a copy of the LUse::Policy value, in order to avoid
    // making cache misses while reaching out to the policy value.
    uintptr_t use_;

    void setUse(LUse* use) {
        // Assert that we can safely pack the LUse policy in the last 2 bits of
        // the LUse pointer.
        static_assert((LUse::ANY | LUse::REGISTER | LUse::FIXED | LUse::KEEPALIVE) <= 0x3,
                      "Cannot pack the LUse::Policy value on 32 bits architectures.");

        // RECOVERED_INPUT is used by snapshots and ignored when building the
        // liveness information. Thus we can safely assume that no such value
        // would be seen.
        MOZ_ASSERT(use->policy() != LUse::RECOVERED_INPUT);
        use_ = uintptr_t(use) | (use->policy() & 0x3);
    }

  public:
    CodePosition pos;

    LUse* use() const {
        return reinterpret_cast<LUse*>(use_ & ~0x3);
    }

    LUse::Policy usePolicy() const {
        LUse::Policy policy = LUse::Policy(use_ & 0x3);
        MOZ_ASSERT(use()->policy() == policy);
        return policy;
    }

    UsePosition(LUse* use, CodePosition pos) :
        pos(pos)
    {
        // Verify that the usedAtStart() flag is consistent with the
        // subposition. For now ignore fixed registers, because they
        // are handled specially around calls.
        MOZ_ASSERT_IF(!use->isFixedRegister(),
                      pos.subpos() == (use->usedAtStart()
                                       ? CodePosition::INPUT
                                       : CodePosition::OUTPUT));
        setUse(use);
    }
};

typedef InlineForwardListIterator<UsePosition> UsePositionIterator;

// Backtracking allocator data structures overview.
//
// LiveRange: A continuous range of positions where a virtual register is live.
// LiveBundle: A set of LiveRanges which do not overlap.
// VirtualRegister: A set of all LiveRanges used for some LDefinition.
//
// The allocator first performs a liveness ananlysis on the LIR graph which
// constructs LiveRanges for each VirtualRegister, determining where the
// registers are live.
//
// The ranges are then bundled together according to heuristics, and placed on
// the allocation queue.
//
// As bundles are removed from the allocation queue, we attempt to find a
// physical register or stack slot allocation for all ranges in the removed
// bundle, possibly evicting already-allocated bundles. See processBundle()
// for details.
//
// If we are not able to allocate a bundle, it is split according to heuristics
// into two or more smaller bundles which cover all the ranges of the original.
// These smaller bundles are then allocated independently.

class LiveBundle;

class LiveRange : public TempObject
{
  public:
    // Linked lists are used to keep track of the ranges in each LiveBundle and
    // VirtualRegister. Since a LiveRange may be in two lists simultaneously, use
    // these auxiliary classes to keep things straight.
    class BundleLink : public InlineForwardListNode<BundleLink> {};
    class RegisterLink : public InlineForwardListNode<RegisterLink> {};

    typedef InlineForwardListIterator<BundleLink> BundleLinkIterator;
    typedef InlineForwardListIterator<RegisterLink> RegisterLinkIterator;

    // Links in the lists in LiveBundle and VirtualRegister.
    BundleLink bundleLink;
    RegisterLink registerLink;

    static LiveRange* get(BundleLink* link) {
        return reinterpret_cast<LiveRange*>(reinterpret_cast<uint8_t*>(link) -
                                            offsetof(LiveRange, bundleLink));
    }
    static LiveRange* get(RegisterLink* link) {
        return reinterpret_cast<LiveRange*>(reinterpret_cast<uint8_t*>(link) -
                                            offsetof(LiveRange, registerLink));
    }

    struct Range
    {
        // The beginning of this range, inclusive.
        CodePosition from;

        // The end of this range, exclusive.
        CodePosition to;

        Range() {}

        Range(CodePosition from, CodePosition to)
          : from(from), to(to)
        {
            MOZ_ASSERT(!empty());
        }

        bool empty() {
            MOZ_ASSERT(from <= to);
            return from == to;
        }
    };

  private:
    // The virtual register this range is for, or zero if this does not have a
    // virtual register (for example, it is in the callRanges bundle).
    uint32_t vreg_;

    // The bundle containing this range, null if liveness information is being
    // constructed and we haven't started allocating bundles yet.
    LiveBundle* bundle_;

    // The code positions in this range.
    Range range_;

    // All uses of the virtual register in this range, ordered by location.
    InlineForwardList<UsePosition> uses_;

    // Whether this range contains the virtual register's definition.
    bool hasDefinition_;

    LiveRange(uint32_t vreg, Range range)
      : vreg_(vreg), bundle_(nullptr), range_(range), hasDefinition_(false)
    {
        MOZ_ASSERT(!range.empty());
    }

  public:
    static LiveRange* FallibleNew(TempAllocator& alloc, uint32_t vreg,
                                  CodePosition from, CodePosition to)
    {
        return new(alloc.fallible()) LiveRange(vreg, Range(from, to));
    }

    uint32_t vreg() const {
        MOZ_ASSERT(hasVreg());
        return vreg_;
    }
    bool hasVreg() const {
        return vreg_ != 0;
    }

    LiveBundle* bundle() const {
        return bundle_;
    }

    CodePosition from() const {
        return range_.from;
    }
    CodePosition to() const {
        return range_.to;
    }
    bool covers(CodePosition pos) const {
        return pos >= from() && pos < to();
    }

    // Whether this range wholly contains other.
    bool contains(LiveRange* other) const;

    // Intersect this range with other, returning the subranges of this
    // that are before, inside, or after other.
    void intersect(LiveRange* other, Range* pre, Range* inside, Range* post) const;

    // Whether this range has any intersection with other.
    bool intersects(LiveRange* other) const;

    UsePositionIterator usesBegin() const {
        return uses_.begin();
    }
    UsePosition* lastUse() const {
        return uses_.back();
    }
    bool hasUses() const {
        return !!usesBegin();
    }
    UsePosition* popUse() {
        return uses_.popFront();
    }

    bool hasDefinition() const {
        return hasDefinition_;
    }

    void setFrom(CodePosition from) {
        range_.from = from;
        MOZ_ASSERT(!range_.empty());
    }
    void setTo(CodePosition to) {
        range_.to = to;
        MOZ_ASSERT(!range_.empty());
    }

    void setBundle(LiveBundle* bundle) {
        bundle_ = bundle;
    }

    void addUse(UsePosition* use);
    void distributeUses(LiveRange* other);

    void setHasDefinition() {
        MOZ_ASSERT(!hasDefinition_);
        hasDefinition_ = true;
    }

#ifdef JS_JITSPEW
    // Return a string describing this range.
    UniqueChars toString() const;
#endif

    // Comparator for use in range splay trees.
    static int compare(LiveRange* v0, LiveRange* v1) {
        // LiveRange includes 'from' but excludes 'to'.
        if (v0->to() <= v1->from())
            return -1;
        if (v0->from() >= v1->to())
            return 1;
        return 0;
    }
};

// Tracks information about bundles that should all be spilled to the same
// physical location. At the beginning of allocation, each bundle has its own
// spill set. As bundles are split, the new smaller bundles continue to use the
// same spill set.
class SpillSet : public TempObject
{
    // All bundles with this spill set which have been spilled. All bundles in
    // this list will be given the same physical slot.
    Vector<LiveBundle*, 1, JitAllocPolicy> list_;

    explicit SpillSet(TempAllocator& alloc)
      : list_(alloc)
    { }

  public:
    static SpillSet* New(TempAllocator& alloc) {
        return new(alloc) SpillSet(alloc);
    }

    MOZ_MUST_USE bool addSpilledBundle(LiveBundle* bundle) {
        return list_.append(bundle);
    }
    size_t numSpilledBundles() const {
        return list_.length();
    }
    LiveBundle* spilledBundle(size_t i) const {
        return list_[i];
    }

    void setAllocation(LAllocation alloc);
};

// A set of live ranges which are all pairwise disjoint. The register allocator
// attempts to find allocations for an entire bundle, and if it fails the
// bundle will be broken into smaller ones which are allocated independently.
class LiveBundle : public TempObject
{
    // Set to use if this bundle or one it is split into is spilled.
    SpillSet* spill_;

    // All the ranges in this set, ordered by location.
    InlineForwardList<LiveRange::BundleLink> ranges_;

    // Allocation to use for ranges in this set, bogus if unallocated or spilled
    // and not yet given a physical stack slot.
    LAllocation alloc_;

    // Bundle which entirely contains this one and has no register uses. This
    // may or may not be spilled by the allocator, but it can be spilled and
    // will not be split.
    LiveBundle* spillParent_;

    LiveBundle(SpillSet* spill, LiveBundle* spillParent)
      : spill_(spill), spillParent_(spillParent)
    { }

  public:
    static LiveBundle* FallibleNew(TempAllocator& alloc, SpillSet* spill, LiveBundle* spillParent)
    {
        return new(alloc.fallible()) LiveBundle(spill, spillParent);
    }

    SpillSet* spillSet() const {
        return spill_;
    }
    void setSpillSet(SpillSet* spill) {
        spill_ = spill;
    }

    LiveRange::BundleLinkIterator rangesBegin() const {
        return ranges_.begin();
    }
    bool hasRanges() const {
        return !!rangesBegin();
    }
    LiveRange* firstRange() const {
        return LiveRange::get(*rangesBegin());
    }
    LiveRange* lastRange() const {
        return LiveRange::get(ranges_.back());
    }
    LiveRange* rangeFor(CodePosition pos) const;
    void removeRange(LiveRange* range);
    void removeRangeAndIncrementIterator(LiveRange::BundleLinkIterator& iter) {
        ranges_.removeAndIncrement(iter);
    }
    void addRange(LiveRange* range);
    MOZ_MUST_USE bool addRange(TempAllocator& alloc, uint32_t vreg,
                               CodePosition from, CodePosition to);
    MOZ_MUST_USE bool addRangeAndDistributeUses(TempAllocator& alloc, LiveRange* oldRange,
                                                CodePosition from, CodePosition to);
    LiveRange* popFirstRange();
#ifdef DEBUG
    size_t numRanges() const;
#endif

    LAllocation allocation() const {
        return alloc_;
    }
    void setAllocation(LAllocation alloc) {
        alloc_ = alloc;
    }

    LiveBundle* spillParent() const {
        return spillParent_;
    }

#ifdef JS_JITSPEW
    // Return a string describing this bundle.
    UniqueChars toString() const;
#endif
};

// Information about the allocation for a virtual register.
class VirtualRegister
{
    // Instruction which defines this register.
    LNode* ins_ = nullptr;

    // Definition in the instruction for this register.
    LDefinition* def_ = nullptr;

    // All live ranges for this register. These may overlap each other, and are
    // ordered by their start position.
    InlineForwardList<LiveRange::RegisterLink> ranges_;

    // Whether def_ is a temp or an output.
    bool isTemp_ = false;

    // Whether this vreg is an input for some phi. This use is not reflected in
    // any range on the vreg.
    bool usedByPhi_ = false;

    // If this register's definition is MUST_REUSE_INPUT, whether a copy must
    // be introduced before the definition that relaxes the policy.
    bool mustCopyInput_ = false;

    void operator=(const VirtualRegister&) = delete;
    VirtualRegister(const VirtualRegister&) = delete;

  public:
    VirtualRegister() = default;

    void init(LNode* ins, LDefinition* def, bool isTemp) {
        MOZ_ASSERT(!ins_);
        ins_ = ins;
        def_ = def;
        isTemp_ = isTemp;
    }

    LNode* ins() const {
        return ins_;
    }
    LDefinition* def() const {
        return def_;
    }
    LDefinition::Type type() const {
        return def()->type();
    }
    uint32_t vreg() const {
        return def()->virtualRegister();
    }
    bool isCompatible(const AnyRegister& r) const {
        return def_->isCompatibleReg(r);
    }
    bool isCompatible(const VirtualRegister& vr) const {
        return def_->isCompatibleDef(*vr.def_);
    }
    bool isTemp() const {
        return isTemp_;
    }

    void setUsedByPhi() {
        usedByPhi_ = true;
    }
    bool usedByPhi() {
        return usedByPhi_;
    }

    void setMustCopyInput() {
        mustCopyInput_ = true;
    }
    bool mustCopyInput() {
        return mustCopyInput_;
    }

    LiveRange::RegisterLinkIterator rangesBegin() const {
        return ranges_.begin();
    }
    LiveRange::RegisterLinkIterator rangesBegin(LiveRange* range) const {
        return ranges_.begin(&range->registerLink);
    }
    bool hasRanges() const {
        return !!rangesBegin();
    }
    LiveRange* firstRange() const {
        return LiveRange::get(*rangesBegin());
    }
    LiveRange* lastRange() const {
        return LiveRange::get(ranges_.back());
    }
    LiveRange* rangeFor(CodePosition pos, bool preferRegister = false) const;
    void removeRange(LiveRange* range);
    void addRange(LiveRange* range);

    void removeRangeAndIncrement(LiveRange::RegisterLinkIterator& iter) {
        ranges_.removeAndIncrement(iter);
    }

    LiveBundle* firstBundle() const {
        return firstRange()->bundle();
    }

    MOZ_MUST_USE bool addInitialRange(TempAllocator& alloc, CodePosition from, CodePosition to);
    void addInitialUse(UsePosition* use);
    void setInitialDefinition(CodePosition from);
};

// A sequence of code positions, for tellings BacktrackingAllocator::splitAt
// where to split.
typedef js::Vector<CodePosition, 4, SystemAllocPolicy> SplitPositionVector;

class BacktrackingAllocator : protected RegisterAllocator
{
    friend class C1Spewer;
    friend class JSONSpewer;

    // This flag is set when testing new allocator modifications.
    bool testbed;

    BitSet* liveIn;
    FixedList<VirtualRegister> vregs;

    // Allocation state.
    StackSlotAllocator stackSlotAllocator;

    // Priority queue element: a bundle and the associated priority.
    struct QueueItem
    {
        LiveBundle* bundle;

        QueueItem(LiveBundle* bundle, size_t priority)
          : bundle(bundle), priority_(priority)
        {}

        static size_t priority(const QueueItem& v) {
            return v.priority_;
        }

      private:
        size_t priority_;
    };

    PriorityQueue<QueueItem, QueueItem, 0, SystemAllocPolicy> allocationQueue;

    typedef SplayTree<LiveRange*, LiveRange> LiveRangeSet;

    // Each physical register is associated with the set of ranges over which
    // that register is currently allocated.
    struct PhysicalRegister {
        bool allocatable;
        AnyRegister reg;
        LiveRangeSet allocations;

        PhysicalRegister() : allocatable(false) {}
    };
    mozilla::Array<PhysicalRegister, AnyRegister::Total> registers;

    // Ranges of code which are considered to be hot, for which good allocation
    // should be prioritized.
    LiveRangeSet hotcode;

    struct CallRange : public TempObject, public InlineListNode<CallRange> {
        LiveRange::Range range;

        CallRange(CodePosition from, CodePosition to)
          : range(from, to)
        {}

        // Comparator for use in splay tree.
        static int compare(CallRange* v0, CallRange* v1) {
            if (v0->range.to <= v1->range.from)
                return -1;
            if (v0->range.from >= v1->range.to)
                return 1;
            return 0;
        }
    };

    // Ranges where all registers must be spilled due to call instructions.
    typedef InlineList<CallRange> CallRangeList;
    CallRangeList callRangesList;
    SplayTree<CallRange*, CallRange> callRanges;

    // Information about an allocated stack slot.
    struct SpillSlot : public TempObject, public InlineForwardListNode<SpillSlot> {
        LStackSlot alloc;
        LiveRangeSet allocated;

        SpillSlot(uint32_t slot, LifoAlloc* alloc)
          : alloc(slot), allocated(alloc)
        {}
    };
    typedef InlineForwardList<SpillSlot> SpillSlotList;

    // All allocated slots of each width.
    SpillSlotList normalSlots, doubleSlots, quadSlots;

  public:
    BacktrackingAllocator(MIRGenerator* mir, LIRGenerator* lir, LIRGraph& graph, bool testbed)
      : RegisterAllocator(mir, lir, graph),
        testbed(testbed),
        liveIn(nullptr),
        callRanges(nullptr)
    { }

    MOZ_MUST_USE bool go();

  private:

    typedef Vector<LiveRange*, 4, SystemAllocPolicy> LiveRangeVector;
    typedef Vector<LiveBundle*, 4, SystemAllocPolicy> LiveBundleVector;

    // Liveness methods.
    MOZ_MUST_USE bool init();
    MOZ_MUST_USE bool buildLivenessInfo();

    MOZ_MUST_USE bool addInitialFixedRange(AnyRegister reg, CodePosition from, CodePosition to);

    VirtualRegister& vreg(const LDefinition* def) {
        return vregs[def->virtualRegister()];
    }
    VirtualRegister& vreg(const LAllocation* alloc) {
        MOZ_ASSERT(alloc->isUse());
        return vregs[alloc->toUse()->virtualRegister()];
    }

    // Allocation methods.
    MOZ_MUST_USE bool tryMergeBundles(LiveBundle* bundle0, LiveBundle* bundle1);
    MOZ_MUST_USE bool tryMergeReusedRegister(VirtualRegister& def, VirtualRegister& input);
    MOZ_MUST_USE bool mergeAndQueueRegisters();
    MOZ_MUST_USE bool tryAllocateFixed(LiveBundle* bundle, Requirement requirement,
                                       bool* success, bool* pfixed, LiveBundleVector& conflicting);
    MOZ_MUST_USE bool tryAllocateNonFixed(LiveBundle* bundle, Requirement requirement,
                                          Requirement hint, bool* success, bool* pfixed,
                                          LiveBundleVector& conflicting);
    MOZ_MUST_USE bool processBundle(MIRGenerator* mir, LiveBundle* bundle);
    MOZ_MUST_USE bool computeRequirement(LiveBundle* bundle, Requirement *prequirement,
                                         Requirement *phint);
    MOZ_MUST_USE bool tryAllocateRegister(PhysicalRegister& r, LiveBundle* bundle, bool* success,
                                          bool* pfixed, LiveBundleVector& conflicting);
    MOZ_MUST_USE bool evictBundle(LiveBundle* bundle);
    MOZ_MUST_USE bool splitAndRequeueBundles(LiveBundle* bundle,
                                             const LiveBundleVector& newBundles);
    MOZ_MUST_USE bool spill(LiveBundle* bundle);

    bool isReusedInput(LUse* use, LNode* ins, bool considerCopy);
    bool isRegisterUse(UsePosition* use, LNode* ins, bool considerCopy = false);
    bool isRegisterDefinition(LiveRange* range);
    MOZ_MUST_USE bool pickStackSlot(SpillSet* spill);
    MOZ_MUST_USE bool insertAllRanges(LiveRangeSet& set, LiveBundle* bundle);

    // Reification methods.
    MOZ_MUST_USE bool pickStackSlots();
    MOZ_MUST_USE bool resolveControlFlow();
    MOZ_MUST_USE bool reifyAllocations();
    MOZ_MUST_USE bool populateSafepoints();
    MOZ_MUST_USE bool annotateMoveGroups();
    MOZ_MUST_USE bool deadRange(LiveRange* range);
    size_t findFirstNonCallSafepoint(CodePosition from);
    size_t findFirstSafepoint(CodePosition pos, size_t startFrom);
    void addLiveRegistersForRange(VirtualRegister& reg, LiveRange* range);

    MOZ_MUST_USE bool addMove(LMoveGroup* moves, LiveRange* from, LiveRange* to,
                              LDefinition::Type type) {
        LAllocation fromAlloc = from->bundle()->allocation();
        LAllocation toAlloc = to->bundle()->allocation();
        MOZ_ASSERT(fromAlloc != toAlloc);
        return moves->add(fromAlloc, toAlloc, type);
    }

    MOZ_MUST_USE bool moveInput(LInstruction* ins, LiveRange* from, LiveRange* to,
                                LDefinition::Type type) {
        if (from->bundle()->allocation() == to->bundle()->allocation())
            return true;
        LMoveGroup* moves = getInputMoveGroup(ins);
        return addMove(moves, from, to, type);
    }

    MOZ_MUST_USE bool moveAfter(LInstruction* ins, LiveRange* from, LiveRange* to,
                                LDefinition::Type type) {
        if (from->bundle()->allocation() == to->bundle()->allocation())
            return true;
        LMoveGroup* moves = getMoveGroupAfter(ins);
        return addMove(moves, from, to, type);
    }

    MOZ_MUST_USE bool moveAtExit(LBlock* block, LiveRange* from, LiveRange* to,
                                 LDefinition::Type type) {
        if (from->bundle()->allocation() == to->bundle()->allocation())
            return true;
        LMoveGroup* moves = block->getExitMoveGroup(alloc());
        return addMove(moves, from, to, type);
    }

    MOZ_MUST_USE bool moveAtEntry(LBlock* block, LiveRange* from, LiveRange* to,
                                  LDefinition::Type type) {
        if (from->bundle()->allocation() == to->bundle()->allocation())
            return true;
        LMoveGroup* moves = block->getEntryMoveGroup(alloc());
        return addMove(moves, from, to, type);
    }

    MOZ_MUST_USE bool moveAtEdge(LBlock* predecessor, LBlock* successor, LiveRange* from,
                                 LiveRange* to, LDefinition::Type type);

    // Debugging methods.
    void dumpAllocations();

    struct PrintLiveRange;

    bool minimalDef(LiveRange* range, LNode* ins);
    bool minimalUse(LiveRange* range, UsePosition* use);
    bool minimalBundle(LiveBundle* bundle, bool* pfixed = nullptr);

    // Heuristic methods.

    size_t computePriority(LiveBundle* bundle);
    size_t computeSpillWeight(LiveBundle* bundle);

    size_t maximumSpillWeight(const LiveBundleVector& bundles);

    MOZ_MUST_USE bool chooseBundleSplit(LiveBundle* bundle, bool fixed, LiveBundle* conflict);

    MOZ_MUST_USE bool splitAt(LiveBundle* bundle, const SplitPositionVector& splitPositions);
    MOZ_MUST_USE bool trySplitAcrossHotcode(LiveBundle* bundle, bool* success);
    MOZ_MUST_USE bool trySplitAfterLastRegisterUse(LiveBundle* bundle, LiveBundle* conflict,
                                                   bool* success);
    MOZ_MUST_USE bool trySplitBeforeFirstRegisterUse(LiveBundle* bundle, LiveBundle* conflict,
                                                     bool* success);
    MOZ_MUST_USE bool splitAcrossCalls(LiveBundle* bundle);

    bool compilingWasm() {
        return mir->info().compilingWasm();
    }

    void dumpVregs();
};

} // namespace jit
} // namespace js

#endif /* jit_BacktrackingAllocator_h */