summaryrefslogtreecommitdiffstats
path: root/js/src/gc/Barrier.h
blob: 681ccc9c4c2ec633214d432035598b957a55bf37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef gc_Barrier_h
#define gc_Barrier_h

#include "NamespaceImports.h"

#include "gc/Heap.h"
#include "gc/StoreBuffer.h"
#include "js/HeapAPI.h"
#include "js/Id.h"
#include "js/RootingAPI.h"
#include "js/Value.h"

/*
 * A write barrier is a mechanism used by incremental or generation GCs to
 * ensure that every value that needs to be marked is marked. In general, the
 * write barrier should be invoked whenever a write can cause the set of things
 * traced through by the GC to change. This includes:
 *   - writes to object properties
 *   - writes to array slots
 *   - writes to fields like JSObject::shape_ that we trace through
 *   - writes to fields in private data
 *   - writes to non-markable fields like JSObject::private that point to
 *     markable data
 * The last category is the trickiest. Even though the private pointers does not
 * point to a GC thing, changing the private pointer may change the set of
 * objects that are traced by the GC. Therefore it needs a write barrier.
 *
 * Every barriered write should have the following form:
 *   <pre-barrier>
 *   obj->field = value; // do the actual write
 *   <post-barrier>
 * The pre-barrier is used for incremental GC and the post-barrier is for
 * generational GC.
 *
 *                               PRE-BARRIER
 *
 * To understand the pre-barrier, let's consider how incremental GC works. The
 * GC itself is divided into "slices". Between each slice, JS code is allowed to
 * run. Each slice should be short so that the user doesn't notice the
 * interruptions. In our GC, the structure of the slices is as follows:
 *
 * 1. ... JS work, which leads to a request to do GC ...
 * 2. [first GC slice, which performs all root marking and possibly more marking]
 * 3. ... more JS work is allowed to run ...
 * 4. [GC mark slice, which runs entirely in drainMarkStack]
 * 5. ... more JS work ...
 * 6. [GC mark slice, which runs entirely in drainMarkStack]
 * 7. ... more JS work ...
 * 8. [GC marking finishes; sweeping done non-incrementally; GC is done]
 * 9. ... JS continues uninterrupted now that GC is finishes ...
 *
 * Of course, there may be a different number of slices depending on how much
 * marking is to be done.
 *
 * The danger inherent in this scheme is that the JS code in steps 3, 5, and 7
 * might change the heap in a way that causes the GC to collect an object that
 * is actually reachable. The write barrier prevents this from happening. We use
 * a variant of incremental GC called "snapshot at the beginning." This approach
 * guarantees the invariant that if an object is reachable in step 2, then we
 * will mark it eventually. The name comes from the idea that we take a
 * theoretical "snapshot" of all reachable objects in step 2; all objects in
 * that snapshot should eventually be marked. (Note that the write barrier
 * verifier code takes an actual snapshot.)
 *
 * The basic correctness invariant of a snapshot-at-the-beginning collector is
 * that any object reachable at the end of the GC (step 9) must either:
 *   (1) have been reachable at the beginning (step 2) and thus in the snapshot
 *   (2) or must have been newly allocated, in steps 3, 5, or 7.
 * To deal with case (2), any objects allocated during an incremental GC are
 * automatically marked black.
 *
 * This strategy is actually somewhat conservative: if an object becomes
 * unreachable between steps 2 and 8, it would be safe to collect it. We won't,
 * mainly for simplicity. (Also, note that the snapshot is entirely
 * theoretical. We don't actually do anything special in step 2 that we wouldn't
 * do in a non-incremental GC.
 *
 * It's the pre-barrier's job to maintain the snapshot invariant. Consider the
 * write "obj->field = value". Let the prior value of obj->field be
 * value0. Since it's possible that value0 may have been what obj->field
 * contained in step 2, when the snapshot was taken, the barrier marks
 * value0. Note that it only does this if we're in the middle of an incremental
 * GC. Since this is rare, the cost of the write barrier is usually just an
 * extra branch.
 *
 * In practice, we implement the pre-barrier differently based on the type of
 * value0. E.g., see JSObject::writeBarrierPre, which is used if obj->field is
 * a JSObject*. It takes value0 as a parameter.
 *
 *                                READ-BARRIER
 *
 * Incremental GC requires that weak pointers have read barriers. The problem
 * happens when, during an incremental GC, some code reads a weak pointer and
 * writes it somewhere on the heap that has been marked black in a previous
 * slice. Since the weak pointer will not otherwise be marked and will be swept
 * and finalized in the last slice, this will leave the pointer just written
 * dangling after the GC. To solve this, we immediately mark black all weak
 * pointers that get read between slices so that it is safe to store them in an
 * already marked part of the heap, e.g. in Rooted.
 *
 *                                POST-BARRIER
 *
 * For generational GC, we want to be able to quickly collect the nursery in a
 * minor collection.  Part of the way this is achieved is to only mark the
 * nursery itself; tenured things, which may form the majority of the heap, are
 * not traced through or marked.  This leads to the problem of what to do about
 * tenured objects that have pointers into the nursery: if such things are not
 * marked, they may be discarded while there are still live objects which
 * reference them. The solution is to maintain information about these pointers,
 * and mark their targets when we start a minor collection.
 *
 * The pointers can be thought of as edges in object graph, and the set of edges
 * from the tenured generation into the nursery is know as the remembered set.
 * Post barriers are used to track this remembered set.
 *
 * Whenever a slot which could contain such a pointer is written, we use a write
 * barrier to check if the edge created is in the remembered set, and if so we
 * insert it into the store buffer, which is the collector's representation of
 * the remembered set.  This means than when we come to do a minor collection we
 * can examine the contents of the store buffer and mark any edge targets that
 * are in the nursery.
 *
 *                            IMPLEMENTATION DETAILS
 *
 * Since it would be awkward to change every write to memory into a function
 * call, this file contains a bunch of C++ classes and templates that use
 * operator overloading to take care of barriers automatically. In many cases,
 * all that's necessary to make some field be barriered is to replace
 *     Type* field;
 * with
 *     GCPtr<Type> field;
 *
 * One additional note: not all object writes need to be pre-barriered. Writes
 * to newly allocated objects do not need a pre-barrier. In these cases, we use
 * the "obj->field.init(value)" method instead of "obj->field = value". We use
 * the init naming idiom in many places to signify that a field is being
 * assigned for the first time.
 *
 * This file implements four classes, illustrated here:
 *
 * BarrieredBase             base class of all barriers
 *  |  |
 *  | WriteBarrieredBase     base class which provides common write operations
 *  |  |  |  |  |
 *  |  |  |  | PreBarriered  provides pre-barriers only
 *  |  |  |  |
 *  |  |  | GCPtr            provides pre- and post-barriers
 *  |  |  |
 *  |  | HeapPtr             provides pre- and post-barriers; is relocatable
 *  |  |                     and deletable for use inside C++ managed memory
 *  |  |
 *  | HeapSlot               similar to GCPtr, but tailored to slots storage
 *  |
 * ReadBarrieredBase         base class which provides common read operations
 *  |
 * ReadBarriered             provides read barriers only
 *
 *
 * The implementation of the barrier logic is implemented on T::writeBarrier.*,
 * via:
 *
 * WriteBarrieredBase<T>::pre
 *  -> InternalBarrierMethods<T*>::preBarrier
 *      -> T::writeBarrierPre
 *  -> InternalBarrierMethods<Value>::preBarrier
 *  -> InternalBarrierMethods<jsid>::preBarrier
 *      -> InternalBarrierMethods<T*>::preBarrier
 *          -> T::writeBarrierPre
 *
 * GCPtr<T>::post and HeapPtr<T>::post
 *  -> InternalBarrierMethods<T*>::postBarrier
 *      -> T::writeBarrierPost
 *  -> InternalBarrierMethods<Value>::postBarrier
 *      -> StoreBuffer::put
 *
 * These classes are designed to be used by the internals of the JS engine.
 * Barriers designed to be used externally are provided in js/RootingAPI.h.
 * These external barriers call into the same post-barrier implementations at
 * InternalBarrierMethods<T>::post via an indirect call to Heap(.+)Barrier.
 *
 * These clases are designed to be used to wrap GC thing pointers or values that
 * act like them (i.e. JS::Value and jsid).  It is possible to use them for
 * other types by supplying the necessary barrier implementations but this
 * is not usually necessary and should be done with caution.
 */

class JSAtom;
struct JSCompartment;
class JSFlatString;
class JSLinearString;

namespace JS {
class Symbol;
} // namespace JS

namespace js {

class AccessorShape;
class ArrayObject;
class ArgumentsObject;
class ArrayBufferObjectMaybeShared;
class ArrayBufferObject;
class ArrayBufferViewObject;
class SharedArrayBufferObject;
class BaseShape;
class DebugEnvironmentProxy;
class GlobalObject;
class LazyScript;
class ModuleObject;
class ModuleEnvironmentObject;
class ModuleNamespaceObject;
class NativeObject;
class PlainObject;
class PropertyName;
class SavedFrame;
class EnvironmentObject;
class ScriptSourceObject;
class Shape;
class UnownedBaseShape;
class ObjectGroup;

namespace jit {
class JitCode;
} // namespace jit

#ifdef DEBUG
// Barriers can't be triggered during backend Ion compilation, which may run on
// a helper thread.
bool
CurrentThreadIsIonCompiling();

bool
CurrentThreadIsIonCompilingSafeForMinorGC();

bool
CurrentThreadIsGCSweeping();

bool
IsMarkedBlack(NativeObject* obj);
#endif

namespace gc {

// Marking.h depends on these barrier definitions, so we need a separate
// entry point for marking to implement the pre-barrier.
void MarkValueForBarrier(JSTracer* trc, Value* v, const char* name);
void MarkIdForBarrier(JSTracer* trc, jsid* idp, const char* name);

} // namespace gc

template <typename T>
struct InternalBarrierMethods {};

template <typename T>
struct InternalBarrierMethods<T*>
{
    static bool isMarkable(T* v) { return v != nullptr; }

    static bool isMarkableTaggedPointer(T* v) { return !IsNullTaggedPointer(v); }

    static void preBarrier(T* v) { T::writeBarrierPre(v); }

    static void postBarrier(T** vp, T* prev, T* next) { T::writeBarrierPost(vp, prev, next); }

    static void readBarrier(T* v) { T::readBarrier(v); }
};

template <typename S> struct PreBarrierFunctor : public VoidDefaultAdaptor<S> {
    template <typename T> void operator()(T* t);
};

template <typename S> struct ReadBarrierFunctor : public VoidDefaultAdaptor<S> {
    template <typename T> void operator()(T* t);
};

template <>
struct InternalBarrierMethods<Value>
{
    static bool isMarkable(const Value& v) { return v.isGCThing(); }
    static bool isMarkableTaggedPointer(const Value& v) { return isMarkable(v); }

    static void preBarrier(const Value& v) {
        DispatchTyped(PreBarrierFunctor<Value>(), v);
    }

    static void postBarrier(Value* vp, const Value& prev, const Value& next) {
        MOZ_ASSERT(!CurrentThreadIsIonCompiling());
        MOZ_ASSERT(vp);

        // If the target needs an entry, add it.
        js::gc::StoreBuffer* sb;
        if (next.isObject() && (sb = reinterpret_cast<gc::Cell*>(&next.toObject())->storeBuffer())) {
            // If we know that the prev has already inserted an entry, we can
            // skip doing the lookup to add the new entry. Note that we cannot
            // safely assert the presence of the entry because it may have been
            // added via a different store buffer.
            if (prev.isObject() && reinterpret_cast<gc::Cell*>(&prev.toObject())->storeBuffer())
                return;
            sb->putValue(vp);
            return;
        }
        // Remove the prev entry if the new value does not need it.
        if (prev.isObject() && (sb = reinterpret_cast<gc::Cell*>(&prev.toObject())->storeBuffer()))
            sb->unputValue(vp);
    }

    static void readBarrier(const Value& v) {
        DispatchTyped(ReadBarrierFunctor<Value>(), v);
    }
};

template <>
struct InternalBarrierMethods<jsid>
{
    static bool isMarkable(jsid id) { return JSID_IS_GCTHING(id); }
    static bool isMarkableTaggedPointer(jsid id) { return isMarkable(id); }

    static void preBarrier(jsid id) { DispatchTyped(PreBarrierFunctor<jsid>(), id); }
    static void postBarrier(jsid* idp, jsid prev, jsid next) {}
};

// Barrier classes can use Mixins to add methods to a set of barrier
// instantiations, to make the barriered thing look and feel more like the
// thing itself.
template <typename T>
class BarrieredBaseMixins {};

// Base class of all barrier types.
//
// This is marked non-memmovable since post barriers added by derived classes
// can add pointers to class instances to the store buffer.
template <typename T>
class MOZ_NON_MEMMOVABLE BarrieredBase : public BarrieredBaseMixins<T>
{
  protected:
    // BarrieredBase is not directly instantiable.
    explicit BarrieredBase(const T& v) : value(v) {}

    // Storage for all barrier classes. |value| must be a GC thing reference
    // type: either a direct pointer to a GC thing or a supported tagged
    // pointer that can reference GC things, such as JS::Value or jsid. Nested
    // barrier types are NOT supported. See assertTypeConstraints.
    T value;

  public:
    // Note: this is public because C++ cannot friend to a specific template instantiation.
    // Friending to the generic template leads to a number of unintended consequences, including
    // template resolution ambiguity and a circular dependency with Tracing.h.
    T* unsafeUnbarrieredForTracing() { return &value; }
};

// Base class for barriered pointer types that intercept only writes.
template <class T>
class WriteBarrieredBase : public BarrieredBase<T>
{
  protected:
    // WriteBarrieredBase is not directly instantiable.
    explicit WriteBarrieredBase(const T& v) : BarrieredBase<T>(v) {}

  public:
    DECLARE_POINTER_COMPARISON_OPS(T);
    DECLARE_POINTER_CONSTREF_OPS(T);

    // Use this if the automatic coercion to T isn't working.
    const T& get() const { return this->value; }

    // Use this if you want to change the value without invoking barriers.
    // Obviously this is dangerous unless you know the barrier is not needed.
    void unsafeSet(const T& v) { this->value = v; }

    // For users who need to manually barrier the raw types.
    static void writeBarrierPre(const T& v) { InternalBarrierMethods<T>::preBarrier(v); }

  protected:
    void pre() { InternalBarrierMethods<T>::preBarrier(this->value); }
    void post(const T& prev, const T& next) {
        InternalBarrierMethods<T>::postBarrier(&this->value, prev, next);
    }
};

/*
 * PreBarriered only automatically handles pre-barriers. Post-barriers must be
 * manually implemented when using this class. GCPtr and HeapPtr should be used
 * in all cases that do not require explicit low-level control of moving
 * behavior, e.g. for HashMap keys.
 */
template <class T>
class PreBarriered : public WriteBarrieredBase<T>
{
  public:
    PreBarriered() : WriteBarrieredBase<T>(JS::GCPolicy<T>::initial()) {}
    /*
     * Allow implicit construction for use in generic contexts, such as
     * DebuggerWeakMap::markKeys.
     */
    MOZ_IMPLICIT PreBarriered(const T& v) : WriteBarrieredBase<T>(v) {}
    explicit PreBarriered(const PreBarriered<T>& v) : WriteBarrieredBase<T>(v.value) {}
    ~PreBarriered() { this->pre(); }

    void init(const T& v) {
        this->value = v;
    }

    /* Use to set the pointer to nullptr. */
    void clear() {
        this->pre();
        this->value = nullptr;
    }

    DECLARE_POINTER_ASSIGN_OPS(PreBarriered, T);

  private:
    void set(const T& v) {
        this->pre();
        this->value = v;
    }
};

/*
 * A pre- and post-barriered heap pointer, for use inside the JS engine.
 *
 * It must only be stored in memory that has GC lifetime. GCPtr must not be
 * used in contexts where it may be implicitly moved or deleted, e.g. most
 * containers.
 *
 * The post-barriers implemented by this class are faster than those
 * implemented by js::HeapPtr<T> or JS::Heap<T> at the cost of not
 * automatically handling deletion or movement.
 */
template <class T>
class GCPtr : public WriteBarrieredBase<T>
{
  public:
    GCPtr() : WriteBarrieredBase<T>(JS::GCPolicy<T>::initial()) {}
    explicit GCPtr(const T& v) : WriteBarrieredBase<T>(v) {
        this->post(JS::GCPolicy<T>::initial(), v);
    }
    explicit GCPtr(const GCPtr<T>& v) : WriteBarrieredBase<T>(v) {
        this->post(JS::GCPolicy<T>::initial(), v);
    }
#ifdef DEBUG
    ~GCPtr() {
        // No prebarrier necessary as this only happens when we are sweeping or
        // after we have just collected the nursery.  Note that the wrapped
        // pointer may already have been freed by this point.
        MOZ_ASSERT(CurrentThreadIsGCSweeping());
        Poison(this, JS_FREED_HEAP_PTR_PATTERN, sizeof(*this));
    }
#endif

    void init(const T& v) {
        this->value = v;
        this->post(JS::GCPolicy<T>::initial(), v);
    }

    DECLARE_POINTER_ASSIGN_OPS(GCPtr, T);

    T unbarrieredGet() const {
        return this->value;
    }

  private:
    void set(const T& v) {
        this->pre();
        T tmp = this->value;
        this->value = v;
        this->post(tmp, this->value);
    }

    /*
     * Unlike HeapPtr<T>, GCPtr<T> must be managed with GC lifetimes.
     * Specifically, the memory used by the pointer itself must be live until
     * at least the next minor GC. For that reason, move semantics are invalid
     * and are deleted here. Please note that not all containers support move
     * semantics, so this does not completely prevent invalid uses.
     */
    GCPtr(GCPtr<T>&&) = delete;
    GCPtr<T>& operator=(GCPtr<T>&&) = delete;
};

/*
 * A pre- and post-barriered heap pointer, for use inside the JS engine. These
 * heap pointers can be stored in C++ containers like GCVector and GCHashMap.
 *
 * The GC sometimes keeps pointers to pointers to GC things --- for example, to
 * track references into the nursery. However, C++ containers like GCVector and
 * GCHashMap usually reserve the right to relocate their elements any time
 * they're modified, invalidating all pointers to the elements. HeapPtr
 * has a move constructor which knows how to keep the GC up to date if it is
 * moved to a new location.
 *
 * However, because of this additional communication with the GC, HeapPtr
 * is somewhat slower, so it should only be used in contexts where this ability
 * is necessary.
 *
 * Obviously, JSObjects, JSStrings, and the like get tenured and compacted, so
 * whatever pointers they contain get relocated, in the sense used here.
 * However, since the GC itself is moving those values, it takes care of its
 * internal pointers to those pointers itself. HeapPtr is only necessary
 * when the relocation would otherwise occur without the GC's knowledge.
 */
template <class T>
class HeapPtr : public WriteBarrieredBase<T>
{
  public:
    HeapPtr() : WriteBarrieredBase<T>(JS::GCPolicy<T>::initial()) {}

    // Implicitly adding barriers is a reasonable default.
    MOZ_IMPLICIT HeapPtr(const T& v) : WriteBarrieredBase<T>(v) {
        this->post(JS::GCPolicy<T>::initial(), this->value);
    }

    /*
     * For HeapPtr, move semantics are equivalent to copy semantics. In
     * C++, a copy constructor taking const-ref is the way to get a single
     * function that will be used for both lvalue and rvalue copies, so we can
     * simply omit the rvalue variant.
     */
    MOZ_IMPLICIT HeapPtr(const HeapPtr<T>& v) : WriteBarrieredBase<T>(v) {
        this->post(JS::GCPolicy<T>::initial(), this->value);
    }

    ~HeapPtr() {
        this->pre();
        this->post(this->value, JS::GCPolicy<T>::initial());
    }

    void init(const T& v) {
        this->value = v;
        this->post(JS::GCPolicy<T>::initial(), this->value);
    }

    DECLARE_POINTER_ASSIGN_OPS(HeapPtr, T);

    /* Make this friend so it can access pre() and post(). */
    template <class T1, class T2>
    friend inline void
    BarrieredSetPair(Zone* zone,
                     HeapPtr<T1*>& v1, T1* val1,
                     HeapPtr<T2*>& v2, T2* val2);

  protected:
    void set(const T& v) {
        this->pre();
        postBarrieredSet(v);
    }

    void postBarrieredSet(const T& v) {
        T tmp = this->value;
        this->value = v;
        this->post(tmp, this->value);
    }
};

// Base class for barriered pointer types that intercept reads and writes.
template <typename T>
class ReadBarrieredBase : public BarrieredBase<T>
{
  protected:
    // ReadBarrieredBase is not directly instantiable.
    explicit ReadBarrieredBase(const T& v) : BarrieredBase<T>(v) {}

  protected:
    void read() const { InternalBarrierMethods<T>::readBarrier(this->value); }
    void post(const T& prev, const T& next) {
        InternalBarrierMethods<T>::postBarrier(&this->value, prev, next);
    }
};

// Incremental GC requires that weak pointers have read barriers. See the block
// comment at the top of Barrier.h for a complete discussion of why.
//
// Note that this class also has post-barriers, so is safe to use with nursery
// pointers. However, when used as a hashtable key, care must still be taken to
// insert manual post-barriers on the table for rekeying if the key is based in
// any way on the address of the object.
template <typename T>
class ReadBarriered : public ReadBarrieredBase<T>
{
  public:
    ReadBarriered() : ReadBarrieredBase<T>(JS::GCPolicy<T>::initial()) {}

    // It is okay to add barriers implicitly.
    MOZ_IMPLICIT ReadBarriered(const T& v) : ReadBarrieredBase<T>(v) {
        this->post(JS::GCPolicy<T>::initial(), v);
    }

    // Copy is creating a new edge, so we must read barrier the source edge.
    explicit ReadBarriered(const ReadBarriered& v) : ReadBarrieredBase<T>(v) {
        this->post(JS::GCPolicy<T>::initial(), v.get());
    }

    // Move retains the lifetime status of the source edge, so does not fire
    // the read barrier of the defunct edge.
    ReadBarriered(ReadBarriered&& v)
      : ReadBarrieredBase<T>(mozilla::Move(v))
    {
        this->post(JS::GCPolicy<T>::initial(), v.value);
    }

    ~ReadBarriered() {
        this->post(this->value, JS::GCPolicy<T>::initial());
    }

    ReadBarriered& operator=(const ReadBarriered& v) {
        T prior = this->value;
        this->value = v.value;
        this->post(prior, v.value);
        return *this;
    }

    const T get() const {
        if (!InternalBarrierMethods<T>::isMarkable(this->value))
            return JS::GCPolicy<T>::initial();
        this->read();
        return this->value;
    }

    const T unbarrieredGet() const {
        return this->value;
    }

    explicit operator bool() const {
        return bool(this->value);
    }

    operator const T() const { return get(); }

    const T operator->() const { return get(); }

    T* unsafeGet() { return &this->value; }
    T const* unsafeGet() const { return &this->value; }

    void set(const T& v)
    {
        T tmp = this->value;
        this->value = v;
        this->post(tmp, v);
    }
};

// A WeakRef pointer does not hold its target live and is automatically nulled
// out when the GC discovers that it is not reachable from any other path.
template <typename T>
using WeakRef = ReadBarriered<T>;

// Add Value operations to all Barrier types. Note, this must be defined before
// HeapSlot for HeapSlot's base to get these operations.
template <>
class BarrieredBaseMixins<JS::Value> : public ValueOperations<WriteBarrieredBase<JS::Value>>
{};

// A pre- and post-barriered Value that is specialized to be aware that it
// resides in a slots or elements vector. This allows it to be relocated in
// memory, but with substantially less overhead than a HeapPtr.
class HeapSlot : public WriteBarrieredBase<Value>
{
  public:
    enum Kind {
        Slot = 0,
        Element = 1
    };

    void init(NativeObject* owner, Kind kind, uint32_t slot, const Value& v) {
        value = v;
        post(owner, kind, slot, v);
    }

    void destroy() {
        pre();
    }

#ifdef DEBUG
    bool preconditionForSet(NativeObject* owner, Kind kind, uint32_t slot) const;
    bool preconditionForWriteBarrierPost(NativeObject* obj, Kind kind, uint32_t slot,
                                         const Value& target) const;
#endif

    void set(NativeObject* owner, Kind kind, uint32_t slot, const Value& v) {
        MOZ_ASSERT(preconditionForSet(owner, kind, slot));
        pre();
        value = v;
        post(owner, kind, slot, v);
    }

  private:
    void post(NativeObject* owner, Kind kind, uint32_t slot, const Value& target) {
        MOZ_ASSERT(preconditionForWriteBarrierPost(owner, kind, slot, target));
        if (this->value.isObject()) {
            gc::Cell* cell = reinterpret_cast<gc::Cell*>(&this->value.toObject());
            if (cell->storeBuffer())
                cell->storeBuffer()->putSlot(owner, kind, slot, 1);
        }
    }
};

class HeapSlotArray
{
    HeapSlot* array;

    // Whether writes may be performed to the slots in this array. This helps
    // to control how object elements which may be copy on write are used.
#ifdef DEBUG
    bool allowWrite_;
#endif

  public:
    explicit HeapSlotArray(HeapSlot* array, bool allowWrite)
      : array(array)
#ifdef DEBUG
      , allowWrite_(allowWrite)
#endif
    {}

    operator const Value*() const {
        JS_STATIC_ASSERT(sizeof(GCPtr<Value>) == sizeof(Value));
        JS_STATIC_ASSERT(sizeof(HeapSlot) == sizeof(Value));
        return reinterpret_cast<const Value*>(array);
    }
    operator HeapSlot*() const { MOZ_ASSERT(allowWrite()); return array; }

    HeapSlotArray operator +(int offset) const { return HeapSlotArray(array + offset, allowWrite()); }
    HeapSlotArray operator +(uint32_t offset) const { return HeapSlotArray(array + offset, allowWrite()); }

  private:
    bool allowWrite() const {
#ifdef DEBUG
        return allowWrite_;
#else
        return true;
#endif
    }
};

/*
 * This is a hack for RegExpStatics::updateFromMatch. It allows us to do two
 * barriers with only one branch to check if we're in an incremental GC.
 */
template <class T1, class T2>
static inline void
BarrieredSetPair(Zone* zone,
                 HeapPtr<T1*>& v1, T1* val1,
                 HeapPtr<T2*>& v2, T2* val2)
{
    if (T1::needWriteBarrierPre(zone)) {
        v1.pre();
        v2.pre();
    }
    v1.postBarrieredSet(val1);
    v2.postBarrieredSet(val2);
}

/*
 * ImmutableTenuredPtr is designed for one very narrow case: replacing
 * immutable raw pointers to GC-managed things, implicitly converting to a
 * handle type for ease of use. Pointers encapsulated by this type must:
 *
 *   be immutable (no incremental write barriers),
 *   never point into the nursery (no generational write barriers), and
 *   be traced via MarkRuntime (we use fromMarkedLocation).
 *
 * In short: you *really* need to know what you're doing before you use this
 * class!
 */
template <typename T>
class ImmutableTenuredPtr
{
    T value;

  public:
    operator T() const { return value; }
    T operator->() const { return value; }

    operator Handle<T>() const {
        return Handle<T>::fromMarkedLocation(&value);
    }

    void init(T ptr) {
        MOZ_ASSERT(ptr->isTenured());
        value = ptr;
    }

    T get() const { return value; }
    const T* address() { return &value; }
};

template <typename T>
struct MovableCellHasher<PreBarriered<T>>
{
    using Key = PreBarriered<T>;
    using Lookup = T;

    static bool hasHash(const Lookup& l) { return MovableCellHasher<T>::hasHash(l); }
    static bool ensureHash(const Lookup& l) { return MovableCellHasher<T>::ensureHash(l); }
    static HashNumber hash(const Lookup& l) { return MovableCellHasher<T>::hash(l); }
    static bool match(const Key& k, const Lookup& l) { return MovableCellHasher<T>::match(k, l); }
    static void rekey(Key& k, const Key& newKey) { k.unsafeSet(newKey); }
};

template <typename T>
struct MovableCellHasher<HeapPtr<T>>
{
    using Key = HeapPtr<T>;
    using Lookup = T;

    static bool hasHash(const Lookup& l) { return MovableCellHasher<T>::hasHash(l); }
    static bool ensureHash(const Lookup& l) { return MovableCellHasher<T>::ensureHash(l); }
    static HashNumber hash(const Lookup& l) { return MovableCellHasher<T>::hash(l); }
    static bool match(const Key& k, const Lookup& l) { return MovableCellHasher<T>::match(k, l); }
    static void rekey(Key& k, const Key& newKey) { k.unsafeSet(newKey); }
};

template <typename T>
struct MovableCellHasher<ReadBarriered<T>>
{
    using Key = ReadBarriered<T>;
    using Lookup = T;

    static bool hasHash(const Lookup& l) { return MovableCellHasher<T>::hasHash(l); }
    static bool ensureHash(const Lookup& l) { return MovableCellHasher<T>::ensureHash(l); }
    static HashNumber hash(const Lookup& l) { return MovableCellHasher<T>::hash(l); }
    static bool match(const Key& k, const Lookup& l) {
        return MovableCellHasher<T>::match(k.unbarrieredGet(), l);
    }
    static void rekey(Key& k, const Key& newKey) { k.unsafeSet(newKey); }
};

/* Useful for hashtables with a GCPtr as key. */
template <class T>
struct GCPtrHasher
{
    typedef GCPtr<T> Key;
    typedef T Lookup;

    static HashNumber hash(Lookup obj) { return DefaultHasher<T>::hash(obj); }
    static bool match(const Key& k, Lookup l) { return k.get() == l; }
    static void rekey(Key& k, const Key& newKey) { k.unsafeSet(newKey); }
};

/* Specialized hashing policy for GCPtrs. */
template <class T>
struct DefaultHasher<GCPtr<T>> : GCPtrHasher<T> {};

template <class T>
struct PreBarrieredHasher
{
    typedef PreBarriered<T> Key;
    typedef T Lookup;

    static HashNumber hash(Lookup obj) { return DefaultHasher<T>::hash(obj); }
    static bool match(const Key& k, Lookup l) { return k.get() == l; }
    static void rekey(Key& k, const Key& newKey) { k.unsafeSet(newKey); }
};

template <class T>
struct DefaultHasher<PreBarriered<T>> : PreBarrieredHasher<T> { };

/* Useful for hashtables with a ReadBarriered as key. */
template <class T>
struct ReadBarrieredHasher
{
    typedef ReadBarriered<T> Key;
    typedef T Lookup;

    static HashNumber hash(Lookup obj) { return DefaultHasher<T>::hash(obj); }
    static bool match(const Key& k, Lookup l) { return k.unbarrieredGet() == l; }
    static void rekey(Key& k, const Key& newKey) { k.set(newKey.unbarrieredGet()); }
};

/* Specialized hashing policy for ReadBarriereds. */
template <class T>
struct DefaultHasher<ReadBarriered<T>> : ReadBarrieredHasher<T> { };

class ArrayObject;
class ArrayBufferObject;
class GlobalObject;
class Scope;
class ScriptSourceObject;
class Shape;
class BaseShape;
class UnownedBaseShape;
class WasmInstanceObject;
class WasmTableObject;
namespace jit {
class JitCode;
} // namespace jit

typedef PreBarriered<JSObject*> PreBarrieredObject;
typedef PreBarriered<JSScript*> PreBarrieredScript;
typedef PreBarriered<jit::JitCode*> PreBarrieredJitCode;
typedef PreBarriered<JSString*> PreBarrieredString;
typedef PreBarriered<JSAtom*> PreBarrieredAtom;

typedef GCPtr<NativeObject*> GCPtrNativeObject;
typedef GCPtr<ArrayObject*> GCPtrArrayObject;
typedef GCPtr<ArrayBufferObjectMaybeShared*> GCPtrArrayBufferObjectMaybeShared;
typedef GCPtr<ArrayBufferObject*> GCPtrArrayBufferObject;
typedef GCPtr<BaseShape*> GCPtrBaseShape;
typedef GCPtr<JSAtom*> GCPtrAtom;
typedef GCPtr<JSFlatString*> GCPtrFlatString;
typedef GCPtr<JSFunction*> GCPtrFunction;
typedef GCPtr<JSLinearString*> GCPtrLinearString;
typedef GCPtr<JSObject*> GCPtrObject;
typedef GCPtr<JSScript*> GCPtrScript;
typedef GCPtr<JSString*> GCPtrString;
typedef GCPtr<ModuleObject*> GCPtrModuleObject;
typedef GCPtr<ModuleEnvironmentObject*> GCPtrModuleEnvironmentObject;
typedef GCPtr<ModuleNamespaceObject*> GCPtrModuleNamespaceObject;
typedef GCPtr<PlainObject*> GCPtrPlainObject;
typedef GCPtr<PropertyName*> GCPtrPropertyName;
typedef GCPtr<Shape*> GCPtrShape;
typedef GCPtr<UnownedBaseShape*> GCPtrUnownedBaseShape;
typedef GCPtr<jit::JitCode*> GCPtrJitCode;
typedef GCPtr<ObjectGroup*> GCPtrObjectGroup;
typedef GCPtr<Scope*> GCPtrScope;

typedef PreBarriered<Value> PreBarrieredValue;
typedef GCPtr<Value> GCPtrValue;

typedef PreBarriered<jsid> PreBarrieredId;
typedef GCPtr<jsid> GCPtrId;

typedef ImmutableTenuredPtr<PropertyName*> ImmutablePropertyNamePtr;
typedef ImmutableTenuredPtr<JS::Symbol*> ImmutableSymbolPtr;

typedef ReadBarriered<DebugEnvironmentProxy*> ReadBarrieredDebugEnvironmentProxy;
typedef ReadBarriered<GlobalObject*> ReadBarrieredGlobalObject;
typedef ReadBarriered<JSObject*> ReadBarrieredObject;
typedef ReadBarriered<JSFunction*> ReadBarrieredFunction;
typedef ReadBarriered<JSScript*> ReadBarrieredScript;
typedef ReadBarriered<ScriptSourceObject*> ReadBarrieredScriptSourceObject;
typedef ReadBarriered<Shape*> ReadBarrieredShape;
typedef ReadBarriered<jit::JitCode*> ReadBarrieredJitCode;
typedef ReadBarriered<ObjectGroup*> ReadBarrieredObjectGroup;
typedef ReadBarriered<JS::Symbol*> ReadBarrieredSymbol;
typedef ReadBarriered<WasmInstanceObject*> ReadBarrieredWasmInstanceObject;
typedef ReadBarriered<WasmTableObject*> ReadBarrieredWasmTableObject;

typedef ReadBarriered<Value> ReadBarrieredValue;

} /* namespace js */

#endif /* gc_Barrier_h */