1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/time.h"
#ifdef OS_MACOSX
#include <mach/mach_time.h>
#endif
#include <sys/time.h>
#if defined(ANDROID) && !defined(__LP64__)
#include <time64.h>
#else
#include <time.h>
#endif
#if defined(ANDROID) || defined(OS_POSIX)
#include <unistd.h>
#endif
#include <limits>
#include "base/basictypes.h"
#include "base/logging.h"
namespace base {
// The Time routines in this file use standard POSIX routines, or almost-
// standard routines in the case of timegm. We need to use a Mach-specific
// function for TimeTicks::Now() on Mac OS X.
// Time -----------------------------------------------------------------------
// Some functions in time.cc use time_t directly, so we provide a zero offset
// for them. The epoch is 1970-01-01 00:00:00 UTC.
// static
const int64_t Time::kTimeTToMicrosecondsOffset = GG_INT64_C(0);
// static
Time Time::Now() {
struct timeval tv;
struct timezone tz = { 0, 0 }; // UTC
if (gettimeofday(&tv, &tz) != 0) {
DCHECK(0) << "Could not determine time of day";
}
// Combine seconds and microseconds in a 64-bit field containing microseconds
// since the epoch. That's enough for nearly 600 centuries.
return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
}
// static
Time Time::NowFromSystemTime() {
// Just use Now() because Now() returns the system time.
return Now();
}
// static
Time Time::FromExploded(bool is_local, const Exploded& exploded) {
struct tm timestruct;
timestruct.tm_sec = exploded.second;
timestruct.tm_min = exploded.minute;
timestruct.tm_hour = exploded.hour;
timestruct.tm_mday = exploded.day_of_month;
timestruct.tm_mon = exploded.month - 1;
timestruct.tm_year = exploded.year - 1900;
timestruct.tm_wday = exploded.day_of_week; // mktime/timegm ignore this
timestruct.tm_yday = 0; // mktime/timegm ignore this
timestruct.tm_isdst = -1; // attempt to figure it out
#ifndef OS_SOLARIS
timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore
timestruct.tm_zone = NULL; // not a POSIX field, so mktime/timegm ignore
#endif
time_t seconds;
#if defined(ANDROID) || defined(OS_SOLARIS)
seconds = mktime(×truct);
#else
if (is_local)
seconds = mktime(×truct);
else
seconds = timegm(×truct);
#endif
int64_t milliseconds;
// Handle overflow. Clamping the range to what mktime and timegm might
// return is the best that can be done here. It's not ideal, but it's better
// than failing here or ignoring the overflow case and treating each time
// overflow as one second prior to the epoch.
if (seconds == -1 &&
(exploded.year < 1969 || exploded.year > 1970)) {
// If exploded.year is 1969 or 1970, take -1 as correct, with the
// time indicating 1 second prior to the epoch. (1970 is allowed to handle
// time zone and DST offsets.) Otherwise, return the most future or past
// time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC.
//
// The minimum and maximum representible times that mktime and timegm could
// return are used here instead of values outside that range to allow for
// proper round-tripping between exploded and counter-type time
// representations in the presence of possible truncation to time_t by
// division and use with other functions that accept time_t.
//
// When representing the most distant time in the future, add in an extra
// 999ms to avoid the time being less than any other possible value that
// this function can return.
// Take care to avoid overflows when time_t is int64_t.
if (exploded.year < 1969) {
int64_t min_seconds = (sizeof(time_t) < sizeof(int64_t))
? std::numeric_limits<time_t>::min()
: std::numeric_limits<int32_t>::min();
milliseconds = min_seconds * kMillisecondsPerSecond;
} else {
int64_t max_seconds = (sizeof(time_t) < sizeof(int64_t))
? std::numeric_limits<time_t>::max()
: std::numeric_limits<int32_t>::max();
milliseconds = max_seconds * kMillisecondsPerSecond;
milliseconds += kMillisecondsPerSecond - 1;
}
} else {
milliseconds = seconds * kMillisecondsPerSecond + exploded.millisecond;
}
return Time(milliseconds * kMicrosecondsPerMillisecond);
}
void Time::Explode(bool is_local, Exploded* exploded) const {
// Time stores times with microsecond resolution, but Exploded only carries
// millisecond resolution, so begin by being lossy.
int64_t milliseconds = us_ / kMicrosecondsPerMillisecond;
time_t seconds = milliseconds / kMillisecondsPerSecond;
struct tm timestruct;
if (is_local)
localtime_r(&seconds, ×truct);
else
gmtime_r(&seconds, ×truct);
exploded->year = timestruct.tm_year + 1900;
exploded->month = timestruct.tm_mon + 1;
exploded->day_of_week = timestruct.tm_wday;
exploded->day_of_month = timestruct.tm_mday;
exploded->hour = timestruct.tm_hour;
exploded->minute = timestruct.tm_min;
exploded->second = timestruct.tm_sec;
exploded->millisecond = milliseconds % kMillisecondsPerSecond;
}
// TimeTicks ------------------------------------------------------------------
// static
TimeTicks TimeTicks::Now() {
uint64_t absolute_micro;
#if defined(OS_MACOSX)
static mach_timebase_info_data_t timebase_info;
if (timebase_info.denom == 0) {
// Zero-initialization of statics guarantees that denom will be 0 before
// calling mach_timebase_info. mach_timebase_info will never set denom to
// 0 as that would be invalid, so the zero-check can be used to determine
// whether mach_timebase_info has already been called. This is
// recommended by Apple's QA1398.
kern_return_t kr = mach_timebase_info(&timebase_info);
DCHECK(kr == KERN_SUCCESS);
}
// mach_absolute_time is it when it comes to ticks on the Mac. Other calls
// with less precision (such as TickCount) just call through to
// mach_absolute_time.
// timebase_info converts absolute time tick units into nanoseconds. Convert
// to microseconds up front to stave off overflows.
absolute_micro = mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
timebase_info.numer / timebase_info.denom;
// Don't bother with the rollover handling that the Windows version does.
// With numer and denom = 1 (the expected case), the 64-bit absolute time
// reported in nanoseconds is enough to last nearly 585 years.
#elif defined(OS_OPENBSD) || defined(OS_SOLARIS) || defined(OS_POSIX) && \
defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) {
NOTREACHED() << "clock_gettime(CLOCK_MONOTONIC) failed.";
return TimeTicks();
}
absolute_micro =
(static_cast<int64_t>(ts.tv_sec) * Time::kMicrosecondsPerSecond) +
(static_cast<int64_t>(ts.tv_nsec) / Time::kNanosecondsPerMicrosecond);
#else // _POSIX_MONOTONIC_CLOCK
#error No usable tick clock function on this platform.
#endif // _POSIX_MONOTONIC_CLOCK
return TimeTicks(absolute_micro);
}
// static
TimeTicks TimeTicks::HighResNow() {
return Now();
}
#ifdef OS_SOLARIS
struct timespec TimeDelta::ToTimeSpec() const {
int64_t microseconds = InMicroseconds();
time_t seconds = 0;
if (microseconds >= Time::kMicrosecondsPerSecond) {
seconds = InSeconds();
microseconds -= seconds * Time::kMicrosecondsPerSecond;
}
struct timespec result =
{seconds,
microseconds * Time::kNanosecondsPerMicrosecond};
return result;
}
struct timeval Time::ToTimeVal() const {
struct timeval result;
int64_t us = us_ - kTimeTToMicrosecondsOffset;
result.tv_sec = us / Time::kMicrosecondsPerSecond;
result.tv_usec = us % Time::kMicrosecondsPerSecond;
return result;
}
#endif
} // namespace base
|