summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/pathops/SkPathOpsConic.cpp
blob: dd523211de17817a7d8d1dad4a55b984baa5308d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkIntersections.h"
#include "SkLineParameters.h"
#include "SkPathOpsConic.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsQuad.h"

// cribbed from the float version in SkGeometry.cpp
static void conic_deriv_coeff(const double src[],
                              SkScalar w,
                              double coeff[3]) {
    const double P20 = src[4] - src[0];
    const double P10 = src[2] - src[0];
    const double wP10 = w * P10;
    coeff[0] = w * P20 - P20;
    coeff[1] = P20 - 2 * wP10;
    coeff[2] = wP10;
}

static double conic_eval_tan(const double coord[], SkScalar w, double t) {
    double coeff[3];
    conic_deriv_coeff(coord, w, coeff);
    return t * (t * coeff[0] + coeff[1]) + coeff[2];
}

int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) {
    double coeff[3];
    conic_deriv_coeff(src, w, coeff);

    double tValues[2];
    int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues);
    // In extreme cases, the number of roots returned can be 2. Pathops
    // will fail later on, so there's no advantage to plumbing in an error
    // return here.
    // SkASSERT(0 == roots || 1 == roots);

    if (1 == roots) {
        t[0] = tValues[0];
        return 1;
    }
    return 0;
}

SkDVector SkDConic::dxdyAtT(double t) const {
    SkDVector result = {
        conic_eval_tan(&fPts[0].fX, fWeight, t),
        conic_eval_tan(&fPts[0].fY, fWeight, t)
    };
    if (result.fX == 0 && result.fY == 0) {
        if (zero_or_one(t)) {
            result = fPts[2] - fPts[0];
        } else {
            // incomplete
            SkDebugf("!k");
        }
    }
    return result;
}

static double conic_eval_numerator(const double src[], SkScalar w, double t) {
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= 1);
    double src2w = src[2] * w;
    double C = src[0];
    double A = src[4] - 2 * src2w + C;
    double B = 2 * (src2w - C);
    return (A * t + B) * t + C;
}


static double conic_eval_denominator(SkScalar w, double t) {
    double B = 2 * (w - 1);
    double C = 1;
    double A = -B;
    return (A * t + B) * t + C;
}

bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
    return cubic.hullIntersects(*this, isLinear);
}

SkDPoint SkDConic::ptAtT(double t) const {
    if (t == 0) {
        return fPts[0];
    }
    if (t == 1) {
        return fPts[2];
    }
    double denominator = conic_eval_denominator(fWeight, t);
    SkDPoint result = {
        conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator,
        conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator
    };
    return result;
}

/* see quad subdivide for point rationale */
/* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c
   values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume
   that it is the same as the point on the new curve t==(0+1)/2.

    d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5);

    conic_poly(dst, unknownW, .5)
                  =   a / 4 + (b * unknownW) / 2 + c / 4
                  =  (a + c) / 4 + (bx * unknownW) / 2

    conic_weight(unknownW, .5)
                  =   unknownW / 2 + 1 / 2

    d / dz                  == ((a + c) / 2 + b * unknownW) / (unknownW + 1)
    d / dz * (unknownW + 1) ==  (a + c) / 2 + b * unknownW
              unknownW       = ((a + c) / 2 - d / dz) / (d / dz - b)

    Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the
    distance of the on-curve point to the control point.
 */
SkDConic SkDConic::subDivide(double t1, double t2) const {
    double ax, ay, az;
    if (t1 == 0) {
        ax = fPts[0].fX;
        ay = fPts[0].fY;
        az = 1;
    } else if (t1 != 1) {
        ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1);
        ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1);
        az = conic_eval_denominator(fWeight, t1);
    } else {
        ax = fPts[2].fX;
        ay = fPts[2].fY;
        az = 1;
    }
    double midT = (t1 + t2) / 2;
    double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT);
    double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT);
    double dz = conic_eval_denominator(fWeight, midT);
    double cx, cy, cz;
    if (t2 == 1) {
        cx = fPts[2].fX;
        cy = fPts[2].fY;
        cz = 1;
    } else if (t2 != 0) {
        cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2);
        cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2);
        cz = conic_eval_denominator(fWeight, t2);
    } else {
        cx = fPts[0].fX;
        cy = fPts[0].fY;
        cz = 1;
    }
    double bx = 2 * dx - (ax + cx) / 2;
    double by = 2 * dy - (ay + cy) / 2;
    double bz = 2 * dz - (az + cz) / 2;
    SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}},
            SkDoubleToScalar(bz / sqrt(az * cz)) };
    return dst;
}

SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2,
        SkScalar* weight) const {
    SkDConic chopped = this->subDivide(t1, t2);
    *weight = chopped.fWeight;
    return chopped[1];
}