summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/gpu/effects/GrCustomXfermode.cpp
blob: 1b94a6bee151252573e3a7d1109450150d33589b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "effects/GrCustomXfermode.h"

#include "GrCoordTransform.h"
#include "GrContext.h"
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "GrPipeline.h"
#include "GrProcessor.h"
#include "GrTexture.h"
#include "GrTextureAccess.h"
#include "SkXfermode.h"
#include "glsl/GrGLSLBlend.h"
#include "glsl/GrGLSLCaps.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLXferProcessor.h"

bool GrCustomXfermode::IsSupportedMode(SkXfermode::Mode mode) {
    return mode > SkXfermode::kLastCoeffMode && mode <= SkXfermode::kLastMode;
}

///////////////////////////////////////////////////////////////////////////////
// Static helpers
///////////////////////////////////////////////////////////////////////////////

static GrBlendEquation hw_blend_equation(SkXfermode::Mode mode) {
    enum { kOffset = kOverlay_GrBlendEquation - SkXfermode::kOverlay_Mode };
    return static_cast<GrBlendEquation>(mode + kOffset);

    GR_STATIC_ASSERT(kOverlay_GrBlendEquation == SkXfermode::kOverlay_Mode + kOffset);
    GR_STATIC_ASSERT(kDarken_GrBlendEquation == SkXfermode::kDarken_Mode + kOffset);
    GR_STATIC_ASSERT(kLighten_GrBlendEquation == SkXfermode::kLighten_Mode + kOffset);
    GR_STATIC_ASSERT(kColorDodge_GrBlendEquation == SkXfermode::kColorDodge_Mode + kOffset);
    GR_STATIC_ASSERT(kColorBurn_GrBlendEquation == SkXfermode::kColorBurn_Mode + kOffset);
    GR_STATIC_ASSERT(kHardLight_GrBlendEquation == SkXfermode::kHardLight_Mode + kOffset);
    GR_STATIC_ASSERT(kSoftLight_GrBlendEquation == SkXfermode::kSoftLight_Mode + kOffset);
    GR_STATIC_ASSERT(kDifference_GrBlendEquation == SkXfermode::kDifference_Mode + kOffset);
    GR_STATIC_ASSERT(kExclusion_GrBlendEquation == SkXfermode::kExclusion_Mode + kOffset);
    GR_STATIC_ASSERT(kMultiply_GrBlendEquation == SkXfermode::kMultiply_Mode + kOffset);
    GR_STATIC_ASSERT(kHSLHue_GrBlendEquation == SkXfermode::kHue_Mode + kOffset);
    GR_STATIC_ASSERT(kHSLSaturation_GrBlendEquation == SkXfermode::kSaturation_Mode + kOffset);
    GR_STATIC_ASSERT(kHSLColor_GrBlendEquation == SkXfermode::kColor_Mode + kOffset);
    GR_STATIC_ASSERT(kHSLLuminosity_GrBlendEquation == SkXfermode::kLuminosity_Mode + kOffset);
    GR_STATIC_ASSERT(kGrBlendEquationCnt == SkXfermode::kLastMode + 1 + kOffset);
}

static bool can_use_hw_blend_equation(GrBlendEquation equation,
                                      const GrPipelineOptimizations& opt,
                                      const GrCaps& caps) {
    if (!caps.advancedBlendEquationSupport()) {
        return false;
    }
    if (opt.fOverrides.fUsePLSDstRead) {
        return false;
    }
    if (opt.fCoveragePOI.isFourChannelOutput()) {
        return false; // LCD coverage must be applied after the blend equation.
    }
    if (caps.canUseAdvancedBlendEquation(equation)) {
        return false;
    }
    return true;
}

///////////////////////////////////////////////////////////////////////////////
// Xfer Processor
///////////////////////////////////////////////////////////////////////////////

class CustomXP : public GrXferProcessor {
public:
    CustomXP(SkXfermode::Mode mode, GrBlendEquation hwBlendEquation)
        : fMode(mode),
          fHWBlendEquation(hwBlendEquation) {
        this->initClassID<CustomXP>();
    }

    CustomXP(const DstTexture* dstTexture, bool hasMixedSamples, SkXfermode::Mode mode)
        : INHERITED(dstTexture, true, hasMixedSamples),
          fMode(mode),
          fHWBlendEquation(static_cast<GrBlendEquation>(-1)) {
        this->initClassID<CustomXP>();
    }

    const char* name() const override { return "Custom Xfermode"; }

    GrGLSLXferProcessor* createGLSLInstance() const override;

    SkXfermode::Mode mode() const { return fMode; }
    bool hasHWBlendEquation() const { return -1 != static_cast<int>(fHWBlendEquation); }

    GrBlendEquation hwBlendEquation() const {
        SkASSERT(this->hasHWBlendEquation());
        return fHWBlendEquation;
    }

private:
    GrXferProcessor::OptFlags onGetOptimizations(const GrPipelineOptimizations& optimizations,
                                                 bool doesStencilWrite,
                                                 GrColor* overrideColor,
                                                 const GrCaps& caps) const override;

    void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override;

    GrXferBarrierType onXferBarrier(const GrRenderTarget*, const GrCaps&) const override;

    void onGetBlendInfo(BlendInfo*) const override;

    bool onIsEqual(const GrXferProcessor& xpBase) const override;

    const SkXfermode::Mode fMode;
    const GrBlendEquation  fHWBlendEquation;

    typedef GrXferProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

class GLCustomXP : public GrGLSLXferProcessor {
public:
    GLCustomXP(const GrXferProcessor&) {}
    ~GLCustomXP() override {}

    static void GenKey(const GrXferProcessor& p, const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) {
        const CustomXP& xp = p.cast<CustomXP>();
        uint32_t key = 0;
        if (xp.hasHWBlendEquation()) {
            SkASSERT(caps.advBlendEqInteraction() > 0);  // 0 will mean !xp.hasHWBlendEquation().
            key |= caps.advBlendEqInteraction();
            GR_STATIC_ASSERT(GrGLSLCaps::kLast_AdvBlendEqInteraction < 4);
        }
        if (!xp.hasHWBlendEquation() || caps.mustEnableSpecificAdvBlendEqs()) {
            key |= xp.mode() << 3;
        }
        b->add32(key);
    }

private:
    void emitOutputsForBlendState(const EmitArgs& args) override {
        const CustomXP& xp = args.fXP.cast<CustomXP>();
        SkASSERT(xp.hasHWBlendEquation());

        GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
        fragBuilder->enableAdvancedBlendEquationIfNeeded(xp.hwBlendEquation());

        // Apply coverage by multiplying it into the src color before blending. Mixed samples will
        // "just work" automatically. (See onGetOptimizations())
        if (args.fInputCoverage) {
            fragBuilder->codeAppendf("%s = %s * %s;",
                                     args.fOutputPrimary, args.fInputCoverage, args.fInputColor);
        } else {
            fragBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args.fInputColor);
        }
    }

    void emitBlendCodeForDstRead(GrGLSLXPFragmentBuilder* fragBuilder,
                                 GrGLSLUniformHandler* uniformHandler,
                                 const char* srcColor,
                                 const char* srcCoverage,
                                 const char* dstColor,
                                 const char* outColor,
                                 const char* outColorSecondary,
                                 const GrXferProcessor& proc) override {
        const CustomXP& xp = proc.cast<CustomXP>();
        SkASSERT(!xp.hasHWBlendEquation());

        GrGLSLBlend::AppendMode(fragBuilder, srcColor, dstColor, outColor, xp.mode());

        // Apply coverage.
        INHERITED::DefaultCoverageModulation(fragBuilder, srcCoverage, dstColor, outColor,
                                             outColorSecondary, xp);
    }

    void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {}

    typedef GrGLSLXferProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

void CustomXP::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const {
    GLCustomXP::GenKey(*this, caps, b);
}

GrGLSLXferProcessor* CustomXP::createGLSLInstance() const {
    SkASSERT(this->willReadDstColor() != this->hasHWBlendEquation());
    return new GLCustomXP(*this);
}

bool CustomXP::onIsEqual(const GrXferProcessor& other) const {
    const CustomXP& s = other.cast<CustomXP>();
    return fMode == s.fMode && fHWBlendEquation == s.fHWBlendEquation;
}

GrXferProcessor::OptFlags CustomXP::onGetOptimizations(const GrPipelineOptimizations& optimizations,
                                                       bool doesStencilWrite,
                                                       GrColor* overrideColor,
                                                       const GrCaps& caps) const {
  /*
    Most the optimizations we do here are based on tweaking alpha for coverage.

    The general SVG blend equation is defined in the spec as follows:

      Dca' = B(Sc, Dc) * Sa * Da + Y * Sca * (1-Da) + Z * Dca * (1-Sa)
      Da'  = X * Sa * Da + Y * Sa * (1-Da) + Z * Da * (1-Sa)

    (Note that Sca, Dca indicate RGB vectors that are premultiplied by alpha,
     and that B(Sc, Dc) is a mode-specific function that accepts non-multiplied
     RGB colors.)

    For every blend mode supported by this class, i.e. the "advanced" blend
    modes, X=Y=Z=1 and this equation reduces to the PDF blend equation.

    It can be shown that when X=Y=Z=1, these equations can modulate alpha for
    coverage.


    == Color ==

    We substitute Y=Z=1 and define a blend() function that calculates Dca' in
    terms of premultiplied alpha only:

      blend(Sca, Dca, Sa, Da) = {Dca : if Sa == 0,
                                 Sca : if Da == 0,
                                 B(Sca/Sa, Dca/Da) * Sa * Da + Sca * (1-Da) + Dca * (1-Sa) : if Sa,Da != 0}

    And for coverage modulation, we use a post blend src-over model:

      Dca'' = f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca

    (Where f is the fractional coverage.)

    Next we show that canTweakAlphaForCoverage() is true by proving the
    following relationship:

      blend(f*Sca, Dca, f*Sa, Da) == f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca

    General case (f,Sa,Da != 0):

      f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
        = f * (B(Sca/Sa, Dca/Da) * Sa * Da + Sca * (1-Da) + Dca * (1-Sa)) + (1-f) * Dca  [Sa,Da != 0, definition of blend()]
        = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) + f*Dca * (1-Sa) + Dca - f*Dca
        = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca - f*Sca * Da + f*Dca - f*Dca * Sa + Dca - f*Dca
        = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca - f*Sca * Da - f*Dca * Sa + Dca
        = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) - f*Dca * Sa + Dca
        = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) + Dca * (1 - f*Sa)
        = B(f*Sca/f*Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) + Dca * (1 - f*Sa)  [f!=0]
        = blend(f*Sca, Dca, f*Sa, Da)  [definition of blend()]

    Corner cases (Sa=0, Da=0, and f=0):

      Sa=0: f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
              = f * Dca + (1-f) * Dca  [Sa=0, definition of blend()]
              = Dca
              = blend(0, Dca, 0, Da)  [definition of blend()]
              = blend(f*Sca, Dca, f*Sa, Da)  [Sa=0]

      Da=0: f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
              = f * Sca + (1-f) * Dca  [Da=0, definition of blend()]
              = f * Sca  [Da=0]
              = blend(f*Sca, 0, f*Sa, 0)  [definition of blend()]
              = blend(f*Sca, Dca, f*Sa, Da)  [Da=0]

      f=0: f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
             = Dca  [f=0]
             = blend(0, Dca, 0, Da)  [definition of blend()]
             = blend(f*Sca, Dca, f*Sa, Da)  [f=0]

    == Alpha ==

    We substitute X=Y=Z=1 and define a blend() function that calculates Da':

      blend(Sa, Da) = Sa * Da + Sa * (1-Da) + Da * (1-Sa)
                    = Sa * Da + Sa - Sa * Da + Da - Da * Sa
                    = Sa + Da - Sa * Da

    We use the same model for coverage modulation as we did with color:

      Da'' = f * blend(Sa, Da) + (1-f) * Da

    And show that canTweakAlphaForCoverage() is true by proving the following
    relationship:

      blend(f*Sa, Da) == f * blend(Sa, Da) + (1-f) * Da


      f * blend(Sa, Da) + (1-f) * Da
        = f * (Sa + Da - Sa * Da) + (1-f) * Da
        = f*Sa + f*Da - f*Sa * Da + Da - f*Da
        = f*Sa - f*Sa * Da + Da
        = f*Sa + Da - f*Sa * Da
        = blend(f*Sa, Da)
   */

    OptFlags flags = kNone_OptFlags;
    if (optimizations.fColorPOI.allStagesMultiplyInput()) {
        flags |= kCanTweakAlphaForCoverage_OptFlag;
    }
    if (this->hasHWBlendEquation() && optimizations.fCoveragePOI.isSolidWhite()) {
        flags |= kIgnoreCoverage_OptFlag;
    }
    return flags;
}

GrXferBarrierType CustomXP::onXferBarrier(const GrRenderTarget* rt, const GrCaps& caps) const {
    if (this->hasHWBlendEquation() && !caps.advancedCoherentBlendEquationSupport()) {
        return kBlend_GrXferBarrierType;
    }
    return kNone_GrXferBarrierType;
}

void CustomXP::onGetBlendInfo(BlendInfo* blendInfo) const {
    if (this->hasHWBlendEquation()) {
        blendInfo->fEquation = this->hwBlendEquation();
    }
}

///////////////////////////////////////////////////////////////////////////////
class CustomXPFactory : public GrXPFactory {
public:
    CustomXPFactory(SkXfermode::Mode mode);

    void getInvariantBlendedColor(const GrProcOptInfo& colorPOI,
                                  GrXPFactory::InvariantBlendedColor*) const override;

private:
    GrXferProcessor* onCreateXferProcessor(const GrCaps& caps,
                                           const GrPipelineOptimizations& optimizations,
                                           bool hasMixedSamples,
                                           const DstTexture*) const override;

    bool onWillReadDstColor(const GrCaps&, const GrPipelineOptimizations&) const override;

    bool onIsEqual(const GrXPFactory& xpfBase) const override {
        const CustomXPFactory& xpf = xpfBase.cast<CustomXPFactory>();
        return fMode == xpf.fMode;
    }

    GR_DECLARE_XP_FACTORY_TEST;

    SkXfermode::Mode fMode;
    GrBlendEquation  fHWBlendEquation;

    typedef GrXPFactory INHERITED;
};

CustomXPFactory::CustomXPFactory(SkXfermode::Mode mode)
    : fMode(mode),
      fHWBlendEquation(hw_blend_equation(mode)) {
    SkASSERT(GrCustomXfermode::IsSupportedMode(fMode));
    this->initClassID<CustomXPFactory>();
}

GrXferProcessor* CustomXPFactory::onCreateXferProcessor(const GrCaps& caps,
                                                        const GrPipelineOptimizations& opt,
                                                        bool hasMixedSamples,
                                                        const DstTexture* dstTexture) const {
    if (can_use_hw_blend_equation(fHWBlendEquation, opt, caps)) {
        SkASSERT(!dstTexture || !dstTexture->texture());
        return new CustomXP(fMode, fHWBlendEquation);
    }
    return new CustomXP(dstTexture, hasMixedSamples, fMode);
}

bool CustomXPFactory::onWillReadDstColor(const GrCaps& caps,
                                         const GrPipelineOptimizations& optimizations) const {
    return !can_use_hw_blend_equation(fHWBlendEquation, optimizations, caps);
}

void CustomXPFactory::getInvariantBlendedColor(const GrProcOptInfo& colorPOI,
                                               InvariantBlendedColor* blendedColor) const {
    blendedColor->fWillBlendWithDst = true;
    blendedColor->fKnownColorFlags = kNone_GrColorComponentFlags;
}

GR_DEFINE_XP_FACTORY_TEST(CustomXPFactory);
sk_sp<GrXPFactory> CustomXPFactory::TestCreate(GrProcessorTestData* d) {
    int mode = d->fRandom->nextRangeU(SkXfermode::kLastCoeffMode + 1,
                                      SkXfermode::kLastSeparableMode);

    return sk_sp<GrXPFactory>(new CustomXPFactory(static_cast<SkXfermode::Mode>(mode)));
}

///////////////////////////////////////////////////////////////////////////////

sk_sp<GrXPFactory> GrCustomXfermode::MakeXPFactory(SkXfermode::Mode mode) {
    if (!GrCustomXfermode::IsSupportedMode(mode)) {
        return nullptr;
    } else {
        return sk_sp<GrXPFactory>(new CustomXPFactory(mode));
    }
}