1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
|
/* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */
/*
*
* Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
* Copyright © 2000 SuSE, Inc.
* 2005 Lars Knoll & Zack Rusin, Trolltech
* Copyright © 2007 Red Hat, Inc.
*
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Keith Packard not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Keith Packard makes no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
* SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <math.h>
#include "pixman-private.h"
#include "pixman-dither.h"
static inline pixman_fixed_32_32_t
dot (pixman_fixed_48_16_t x1,
pixman_fixed_48_16_t y1,
pixman_fixed_48_16_t z1,
pixman_fixed_48_16_t x2,
pixman_fixed_48_16_t y2,
pixman_fixed_48_16_t z2)
{
/*
* Exact computation, assuming that the input values can
* be represented as pixman_fixed_16_16_t
*/
return x1 * x2 + y1 * y2 + z1 * z2;
}
static inline double
fdot (double x1,
double y1,
double z1,
double x2,
double y2,
double z2)
{
/*
* Error can be unbound in some special cases.
* Using clever dot product algorithms (for example compensated
* dot product) would improve this but make the code much less
* obvious
*/
return x1 * x2 + y1 * y2 + z1 * z2;
}
static uint32_t
radial_compute_color (double a,
double b,
double c,
double inva,
double dr,
double mindr,
pixman_gradient_walker_t *walker,
pixman_repeat_t repeat)
{
/*
* In this function error propagation can lead to bad results:
* - discr can have an unbound error (if b*b-a*c is very small),
* potentially making it the opposite sign of what it should have been
* (thus clearing a pixel that would have been colored or vice-versa)
* or propagating the error to sqrtdiscr;
* if discr has the wrong sign or b is very small, this can lead to bad
* results
*
* - the algorithm used to compute the solutions of the quadratic
* equation is not numerically stable (but saves one division compared
* to the numerically stable one);
* this can be a problem if a*c is much smaller than b*b
*
* - the above problems are worse if a is small (as inva becomes bigger)
*/
double discr;
if (a == 0)
{
double t;
if (b == 0)
return 0;
t = pixman_fixed_1 / 2 * c / b;
if (repeat == PIXMAN_REPEAT_NONE)
{
if (0 <= t && t <= pixman_fixed_1)
return _pixman_gradient_walker_pixel (walker, t);
}
else
{
if (t * dr >= mindr)
return _pixman_gradient_walker_pixel (walker, t);
}
return 0;
}
discr = fdot (b, a, 0, b, -c, 0);
if (discr >= 0)
{
double sqrtdiscr, t0, t1;
sqrtdiscr = sqrt (discr);
t0 = (b + sqrtdiscr) * inva;
t1 = (b - sqrtdiscr) * inva;
/*
* The root that must be used is the biggest one that belongs
* to the valid range ([0,1] for PIXMAN_REPEAT_NONE, any
* solution that results in a positive radius otherwise).
*
* If a > 0, t0 is the biggest solution, so if it is valid, it
* is the correct result.
*
* If a < 0, only one of the solutions can be valid, so the
* order in which they are tested is not important.
*/
if (repeat == PIXMAN_REPEAT_NONE)
{
if (0 <= t0 && t0 <= pixman_fixed_1)
return _pixman_gradient_walker_pixel (walker, t0);
else if (0 <= t1 && t1 <= pixman_fixed_1)
return _pixman_gradient_walker_pixel (walker, t1);
}
else
{
if (t0 * dr >= mindr)
return _pixman_gradient_walker_pixel (walker, t0);
else if (t1 * dr >= mindr)
return _pixman_gradient_walker_pixel (walker, t1);
}
}
return 0;
}
static uint32_t *
radial_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask)
{
/*
* Implementation of radial gradients following the PDF specification.
* See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference
* Manual (PDF 32000-1:2008 at the time of this writing).
*
* In the radial gradient problem we are given two circles (c₁,r₁) and
* (c₂,r₂) that define the gradient itself.
*
* Mathematically the gradient can be defined as the family of circles
*
* ((1-t)·c₁ + t·(c₂), (1-t)·r₁ + t·r₂)
*
* excluding those circles whose radius would be < 0. When a point
* belongs to more than one circle, the one with a bigger t is the only
* one that contributes to its color. When a point does not belong
* to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0).
* Further limitations on the range of values for t are imposed when
* the gradient is not repeated, namely t must belong to [0,1].
*
* The graphical result is the same as drawing the valid (radius > 0)
* circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient
* is not repeated) using SOURCE operator composition.
*
* It looks like a cone pointing towards the viewer if the ending circle
* is smaller than the starting one, a cone pointing inside the page if
* the starting circle is the smaller one and like a cylinder if they
* have the same radius.
*
* What we actually do is, given the point whose color we are interested
* in, compute the t values for that point, solving for t in:
*
* length((1-t)·c₁ + t·(c₂) - p) = (1-t)·r₁ + t·r₂
*
* Let's rewrite it in a simpler way, by defining some auxiliary
* variables:
*
* cd = c₂ - c₁
* pd = p - c₁
* dr = r₂ - r₁
* length(t·cd - pd) = r₁ + t·dr
*
* which actually means
*
* hypot(t·cdx - pdx, t·cdy - pdy) = r₁ + t·dr
*
* or
*
* ⎷((t·cdx - pdx)² + (t·cdy - pdy)²) = r₁ + t·dr.
*
* If we impose (as stated earlier) that r₁ + t·dr >= 0, it becomes:
*
* (t·cdx - pdx)² + (t·cdy - pdy)² = (r₁ + t·dr)²
*
* where we can actually expand the squares and solve for t:
*
* t²cdx² - 2t·cdx·pdx + pdx² + t²cdy² - 2t·cdy·pdy + pdy² =
* = r₁² + 2·r₁·t·dr + t²·dr²
*
* (cdx² + cdy² - dr²)t² - 2(cdx·pdx + cdy·pdy + r₁·dr)t +
* (pdx² + pdy² - r₁²) = 0
*
* A = cdx² + cdy² - dr²
* B = pdx·cdx + pdy·cdy + r₁·dr
* C = pdx² + pdy² - r₁²
* At² - 2Bt + C = 0
*
* The solutions (unless the equation degenerates because of A = 0) are:
*
* t = (B ± ⎷(B² - A·C)) / A
*
* The solution we are going to prefer is the bigger one, unless the
* radius associated to it is negative (or it falls outside the valid t
* range).
*
* Additional observations (useful for optimizations):
* A does not depend on p
*
* A < 0 <=> one of the two circles completely contains the other one
* <=> for every p, the radiuses associated with the two t solutions
* have opposite sign
*/
pixman_image_t *image = iter->image;
int x = iter->x;
int y = iter->y;
int width = iter->width;
uint32_t *buffer = iter->buffer;
gradient_t *gradient = (gradient_t *)image;
radial_gradient_t *radial = (radial_gradient_t *)image;
uint32_t *end = buffer + width;
pixman_gradient_walker_t walker;
pixman_vector_t v, unit;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
_pixman_gradient_walker_init (&walker, gradient, image->common.repeat);
if (image->common.transform)
{
if (!pixman_transform_point_3d (image->common.transform, &v))
return iter->buffer;
unit.vector[0] = image->common.transform->matrix[0][0];
unit.vector[1] = image->common.transform->matrix[1][0];
unit.vector[2] = image->common.transform->matrix[2][0];
}
else
{
unit.vector[0] = pixman_fixed_1;
unit.vector[1] = 0;
unit.vector[2] = 0;
}
if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1)
{
/*
* Given:
*
* t = (B ± ⎷(B² - A·C)) / A
*
* where
*
* A = cdx² + cdy² - dr²
* B = pdx·cdx + pdy·cdy + r₁·dr
* C = pdx² + pdy² - r₁²
* det = B² - A·C
*
* Since we have an affine transformation, we know that (pdx, pdy)
* increase linearly with each pixel,
*
* pdx = pdx₀ + n·ux,
* pdy = pdy₀ + n·uy,
*
* we can then express B, C and det through multiple differentiation.
*/
pixman_fixed_32_32_t b, db, c, dc, ddc;
/* warning: this computation may overflow */
v.vector[0] -= radial->c1.x;
v.vector[1] -= radial->c1.y;
/*
* B and C are computed and updated exactly.
* If fdot was used instead of dot, in the worst case it would
* lose 11 bits of precision in each of the multiplication and
* summing up would zero out all the bit that were preserved,
* thus making the result 0 instead of the correct one.
* This would mean a worst case of unbound relative error or
* about 2^10 absolute error
*/
b = dot (v.vector[0], v.vector[1], radial->c1.radius,
radial->delta.x, radial->delta.y, radial->delta.radius);
db = dot (unit.vector[0], unit.vector[1], 0,
radial->delta.x, radial->delta.y, 0);
c = dot (v.vector[0], v.vector[1],
-((pixman_fixed_48_16_t) radial->c1.radius),
v.vector[0], v.vector[1], radial->c1.radius);
dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0],
2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1],
0,
unit.vector[0], unit.vector[1], 0);
ddc = 2 * dot (unit.vector[0], unit.vector[1], 0,
unit.vector[0], unit.vector[1], 0);
while (buffer < end)
{
if (!mask || *mask++)
{
*buffer = radial_compute_color (radial->a, b, c,
radial->inva,
radial->delta.radius,
radial->mindr,
&walker,
image->common.repeat);
}
b += db;
c += dc;
dc += ddc;
++buffer;
}
}
else
{
/* projective */
/* Warning:
* error propagation guarantees are much looser than in the affine case
*/
while (buffer < end)
{
if (!mask || *mask++)
{
if (v.vector[2] != 0)
{
double pdx, pdy, invv2, b, c;
invv2 = 1. * pixman_fixed_1 / v.vector[2];
pdx = v.vector[0] * invv2 - radial->c1.x;
/* / pixman_fixed_1 */
pdy = v.vector[1] * invv2 - radial->c1.y;
/* / pixman_fixed_1 */
b = fdot (pdx, pdy, radial->c1.radius,
radial->delta.x, radial->delta.y,
radial->delta.radius);
/* / pixman_fixed_1 / pixman_fixed_1 */
c = fdot (pdx, pdy, -radial->c1.radius,
pdx, pdy, radial->c1.radius);
/* / pixman_fixed_1 / pixman_fixed_1 */
*buffer = radial_compute_color (radial->a, b, c,
radial->inva,
radial->delta.radius,
radial->mindr,
&walker,
image->common.repeat);
}
else
{
*buffer = 0;
}
}
++buffer;
v.vector[0] += unit.vector[0];
v.vector[1] += unit.vector[1];
v.vector[2] += unit.vector[2];
}
}
iter->y++;
return iter->buffer;
}
static uint32_t *
radial_get_scanline_16 (pixman_iter_t *iter, const uint32_t *mask)
{
/*
* Implementation of radial gradients following the PDF specification.
* See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference
* Manual (PDF 32000-1:2008 at the time of this writing).
*
* In the radial gradient problem we are given two circles (c₁,r₁) and
* (c₂,r₂) that define the gradient itself.
*
* Mathematically the gradient can be defined as the family of circles
*
* ((1-t)·c₁ + t·(c₂), (1-t)·r₁ + t·r₂)
*
* excluding those circles whose radius would be < 0. When a point
* belongs to more than one circle, the one with a bigger t is the only
* one that contributes to its color. When a point does not belong
* to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0).
* Further limitations on the range of values for t are imposed when
* the gradient is not repeated, namely t must belong to [0,1].
*
* The graphical result is the same as drawing the valid (radius > 0)
* circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient
* is not repeated) using SOURCE operator composition.
*
* It looks like a cone pointing towards the viewer if the ending circle
* is smaller than the starting one, a cone pointing inside the page if
* the starting circle is the smaller one and like a cylinder if they
* have the same radius.
*
* What we actually do is, given the point whose color we are interested
* in, compute the t values for that point, solving for t in:
*
* length((1-t)·c₁ + t·(c₂) - p) = (1-t)·r₁ + t·r₂
*
* Let's rewrite it in a simpler way, by defining some auxiliary
* variables:
*
* cd = c₂ - c₁
* pd = p - c₁
* dr = r₂ - r₁
* length(t·cd - pd) = r₁ + t·dr
*
* which actually means
*
* hypot(t·cdx - pdx, t·cdy - pdy) = r₁ + t·dr
*
* or
*
* ⎷((t·cdx - pdx)² + (t·cdy - pdy)²) = r₁ + t·dr.
*
* If we impose (as stated earlier) that r₁ + t·dr >= 0, it becomes:
*
* (t·cdx - pdx)² + (t·cdy - pdy)² = (r₁ + t·dr)²
*
* where we can actually expand the squares and solve for t:
*
* t²cdx² - 2t·cdx·pdx + pdx² + t²cdy² - 2t·cdy·pdy + pdy² =
* = r₁² + 2·r₁·t·dr + t²·dr²
*
* (cdx² + cdy² - dr²)t² - 2(cdx·pdx + cdy·pdy + r₁·dr)t +
* (pdx² + pdy² - r₁²) = 0
*
* A = cdx² + cdy² - dr²
* B = pdx·cdx + pdy·cdy + r₁·dr
* C = pdx² + pdy² - r₁²
* At² - 2Bt + C = 0
*
* The solutions (unless the equation degenerates because of A = 0) are:
*
* t = (B ± ⎷(B² - A·C)) / A
*
* The solution we are going to prefer is the bigger one, unless the
* radius associated to it is negative (or it falls outside the valid t
* range).
*
* Additional observations (useful for optimizations):
* A does not depend on p
*
* A < 0 <=> one of the two circles completely contains the other one
* <=> for every p, the radiuses associated with the two t solutions
* have opposite sign
*/
pixman_image_t *image = iter->image;
int x = iter->x;
int y = iter->y;
int width = iter->width;
uint16_t *buffer = iter->buffer;
pixman_bool_t toggle = ((x ^ y) & 1);
gradient_t *gradient = (gradient_t *)image;
radial_gradient_t *radial = (radial_gradient_t *)image;
uint16_t *end = buffer + width;
pixman_gradient_walker_t walker;
pixman_vector_t v, unit;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
v.vector[2] = pixman_fixed_1;
_pixman_gradient_walker_init (&walker, gradient, image->common.repeat);
if (image->common.transform)
{
if (!pixman_transform_point_3d (image->common.transform, &v))
return iter->buffer;
unit.vector[0] = image->common.transform->matrix[0][0];
unit.vector[1] = image->common.transform->matrix[1][0];
unit.vector[2] = image->common.transform->matrix[2][0];
}
else
{
unit.vector[0] = pixman_fixed_1;
unit.vector[1] = 0;
unit.vector[2] = 0;
}
if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1)
{
/*
* Given:
*
* t = (B ± ⎷(B² - A·C)) / A
*
* where
*
* A = cdx² + cdy² - dr²
* B = pdx·cdx + pdy·cdy + r₁·dr
* C = pdx² + pdy² - r₁²
* det = B² - A·C
*
* Since we have an affine transformation, we know that (pdx, pdy)
* increase linearly with each pixel,
*
* pdx = pdx₀ + n·ux,
* pdy = pdy₀ + n·uy,
*
* we can then express B, C and det through multiple differentiation.
*/
pixman_fixed_32_32_t b, db, c, dc, ddc;
/* warning: this computation may overflow */
v.vector[0] -= radial->c1.x;
v.vector[1] -= radial->c1.y;
/*
* B and C are computed and updated exactly.
* If fdot was used instead of dot, in the worst case it would
* lose 11 bits of precision in each of the multiplication and
* summing up would zero out all the bit that were preserved,
* thus making the result 0 instead of the correct one.
* This would mean a worst case of unbound relative error or
* about 2^10 absolute error
*/
b = dot (v.vector[0], v.vector[1], radial->c1.radius,
radial->delta.x, radial->delta.y, radial->delta.radius);
db = dot (unit.vector[0], unit.vector[1], 0,
radial->delta.x, radial->delta.y, 0);
c = dot (v.vector[0], v.vector[1],
-((pixman_fixed_48_16_t) radial->c1.radius),
v.vector[0], v.vector[1], radial->c1.radius);
dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0],
2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1],
0,
unit.vector[0], unit.vector[1], 0);
ddc = 2 * dot (unit.vector[0], unit.vector[1], 0,
unit.vector[0], unit.vector[1], 0);
while (buffer < end)
{
if (!mask || *mask++)
{
*buffer = dither_8888_to_0565(
radial_compute_color (radial->a, b, c,
radial->inva,
radial->delta.radius,
radial->mindr,
&walker,
image->common.repeat),
toggle);
}
toggle ^= 1;
b += db;
c += dc;
dc += ddc;
++buffer;
}
}
else
{
/* projective */
/* Warning:
* error propagation guarantees are much looser than in the affine case
*/
while (buffer < end)
{
if (!mask || *mask++)
{
if (v.vector[2] != 0)
{
double pdx, pdy, invv2, b, c;
invv2 = 1. * pixman_fixed_1 / v.vector[2];
pdx = v.vector[0] * invv2 - radial->c1.x;
/* / pixman_fixed_1 */
pdy = v.vector[1] * invv2 - radial->c1.y;
/* / pixman_fixed_1 */
b = fdot (pdx, pdy, radial->c1.radius,
radial->delta.x, radial->delta.y,
radial->delta.radius);
/* / pixman_fixed_1 / pixman_fixed_1 */
c = fdot (pdx, pdy, -radial->c1.radius,
pdx, pdy, radial->c1.radius);
/* / pixman_fixed_1 / pixman_fixed_1 */
*buffer = dither_8888_to_0565 (
radial_compute_color (radial->a, b, c,
radial->inva,
radial->delta.radius,
radial->mindr,
&walker,
image->common.repeat),
toggle);
}
else
{
*buffer = 0;
}
}
++buffer;
toggle ^= 1;
v.vector[0] += unit.vector[0];
v.vector[1] += unit.vector[1];
v.vector[2] += unit.vector[2];
}
}
iter->y++;
return iter->buffer;
}
static uint32_t *
radial_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask)
{
uint32_t *buffer = radial_get_scanline_narrow (iter, NULL);
pixman_expand_to_float (
(argb_t *)buffer, buffer, PIXMAN_a8r8g8b8, iter->width);
return buffer;
}
void
_pixman_radial_gradient_iter_init (pixman_image_t *image, pixman_iter_t *iter)
{
if (iter->iter_flags & ITER_16)
iter->get_scanline = radial_get_scanline_16;
else if (iter->iter_flags & ITER_NARROW)
iter->get_scanline = radial_get_scanline_narrow;
else
iter->get_scanline = radial_get_scanline_wide;
}
PIXMAN_EXPORT pixman_image_t *
pixman_image_create_radial_gradient (const pixman_point_fixed_t * inner,
const pixman_point_fixed_t * outer,
pixman_fixed_t inner_radius,
pixman_fixed_t outer_radius,
const pixman_gradient_stop_t *stops,
int n_stops)
{
pixman_image_t *image;
radial_gradient_t *radial;
image = _pixman_image_allocate ();
if (!image)
return NULL;
radial = &image->radial;
if (!_pixman_init_gradient (&radial->common, stops, n_stops))
{
free (image);
return NULL;
}
image->type = RADIAL;
radial->c1.x = inner->x;
radial->c1.y = inner->y;
radial->c1.radius = inner_radius;
radial->c2.x = outer->x;
radial->c2.y = outer->y;
radial->c2.radius = outer_radius;
/* warning: this computations may overflow */
radial->delta.x = radial->c2.x - radial->c1.x;
radial->delta.y = radial->c2.y - radial->c1.y;
radial->delta.radius = radial->c2.radius - radial->c1.radius;
/* computed exactly, then cast to double -> every bit of the double
representation is correct (53 bits) */
radial->a = dot (radial->delta.x, radial->delta.y, -radial->delta.radius,
radial->delta.x, radial->delta.y, radial->delta.radius);
if (radial->a != 0)
radial->inva = 1. * pixman_fixed_1 / radial->a;
radial->mindr = -1. * pixman_fixed_1 * radial->c1.radius;
return image;
}
|