1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
//
// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// VertexDeclarationCache.cpp: Implements a helper class to construct and cache vertex declarations.
#include "libANGLE/renderer/d3d/d3d9/VertexDeclarationCache.h"
#include "libANGLE/VertexAttribute.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/d3d/ProgramD3D.h"
#include "libANGLE/renderer/d3d/d3d9/VertexBuffer9.h"
#include "libANGLE/renderer/d3d/d3d9/formatutils9.h"
namespace rx
{
VertexDeclarationCache::VertexDeclarationCache() : mMaxLru(0)
{
for (int i = 0; i < NUM_VERTEX_DECL_CACHE_ENTRIES; i++)
{
mVertexDeclCache[i].vertexDeclaration = NULL;
mVertexDeclCache[i].lruCount = 0;
}
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mAppliedVBs[i].serial = 0;
}
mLastSetVDecl = NULL;
mInstancingEnabled = true;
}
VertexDeclarationCache::~VertexDeclarationCache()
{
for (int i = 0; i < NUM_VERTEX_DECL_CACHE_ENTRIES; i++)
{
SafeRelease(mVertexDeclCache[i].vertexDeclaration);
}
}
gl::Error VertexDeclarationCache::applyDeclaration(
IDirect3DDevice9 *device,
const std::vector<TranslatedAttribute> &attributes,
gl::Program *program,
GLint start,
GLsizei instances,
GLsizei *repeatDraw)
{
ASSERT(gl::MAX_VERTEX_ATTRIBS >= attributes.size());
*repeatDraw = 1;
const size_t invalidAttribIndex = attributes.size();
size_t indexedAttribute = invalidAttribIndex;
size_t instancedAttribute = invalidAttribIndex;
if (instances == 0)
{
for (size_t i = 0; i < attributes.size(); ++i)
{
if (attributes[i].divisor != 0)
{
// If a divisor is set, it still applies even if an instanced draw was not used, so treat
// as a single-instance draw.
instances = 1;
break;
}
}
}
if (instances > 0)
{
// Find an indexed attribute to be mapped to D3D stream 0
for (size_t i = 0; i < attributes.size(); i++)
{
if (attributes[i].active)
{
if (indexedAttribute == invalidAttribIndex && attributes[i].divisor == 0)
{
indexedAttribute = i;
}
else if (instancedAttribute == invalidAttribIndex && attributes[i].divisor != 0)
{
instancedAttribute = i;
}
if (indexedAttribute != invalidAttribIndex && instancedAttribute != invalidAttribIndex)
break; // Found both an indexed and instanced attribute
}
}
// The validation layer checks that there is at least one active attribute with a zero divisor as per
// the GL_ANGLE_instanced_arrays spec.
ASSERT(indexedAttribute != invalidAttribIndex);
}
D3DCAPS9 caps;
device->GetDeviceCaps(&caps);
D3DVERTEXELEMENT9 elements[gl::MAX_VERTEX_ATTRIBS + 1];
D3DVERTEXELEMENT9 *element = &elements[0];
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(program);
const auto &semanticIndexes = programD3D->getAttribLocationToD3DSemantics();
for (size_t i = 0; i < attributes.size(); i++)
{
if (attributes[i].active)
{
// Directly binding the storage buffer is not supported for d3d9
ASSERT(attributes[i].storage == NULL);
int stream = static_cast<int>(i);
if (instances > 0)
{
// Due to a bug on ATI cards we can't enable instancing when none of the attributes are instanced.
if (instancedAttribute == invalidAttribIndex)
{
*repeatDraw = instances;
}
else
{
if (i == indexedAttribute)
{
stream = 0;
}
else if (i == 0)
{
stream = static_cast<int>(indexedAttribute);
}
UINT frequency = 1;
if (attributes[i].divisor == 0)
{
frequency = D3DSTREAMSOURCE_INDEXEDDATA | instances;
}
else
{
frequency = D3DSTREAMSOURCE_INSTANCEDATA | attributes[i].divisor;
}
device->SetStreamSourceFreq(stream, frequency);
mInstancingEnabled = true;
}
}
VertexBuffer9 *vertexBuffer = GetAs<VertexBuffer9>(attributes[i].vertexBuffer.get());
unsigned int offset = 0;
ANGLE_TRY_RESULT(attributes[i].computeOffset(start), offset);
if (mAppliedVBs[stream].serial != attributes[i].serial ||
mAppliedVBs[stream].stride != attributes[i].stride ||
mAppliedVBs[stream].offset != offset)
{
device->SetStreamSource(stream, vertexBuffer->getBuffer(), offset,
attributes[i].stride);
mAppliedVBs[stream].serial = attributes[i].serial;
mAppliedVBs[stream].stride = attributes[i].stride;
mAppliedVBs[stream].offset = offset;
}
gl::VertexFormatType vertexformatType = gl::GetVertexFormatType(*attributes[i].attribute, GL_FLOAT);
const d3d9::VertexFormat &d3d9VertexInfo = d3d9::GetVertexFormatInfo(caps.DeclTypes, vertexformatType);
element->Stream = static_cast<WORD>(stream);
element->Offset = 0;
element->Type = static_cast<BYTE>(d3d9VertexInfo.nativeFormat);
element->Method = D3DDECLMETHOD_DEFAULT;
element->Usage = D3DDECLUSAGE_TEXCOORD;
element->UsageIndex = static_cast<BYTE>(semanticIndexes[i]);
element++;
}
}
if (instances == 0 || instancedAttribute == invalidAttribIndex)
{
if (mInstancingEnabled)
{
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
device->SetStreamSourceFreq(i, 1);
}
mInstancingEnabled = false;
}
}
static const D3DVERTEXELEMENT9 end = D3DDECL_END();
*(element++) = end;
for (int i = 0; i < NUM_VERTEX_DECL_CACHE_ENTRIES; i++)
{
VertexDeclCacheEntry *entry = &mVertexDeclCache[i];
if (memcmp(entry->cachedElements, elements, (element - elements) * sizeof(D3DVERTEXELEMENT9)) == 0 && entry->vertexDeclaration)
{
entry->lruCount = ++mMaxLru;
if(entry->vertexDeclaration != mLastSetVDecl)
{
device->SetVertexDeclaration(entry->vertexDeclaration);
mLastSetVDecl = entry->vertexDeclaration;
}
return gl::Error(GL_NO_ERROR);
}
}
VertexDeclCacheEntry *lastCache = mVertexDeclCache;
for (int i = 0; i < NUM_VERTEX_DECL_CACHE_ENTRIES; i++)
{
if (mVertexDeclCache[i].lruCount < lastCache->lruCount)
{
lastCache = &mVertexDeclCache[i];
}
}
if (lastCache->vertexDeclaration != NULL)
{
SafeRelease(lastCache->vertexDeclaration);
// mLastSetVDecl is set to the replacement, so we don't have to worry
// about it.
}
memcpy(lastCache->cachedElements, elements, (element - elements) * sizeof(D3DVERTEXELEMENT9));
HRESULT result = device->CreateVertexDeclaration(elements, &lastCache->vertexDeclaration);
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create internal vertex declaration, result: 0x%X.", result);
}
device->SetVertexDeclaration(lastCache->vertexDeclaration);
mLastSetVDecl = lastCache->vertexDeclaration;
lastCache->lruCount = ++mMaxLru;
return gl::Error(GL_NO_ERROR);
}
void VertexDeclarationCache::markStateDirty()
{
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mAppliedVBs[i].serial = 0;
}
mLastSetVDecl = NULL;
mInstancingEnabled = true; // Forces it to be disabled when not used
}
}
|