summaryrefslogtreecommitdiffstats
path: root/gfx/angle/src/compiler/translator/ASTMetadataHLSL.cpp
blob: ba991b70972fd42cdb01773d360bd0cc5ebb1617 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
//
// Copyright (c) 2002-2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

// Analysis of the AST needed for HLSL generation

#include "compiler/translator/ASTMetadataHLSL.h"

#include "compiler/translator/CallDAG.h"
#include "compiler/translator/SymbolTable.h"

namespace sh
{

namespace
{

// Class used to traverse the AST of a function definition, checking if the
// function uses a gradient, and writing the set of control flow using gradients.
// It assumes that the analysis has already been made for the function's
// callees.
class PullGradient : public TIntermTraverser
{
  public:
    PullGradient(MetadataList *metadataList, size_t index, const CallDAG &dag)
        : TIntermTraverser(true, false, true),
          mMetadataList(metadataList),
          mMetadata(&(*metadataList)[index]),
          mIndex(index),
          mDag(dag)
    {
        ASSERT(index < metadataList->size());
    }

    void traverse(TIntermFunctionDefinition *node)
    {
        node->traverse(this);
        ASSERT(mParents.empty());
    }

    // Called when a gradient operation or a call to a function using a gradient is found.
    void onGradient()
    {
        mMetadata->mUsesGradient = true;
        // Mark the latest control flow as using a gradient.
        if (!mParents.empty())
        {
            mMetadata->mControlFlowsContainingGradient.insert(mParents.back());
        }
    }

    void visitControlFlow(Visit visit, TIntermNode *node)
    {
        if (visit == PreVisit)
        {
            mParents.push_back(node);
        }
        else if (visit == PostVisit)
        {
            ASSERT(mParents.back() == node);
            mParents.pop_back();
            // A control flow's using a gradient means its parents are too.
            if (mMetadata->mControlFlowsContainingGradient.count(node)> 0 && !mParents.empty())
            {
                mMetadata->mControlFlowsContainingGradient.insert(mParents.back());
            }
        }
    }

    bool visitLoop(Visit visit, TIntermLoop *loop) override
    {
        visitControlFlow(visit, loop);
        return true;
    }

    bool visitIfElse(Visit visit, TIntermIfElse *ifElse) override
    {
        visitControlFlow(visit, ifElse);
        return true;
    }

    bool visitUnary(Visit visit, TIntermUnary *node) override
    {
        if (visit == PreVisit)
        {
            switch (node->getOp())
            {
              case EOpDFdx:
              case EOpDFdy:
                onGradient();
              default:
                break;
            }
        }

        return true;
    }

    bool visitAggregate(Visit visit, TIntermAggregate *node) override
    {
        if (visit == PreVisit)
        {
            if (node->getOp() == EOpFunctionCall)
            {
                if (node->isUserDefined())
                {
                    size_t calleeIndex = mDag.findIndex(node->getFunctionSymbolInfo());
                    ASSERT(calleeIndex != CallDAG::InvalidIndex && calleeIndex < mIndex);

                    if ((*mMetadataList)[calleeIndex].mUsesGradient) {
                        onGradient();
                    }
                }
                else
                {
                    TString name =
                        TFunction::unmangleName(node->getFunctionSymbolInfo()->getName());

                    if (name == "texture2D" ||
                        name == "texture2DProj" ||
                        name == "textureCube")
                    {
                        onGradient();
                    }
                }
            }
        }

        return true;
    }

  private:
    MetadataList *mMetadataList;
    ASTMetadataHLSL *mMetadata;
    size_t mIndex;
    const CallDAG &mDag;

    // Contains a stack of the control flow nodes that are parents of the node being
    // currently visited. It is used to mark control flows using a gradient.
    std::vector<TIntermNode*> mParents;
};

// Traverses the AST of a function definition to compute the the discontinuous loops
// and the if statements containing gradient loops. It assumes that the gradient loops
// (loops that contain a gradient) have already been computed and that it has already
// traversed the current function's callees.
class PullComputeDiscontinuousAndGradientLoops : public TIntermTraverser
{
  public:
    PullComputeDiscontinuousAndGradientLoops(MetadataList *metadataList,
                                             size_t index,
                                             const CallDAG &dag)
        : TIntermTraverser(true, false, true),
          mMetadataList(metadataList),
          mMetadata(&(*metadataList)[index]),
          mIndex(index),
          mDag(dag)
    {
    }

    void traverse(TIntermFunctionDefinition *node)
    {
        node->traverse(this);
        ASSERT(mLoopsAndSwitches.empty());
        ASSERT(mIfs.empty());
    }

    // Called when traversing a gradient loop or a call to a function with a
    // gradient loop in its call graph.
    void onGradientLoop()
    {
        mMetadata->mHasGradientLoopInCallGraph = true;
        // Mark the latest if as using a discontinuous loop.
        if (!mIfs.empty())
        {
            mMetadata->mIfsContainingGradientLoop.insert(mIfs.back());
        }
    }

    bool visitLoop(Visit visit, TIntermLoop *loop) override
    {
        if (visit == PreVisit)
        {
            mLoopsAndSwitches.push_back(loop);

            if (mMetadata->hasGradientInCallGraph(loop))
            {
                onGradientLoop();
            }
        }
        else if (visit == PostVisit)
        {
            ASSERT(mLoopsAndSwitches.back() == loop);
            mLoopsAndSwitches.pop_back();
        }

        return true;
    }

    bool visitIfElse(Visit visit, TIntermIfElse *node) override
    {
        if (visit == PreVisit)
        {
            mIfs.push_back(node);
        }
        else if (visit == PostVisit)
        {
            ASSERT(mIfs.back() == node);
            mIfs.pop_back();
            // An if using a discontinuous loop means its parents ifs are also discontinuous.
            if (mMetadata->mIfsContainingGradientLoop.count(node) > 0 && !mIfs.empty())
            {
                mMetadata->mIfsContainingGradientLoop.insert(mIfs.back());
            }
        }

        return true;
    }

    bool visitBranch(Visit visit, TIntermBranch *node) override
    {
        if (visit == PreVisit)
        {
            switch (node->getFlowOp())
            {
              case EOpBreak:
                {
                    ASSERT(!mLoopsAndSwitches.empty());
                    TIntermLoop *loop = mLoopsAndSwitches.back()->getAsLoopNode();
                    if (loop != nullptr)
                    {
                        mMetadata->mDiscontinuousLoops.insert(loop);
                    }
                }
                break;
              case EOpContinue:
                {
                    ASSERT(!mLoopsAndSwitches.empty());
                    TIntermLoop *loop = nullptr;
                    size_t i = mLoopsAndSwitches.size();
                    while (loop == nullptr && i > 0)
                    {
                        --i;
                        loop = mLoopsAndSwitches.at(i)->getAsLoopNode();
                    }
                    ASSERT(loop != nullptr);
                    mMetadata->mDiscontinuousLoops.insert(loop);
                }
                break;
              case EOpKill:
              case EOpReturn:
                // A return or discard jumps out of all the enclosing loops
                if (!mLoopsAndSwitches.empty())
                {
                    for (TIntermNode *intermNode : mLoopsAndSwitches)
                    {
                        TIntermLoop *loop = intermNode->getAsLoopNode();
                        if (loop)
                        {
                            mMetadata->mDiscontinuousLoops.insert(loop);
                        }
                    }
                }
                break;
              default:
                UNREACHABLE();
            }
        }

        return true;
    }

    bool visitAggregate(Visit visit, TIntermAggregate *node) override
    {
        if (visit == PreVisit && node->getOp() == EOpFunctionCall)
        {
            if (node->isUserDefined())
            {
                size_t calleeIndex = mDag.findIndex(node->getFunctionSymbolInfo());
                ASSERT(calleeIndex != CallDAG::InvalidIndex && calleeIndex < mIndex);

                if ((*mMetadataList)[calleeIndex].mHasGradientLoopInCallGraph)
                {
                    onGradientLoop();
                }
            }
        }

        return true;
    }

    bool visitSwitch(Visit visit, TIntermSwitch *node) override
    {
        if (visit == PreVisit)
        {
            mLoopsAndSwitches.push_back(node);
        }
        else if (visit == PostVisit)
        {
            ASSERT(mLoopsAndSwitches.back() == node);
            mLoopsAndSwitches.pop_back();
        }
        return true;
    }

  private:
    MetadataList *mMetadataList;
    ASTMetadataHLSL *mMetadata;
    size_t mIndex;
    const CallDAG &mDag;

    std::vector<TIntermNode*> mLoopsAndSwitches;
    std::vector<TIntermIfElse *> mIfs;
};

// Tags all the functions called in a discontinuous loop
class PushDiscontinuousLoops : public TIntermTraverser
{
  public:
    PushDiscontinuousLoops(MetadataList *metadataList, size_t index, const CallDAG &dag)
        : TIntermTraverser(true, true, true),
          mMetadataList(metadataList),
          mMetadata(&(*metadataList)[index]),
          mIndex(index),
          mDag(dag),
          mNestedDiscont(mMetadata->mCalledInDiscontinuousLoop ? 1 : 0)
    {
    }

    void traverse(TIntermFunctionDefinition *node)
    {
        node->traverse(this);
        ASSERT(mNestedDiscont == (mMetadata->mCalledInDiscontinuousLoop ? 1 : 0));
    }

    bool visitLoop(Visit visit, TIntermLoop *loop) override
    {
        bool isDiscontinuous = mMetadata->mDiscontinuousLoops.count(loop) > 0;

        if (visit == PreVisit && isDiscontinuous)
        {
            mNestedDiscont++;
        }
        else if (visit == PostVisit && isDiscontinuous)
        {
            mNestedDiscont--;
        }

        return true;
    }

    bool visitAggregate(Visit visit, TIntermAggregate *node) override
    {
        switch (node->getOp())
        {
          case EOpFunctionCall:
            if (visit == PreVisit && node->isUserDefined() && mNestedDiscont > 0)
            {
                size_t calleeIndex = mDag.findIndex(node->getFunctionSymbolInfo());
                ASSERT(calleeIndex != CallDAG::InvalidIndex && calleeIndex < mIndex);

                (*mMetadataList)[calleeIndex].mCalledInDiscontinuousLoop = true;
            }
            break;
          default:
            break;
        }
        return true;
    }

  private:
    MetadataList *mMetadataList;
    ASTMetadataHLSL *mMetadata;
    size_t mIndex;
    const CallDAG &mDag;

    int mNestedDiscont;
};

}

bool ASTMetadataHLSL::hasGradientInCallGraph(TIntermLoop *node)
{
    return mControlFlowsContainingGradient.count(node) > 0;
}

bool ASTMetadataHLSL::hasGradientLoop(TIntermIfElse *node)
{
    return mIfsContainingGradientLoop.count(node) > 0;
}

MetadataList CreateASTMetadataHLSL(TIntermNode *root, const CallDAG &callDag)
{
    MetadataList metadataList(callDag.size());

    // Compute all the information related to when gradient operations are used.
    // We want to know for each function and control flow operation if they have
    // a gradient operation in their call graph (shortened to "using a gradient"
    // in the rest of the file).
    //
    // This computation is logically split in three steps:
    //  1 - For each function compute if it uses a gradient in its body, ignoring
    // calls to other user-defined functions.
    //  2 - For each function determine if it uses a gradient in its call graph,
    // using the result of step 1 and the CallDAG to know its callees.
    //  3 - For each control flow statement of each function, check if it uses a
    // gradient in the function's body, or if it calls a user-defined function that
    // uses a gradient.
    //
    // We take advantage of the call graph being a DAG and instead compute 1, 2 and 3
    // for leaves first, then going down the tree. This is correct because 1 doesn't
    // depend on other functions, and 2 and 3 depend only on callees.
    for (size_t i = 0; i < callDag.size(); i++)
    {
        PullGradient pull(&metadataList, i, callDag);
        pull.traverse(callDag.getRecordFromIndex(i).node);
    }

    // Compute which loops are discontinuous and which function are called in
    // these loops. The same way computing gradient usage is a "pull" process,
    // computing "bing used in a discont. loop" is a push process. However we also
    // need to know what ifs have a discontinuous loop inside so we do the same type
    // of callgraph analysis as for the gradient.

    // First compute which loops are discontinuous (no specific order) and pull
    // the ifs and functions using a gradient loop.
    for (size_t i = 0; i < callDag.size(); i++)
    {
        PullComputeDiscontinuousAndGradientLoops pull(&metadataList, i, callDag);
        pull.traverse(callDag.getRecordFromIndex(i).node);
    }

    // Then push the information to callees, either from the a local discontinuous
    // loop or from the caller being called in a discontinuous loop already
    for (size_t i = callDag.size(); i-- > 0;)
    {
        PushDiscontinuousLoops push(&metadataList, i, callDag);
        push.traverse(callDag.getRecordFromIndex(i).node);
    }

    // We create "Lod0" version of functions with the gradient operations replaced
    // by non-gradient operations so that the D3D compiler is happier with discont
    // loops.
    for (auto &metadata : metadataList)
    {
        metadata.mNeedsLod0 = metadata.mCalledInDiscontinuousLoop && metadata.mUsesGradient;
    }

    return metadataList;
}

}  // namespace sh