summaryrefslogtreecommitdiffstats
path: root/dom/media/MediaCache.cpp
blob: 64523afcba59e7bdf316c9c271bd91030fc472e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/ReentrantMonitor.h"

#include "MediaCache.h"
#include "prio.h"
#include "nsContentUtils.h"
#include "nsThreadUtils.h"
#include "MediaResource.h"
#include "mozilla/Logging.h"
#include "mozilla/Preferences.h"
#include "FileBlockCache.h"
#include "nsAnonymousTemporaryFile.h"
#include "nsIObserverService.h"
#include "nsISeekableStream.h"
#include "nsIPrincipal.h"
#include "mozilla/Attributes.h"
#include "mozilla/Services.h"
#include <algorithm>

namespace mozilla {

LazyLogModule gMediaCacheLog("MediaCache");
#define CACHE_LOG(type, msg) MOZ_LOG(gMediaCacheLog, type, msg)

// Readahead blocks for non-seekable streams will be limited to this
// fraction of the cache space. We don't normally evict such blocks
// because replacing them requires a seek, but we need to make sure
// they don't monopolize the cache.
static const double NONSEEKABLE_READAHEAD_MAX = 0.5;

// Data N seconds before the current playback position is given the same priority
// as data REPLAY_PENALTY_FACTOR*N seconds ahead of the current playback
// position. REPLAY_PENALTY_FACTOR is greater than 1 to reflect that
// data in the past is less likely to be played again than data in the future.
// We want to give data just behind the current playback position reasonably
// high priority in case codecs need to retrieve that data (e.g. because
// tracks haven't been muxed well or are being decoded at uneven rates).
// 1/REPLAY_PENALTY_FACTOR as much data will be kept behind the
// current playback position as will be kept ahead of the current playback
// position.
static const uint32_t REPLAY_PENALTY_FACTOR = 3;

// When looking for a reusable block, scan forward this many blocks
// from the desired "best" block location to look for free blocks,
// before we resort to scanning the whole cache. The idea is to try to
// store runs of stream blocks close-to-consecutively in the cache if we
// can.
static const uint32_t FREE_BLOCK_SCAN_LIMIT = 16;

#ifdef DEBUG
// Turn this on to do very expensive cache state validation
// #define DEBUG_VERIFY_CACHE
#endif

// There is at most one media cache (although that could quite easily be
// relaxed if we wanted to manage multiple caches with independent
// size limits).
static MediaCache* gMediaCache;

class MediaCacheFlusher final : public nsIObserver,
                                public nsSupportsWeakReference
{
  MediaCacheFlusher() {}
  ~MediaCacheFlusher();
public:
  NS_DECL_ISUPPORTS
  NS_DECL_NSIOBSERVER

  static void Init();
};

static MediaCacheFlusher* gMediaCacheFlusher;

NS_IMPL_ISUPPORTS(MediaCacheFlusher, nsIObserver, nsISupportsWeakReference)

MediaCacheFlusher::~MediaCacheFlusher()
{
  gMediaCacheFlusher = nullptr;
}

void MediaCacheFlusher::Init()
{
  if (gMediaCacheFlusher) {
    return;
  }

  gMediaCacheFlusher = new MediaCacheFlusher();
  NS_ADDREF(gMediaCacheFlusher);

  nsCOMPtr<nsIObserverService> observerService =
    mozilla::services::GetObserverService();
  if (observerService) {
    observerService->AddObserver(gMediaCacheFlusher, "last-pb-context-exited", true);
    observerService->AddObserver(gMediaCacheFlusher, "cacheservice:empty-cache", true);
  }
}

class MediaCache {
public:
  friend class MediaCacheStream::BlockList;
  typedef MediaCacheStream::BlockList BlockList;
  static const int64_t BLOCK_SIZE = MediaCacheStream::BLOCK_SIZE;

  MediaCache() : mNextResourceID(1),
    mReentrantMonitor("MediaCache.mReentrantMonitor"),
    mUpdateQueued(false)
#ifdef DEBUG
    , mInUpdate(false)
#endif
  {
    MOZ_COUNT_CTOR(MediaCache);
  }
  ~MediaCache() {
    NS_ASSERTION(mStreams.IsEmpty(), "Stream(s) still open!");
    Truncate();
    NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
    if (mFileCache) {
      mFileCache->Close();
      mFileCache = nullptr;
    }
    MOZ_COUNT_DTOR(MediaCache);
  }

  // Main thread only. Creates the backing cache file. If this fails,
  // then the cache is still in a semi-valid state; mFD will be null,
  // so all I/O on the cache file will fail.
  nsresult Init();
  // Shut down the global cache if it's no longer needed. We shut down
  // the cache as soon as there are no streams. This means that during
  // normal operation we are likely to start up the cache and shut it down
  // many times, but that's OK since starting it up is cheap and
  // shutting it down cleans things up and releases disk space.
  static void MaybeShutdown();

  // Brutally flush the cache contents. Main thread only.
  static void Flush();
  void FlushInternal();

  // Cache-file access methods. These are the lowest-level cache methods.
  // mReentrantMonitor must be held; these can be called on any thread.
  // This can return partial reads.
  nsresult ReadCacheFile(int64_t aOffset, void* aData, int32_t aLength,
                         int32_t* aBytes);
  // This will fail if all aLength bytes are not read
  nsresult ReadCacheFileAllBytes(int64_t aOffset, void* aData, int32_t aLength);

  int64_t AllocateResourceID()
  {
    mReentrantMonitor.AssertCurrentThreadIn();
    return mNextResourceID++;
  }

  // mReentrantMonitor must be held, called on main thread.
  // These methods are used by the stream to set up and tear down streams,
  // and to handle reads and writes.
  // Add aStream to the list of streams.
  void OpenStream(MediaCacheStream* aStream);
  // Remove aStream from the list of streams.
  void ReleaseStream(MediaCacheStream* aStream);
  // Free all blocks belonging to aStream.
  void ReleaseStreamBlocks(MediaCacheStream* aStream);
  // Find a cache entry for this data, and write the data into it
  void AllocateAndWriteBlock(MediaCacheStream* aStream, const void* aData,
                             MediaCacheStream::ReadMode aMode);

  // mReentrantMonitor must be held; can be called on any thread
  // Notify the cache that a seek has been requested. Some blocks may
  // need to change their class between PLAYED_BLOCK and READAHEAD_BLOCK.
  // This does not trigger channel seeks directly, the next Update()
  // will do that if necessary. The caller will call QueueUpdate().
  void NoteSeek(MediaCacheStream* aStream, int64_t aOldOffset);
  // Notify the cache that a block has been read from. This is used
  // to update last-use times. The block may not actually have a
  // cache entry yet since Read can read data from a stream's
  // in-memory mPartialBlockBuffer while the block is only partly full,
  // and thus hasn't yet been committed to the cache. The caller will
  // call QueueUpdate().
  void NoteBlockUsage(MediaCacheStream* aStream, int32_t aBlockIndex,
                      int64_t aStreamOffset,
                      MediaCacheStream::ReadMode aMode, TimeStamp aNow);
  // Mark aStream as having the block, adding it as an owner.
  void AddBlockOwnerAsReadahead(int32_t aBlockIndex, MediaCacheStream* aStream,
                                int32_t aStreamBlockIndex);

  // This queues a call to Update() on the main thread.
  void QueueUpdate();

  // Notify all streams for the resource ID that the suspended status changed
  // at the end of MediaCache::Update.
  void QueueSuspendedStatusUpdate(int64_t aResourceID);

  // Updates the cache state asynchronously on the main thread:
  // -- try to trim the cache back to its desired size, if necessary
  // -- suspend channels that are going to read data that's lower priority
  // than anything currently cached
  // -- resume channels that are going to read data that's higher priority
  // than something currently cached
  // -- seek channels that need to seek to a new location
  void Update();

#ifdef DEBUG_VERIFY_CACHE
  // Verify invariants, especially block list invariants
  void Verify();
#else
  void Verify() {}
#endif

  ReentrantMonitor& GetReentrantMonitor() { return mReentrantMonitor; }

  /**
   * An iterator that makes it easy to iterate through all streams that
   * have a given resource ID and are not closed.
   * Can be used on the main thread or while holding the media cache lock.
   */
  class ResourceStreamIterator {
  public:
    explicit ResourceStreamIterator(int64_t aResourceID) :
      mResourceID(aResourceID), mNext(0) {}
    MediaCacheStream* Next()
    {
      while (mNext < gMediaCache->mStreams.Length()) {
        MediaCacheStream* stream = gMediaCache->mStreams[mNext];
        ++mNext;
        if (stream->GetResourceID() == mResourceID && !stream->IsClosed())
          return stream;
      }
      return nullptr;
    }
  private:
    int64_t  mResourceID;
    uint32_t mNext;
  };

protected:
  // Find a free or reusable block and return its index. If there are no
  // free blocks and no reusable blocks, add a new block to the cache
  // and return it. Can return -1 on OOM.
  int32_t FindBlockForIncomingData(TimeStamp aNow, MediaCacheStream* aStream);
  // Find a reusable block --- a free block, if there is one, otherwise
  // the reusable block with the latest predicted-next-use, or -1 if
  // there aren't any freeable blocks. Only block indices less than
  // aMaxSearchBlockIndex are considered. If aForStream is non-null,
  // then aForStream and aForStreamBlock indicate what media data will
  // be placed; FindReusableBlock will favour returning free blocks
  // near other blocks for that point in the stream.
  int32_t FindReusableBlock(TimeStamp aNow,
                            MediaCacheStream* aForStream,
                            int32_t aForStreamBlock,
                            int32_t aMaxSearchBlockIndex);
  bool BlockIsReusable(int32_t aBlockIndex);
  // Given a list of blocks sorted with the most reusable blocks at the
  // end, find the last block whose stream is not pinned (if any)
  // and whose cache entry index is less than aBlockIndexLimit
  // and append it to aResult.
  void AppendMostReusableBlock(BlockList* aBlockList,
                               nsTArray<uint32_t>* aResult,
                               int32_t aBlockIndexLimit);

  enum BlockClass {
    // block belongs to mMetadataBlockList because data has been consumed
    // from it in "metadata mode" --- in particular blocks read during
    // Ogg seeks go into this class. These blocks may have played data
    // in them too.
    METADATA_BLOCK,
    // block belongs to mPlayedBlockList because its offset is
    // less than the stream's current reader position
    PLAYED_BLOCK,
    // block belongs to the stream's mReadaheadBlockList because its
    // offset is greater than or equal to the stream's current
    // reader position
    READAHEAD_BLOCK
  };

  struct BlockOwner {
    BlockOwner() {}

    // The stream that owns this block, or null if the block is free.
    MediaCacheStream* mStream = nullptr;
    // The block index in the stream. Valid only if mStream is non-null.
    // Initialized to an insane value to highlight misuse.
    uint32_t          mStreamBlock = UINT32_MAX;
    // Time at which this block was last used. Valid only if
    // mClass is METADATA_BLOCK or PLAYED_BLOCK.
    TimeStamp         mLastUseTime;
    BlockClass        mClass = READAHEAD_BLOCK;
  };

  struct Block {
    // Free blocks have an empty mOwners array
    nsTArray<BlockOwner> mOwners;
  };

  // Get the BlockList that the block should belong to given its
  // current owner
  BlockList* GetListForBlock(BlockOwner* aBlock);
  // Get the BlockOwner for the given block index and owning stream
  // (returns null if the stream does not own the block)
  BlockOwner* GetBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream);
  // Returns true iff the block is free
  bool IsBlockFree(int32_t aBlockIndex)
  { return mIndex[aBlockIndex].mOwners.IsEmpty(); }
  // Add the block to the free list and mark its streams as not having
  // the block in cache
  void FreeBlock(int32_t aBlock);
  // Mark aStream as not having the block, removing it as an owner. If
  // the block has no more owners it's added to the free list.
  void RemoveBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream);
  // Swap all metadata associated with the two blocks. The caller
  // is responsible for swapping up any cache file state.
  void SwapBlocks(int32_t aBlockIndex1, int32_t aBlockIndex2);
  // Insert the block into the readahead block list for the stream
  // at the right point in the list.
  void InsertReadaheadBlock(BlockOwner* aBlockOwner, int32_t aBlockIndex);

  // Guess the duration until block aBlock will be next used
  TimeDuration PredictNextUse(TimeStamp aNow, int32_t aBlock);
  // Guess the duration until the next incoming data on aStream will be used
  TimeDuration PredictNextUseForIncomingData(MediaCacheStream* aStream);

  // Truncate the file and index array if there are free blocks at the
  // end
  void Truncate();

  // This member is main-thread only. It's used to allocate unique
  // resource IDs to streams.
  int64_t                       mNextResourceID;

  // The monitor protects all the data members here. Also, off-main-thread
  // readers that need to block will Wait() on this monitor. When new
  // data becomes available in the cache, we NotifyAll() on this monitor.
  ReentrantMonitor         mReentrantMonitor;
  // This is only written while on the main thread and the monitor is held.
  // Thus, it can be safely read from the main thread or while holding the monitor.
  nsTArray<MediaCacheStream*> mStreams;
  // The Blocks describing the cache entries.
  nsTArray<Block> mIndex;
  // Writer which performs IO, asynchronously writing cache blocks.
  RefPtr<FileBlockCache> mFileCache;
  // The list of free blocks; they are not ordered.
  BlockList       mFreeBlocks;
  // True if an event to run Update() has been queued but not processed
  bool            mUpdateQueued;
#ifdef DEBUG
  bool            mInUpdate;
#endif
  // A list of resource IDs to notify about the change in suspended status.
  nsTArray<int64_t> mSuspendedStatusToNotify;
};

NS_IMETHODIMP
MediaCacheFlusher::Observe(nsISupports *aSubject, char const *aTopic, char16_t const *aData)
{
  if (strcmp(aTopic, "last-pb-context-exited") == 0) {
    MediaCache::Flush();
  }
  if (strcmp(aTopic, "cacheservice:empty-cache") == 0) {
    MediaCache::Flush();
  }
  return NS_OK;
}

MediaCacheStream::MediaCacheStream(ChannelMediaResource* aClient)
  : mClient(aClient),
    mInitialized(false),
    mHasHadUpdate(false),
    mClosed(false),
    mDidNotifyDataEnded(false),
    mResourceID(0),
    mIsTransportSeekable(false),
    mCacheSuspended(false),
    mChannelEnded(false),
    mChannelOffset(0),
    mStreamLength(-1),
    mStreamOffset(0),
    mPlaybackBytesPerSecond(10000),
    mPinCount(0),
    mCurrentMode(MODE_PLAYBACK),
    mMetadataInPartialBlockBuffer(false),
    mPartialBlockBuffer(MakeUnique<int64_t[]>(BLOCK_SIZE/sizeof(int64_t)))
{
}

size_t MediaCacheStream::SizeOfExcludingThis(
                                MallocSizeOf aMallocSizeOf) const
{
  // Looks like these are not owned:
  // - mClient
  // - mPrincipal
  size_t size = mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf);
  size += mReadaheadBlocks.SizeOfExcludingThis(aMallocSizeOf);
  size += mMetadataBlocks.SizeOfExcludingThis(aMallocSizeOf);
  size += mPlayedBlocks.SizeOfExcludingThis(aMallocSizeOf);
  size += aMallocSizeOf(mPartialBlockBuffer.get());

  return size;
}

size_t MediaCacheStream::BlockList::SizeOfExcludingThis(
                                MallocSizeOf aMallocSizeOf) const
{
  return mEntries.ShallowSizeOfExcludingThis(aMallocSizeOf);
}

void MediaCacheStream::BlockList::AddFirstBlock(int32_t aBlock)
{
  NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
  Entry* entry = mEntries.PutEntry(aBlock);

  if (mFirstBlock < 0) {
    entry->mNextBlock = entry->mPrevBlock = aBlock;
  } else {
    entry->mNextBlock = mFirstBlock;
    entry->mPrevBlock = mEntries.GetEntry(mFirstBlock)->mPrevBlock;
    mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
    mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
  }
  mFirstBlock = aBlock;
  ++mCount;
}

void MediaCacheStream::BlockList::AddAfter(int32_t aBlock, int32_t aBefore)
{
  NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
  Entry* entry = mEntries.PutEntry(aBlock);

  Entry* addAfter = mEntries.GetEntry(aBefore);
  NS_ASSERTION(addAfter, "aBefore not in list");

  entry->mNextBlock = addAfter->mNextBlock;
  entry->mPrevBlock = aBefore;
  mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
  mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
  ++mCount;
}

void MediaCacheStream::BlockList::RemoveBlock(int32_t aBlock)
{
  Entry* entry = mEntries.GetEntry(aBlock);
  NS_ASSERTION(entry, "Block not in list");

  if (entry->mNextBlock == aBlock) {
    NS_ASSERTION(entry->mPrevBlock == aBlock, "Linked list inconsistency");
    NS_ASSERTION(mFirstBlock == aBlock, "Linked list inconsistency");
    mFirstBlock = -1;
  } else {
    if (mFirstBlock == aBlock) {
      mFirstBlock = entry->mNextBlock;
    }
    mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = entry->mPrevBlock;
    mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = entry->mNextBlock;
  }
  mEntries.RemoveEntry(entry);
  --mCount;
}

int32_t MediaCacheStream::BlockList::GetLastBlock() const
{
  if (mFirstBlock < 0)
    return -1;
  return mEntries.GetEntry(mFirstBlock)->mPrevBlock;
}

int32_t MediaCacheStream::BlockList::GetNextBlock(int32_t aBlock) const
{
  int32_t block = mEntries.GetEntry(aBlock)->mNextBlock;
  if (block == mFirstBlock)
    return -1;
  return block;
}

int32_t MediaCacheStream::BlockList::GetPrevBlock(int32_t aBlock) const
{
  if (aBlock == mFirstBlock)
    return -1;
  return mEntries.GetEntry(aBlock)->mPrevBlock;
}

#ifdef DEBUG
void MediaCacheStream::BlockList::Verify()
{
  int32_t count = 0;
  if (mFirstBlock >= 0) {
    int32_t block = mFirstBlock;
    do {
      Entry* entry = mEntries.GetEntry(block);
      NS_ASSERTION(mEntries.GetEntry(entry->mNextBlock)->mPrevBlock == block,
                   "Bad prev link");
      NS_ASSERTION(mEntries.GetEntry(entry->mPrevBlock)->mNextBlock == block,
                   "Bad next link");
      block = entry->mNextBlock;
      ++count;
    } while (block != mFirstBlock);
  }
  NS_ASSERTION(count == mCount, "Bad count");
}
#endif

static void UpdateSwappedBlockIndex(int32_t* aBlockIndex,
    int32_t aBlock1Index, int32_t aBlock2Index)
{
  int32_t index = *aBlockIndex;
  if (index == aBlock1Index) {
    *aBlockIndex = aBlock2Index;
  } else if (index == aBlock2Index) {
    *aBlockIndex = aBlock1Index;
  }
}

void
MediaCacheStream::BlockList::NotifyBlockSwapped(int32_t aBlockIndex1,
                                                  int32_t aBlockIndex2)
{
  Entry* e1 = mEntries.GetEntry(aBlockIndex1);
  Entry* e2 = mEntries.GetEntry(aBlockIndex2);
  int32_t e1Prev = -1, e1Next = -1, e2Prev = -1, e2Next = -1;

  // Fix mFirstBlock
  UpdateSwappedBlockIndex(&mFirstBlock, aBlockIndex1, aBlockIndex2);

  // Fix mNextBlock/mPrevBlock links. First capture previous/next links
  // so we don't get confused due to aliasing.
  if (e1) {
    e1Prev = e1->mPrevBlock;
    e1Next = e1->mNextBlock;
  }
  if (e2) {
    e2Prev = e2->mPrevBlock;
    e2Next = e2->mNextBlock;
  }
  // Update the entries.
  if (e1) {
    mEntries.GetEntry(e1Prev)->mNextBlock = aBlockIndex2;
    mEntries.GetEntry(e1Next)->mPrevBlock = aBlockIndex2;
  }
  if (e2) {
    mEntries.GetEntry(e2Prev)->mNextBlock = aBlockIndex1;
    mEntries.GetEntry(e2Next)->mPrevBlock = aBlockIndex1;
  }

  // Fix hashtable keys. First remove stale entries.
  if (e1) {
    e1Prev = e1->mPrevBlock;
    e1Next = e1->mNextBlock;
    mEntries.RemoveEntry(aBlockIndex1);
    // Refresh pointer after hashtable mutation.
    e2 = mEntries.GetEntry(aBlockIndex2);
  }
  if (e2) {
    e2Prev = e2->mPrevBlock;
    e2Next = e2->mNextBlock;
    mEntries.RemoveEntry(aBlockIndex2);
  }
  // Put new entries back.
  if (e1) {
    e1 = mEntries.PutEntry(aBlockIndex2);
    e1->mNextBlock = e1Next;
    e1->mPrevBlock = e1Prev;
  }
  if (e2) {
    e2 = mEntries.PutEntry(aBlockIndex1);
    e2->mNextBlock = e2Next;
    e2->mPrevBlock = e2Prev;
  }
}

nsresult
MediaCache::Init()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
  NS_ASSERTION(!mFileCache, "Cache file already open?");

  PRFileDesc* fileDesc = nullptr;
  nsresult rv = NS_OpenAnonymousTemporaryFile(&fileDesc);
  NS_ENSURE_SUCCESS(rv,rv);

  mFileCache = new FileBlockCache();
  rv = mFileCache->Open(fileDesc);
  NS_ENSURE_SUCCESS(rv,rv);

  MediaCacheFlusher::Init();

  return NS_OK;
}

void
MediaCache::Flush()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  if (!gMediaCache)
    return;

  gMediaCache->FlushInternal();
}

void
MediaCache::FlushInternal()
{
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  for (uint32_t blockIndex = 0; blockIndex < mIndex.Length(); ++blockIndex) {
    FreeBlock(blockIndex);
  }

  // Truncate file, close it, and reopen
  Truncate();
  NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
  if (mFileCache) {
    mFileCache->Close();
    mFileCache = nullptr;
  }
  Init();
}

void
MediaCache::MaybeShutdown()
{
  NS_ASSERTION(NS_IsMainThread(),
               "MediaCache::MaybeShutdown called on non-main thread");
  if (!gMediaCache->mStreams.IsEmpty()) {
    // Don't shut down yet, streams are still alive
    return;
  }

  // Since we're on the main thread, no-one is going to add a new stream
  // while we shut down.
  // This function is static so we don't have to delete 'this'.
  delete gMediaCache;
  gMediaCache = nullptr;
  NS_IF_RELEASE(gMediaCacheFlusher);
}

static void
InitMediaCache()
{
  if (gMediaCache)
    return;

  gMediaCache = new MediaCache();
  nsresult rv = gMediaCache->Init();
  if (NS_FAILED(rv)) {
    delete gMediaCache;
    gMediaCache = nullptr;
  }
}

nsresult
MediaCache::ReadCacheFile(int64_t aOffset, void* aData, int32_t aLength,
                            int32_t* aBytes)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  if (!mFileCache)
    return NS_ERROR_FAILURE;

  return mFileCache->Read(aOffset, reinterpret_cast<uint8_t*>(aData), aLength, aBytes);
}

nsresult
MediaCache::ReadCacheFileAllBytes(int64_t aOffset, void* aData, int32_t aLength)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int64_t offset = aOffset;
  int32_t count = aLength;
  // Cast to char* so we can do byte-wise pointer arithmetic
  char* data = static_cast<char*>(aData);
  while (count > 0) {
    int32_t bytes;
    nsresult rv = ReadCacheFile(offset, data, count, &bytes);
    if (NS_FAILED(rv))
      return rv;
    if (bytes == 0)
      return NS_ERROR_FAILURE;
    count -= bytes;
    data += bytes;
    offset += bytes;
  }
  return NS_OK;
}

static int32_t GetMaxBlocks()
{
  // We look up the cache size every time. This means dynamic changes
  // to the pref are applied.
  // Cache size is in KB
  int32_t cacheSize = Preferences::GetInt("media.cache_size", 500*1024);
  int64_t maxBlocks = static_cast<int64_t>(cacheSize)*1024/MediaCache::BLOCK_SIZE;
  maxBlocks = std::max<int64_t>(maxBlocks, 1);
  return int32_t(std::min<int64_t>(maxBlocks, INT32_MAX));
}

int32_t
MediaCache::FindBlockForIncomingData(TimeStamp aNow,
                                       MediaCacheStream* aStream)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int32_t blockIndex = FindReusableBlock(aNow, aStream,
      aStream->mChannelOffset/BLOCK_SIZE, INT32_MAX);

  if (blockIndex < 0 || !IsBlockFree(blockIndex)) {
    // The block returned is already allocated.
    // Don't reuse it if a) there's room to expand the cache or
    // b) the data we're going to store in the free block is not higher
    // priority than the data already stored in the free block.
    // The latter can lead us to go over the cache limit a bit.
    if ((mIndex.Length() < uint32_t(GetMaxBlocks()) || blockIndex < 0 ||
         PredictNextUseForIncomingData(aStream) >= PredictNextUse(aNow, blockIndex))) {
      blockIndex = mIndex.Length();
      if (!mIndex.AppendElement())
        return -1;
      mFreeBlocks.AddFirstBlock(blockIndex);
      return blockIndex;
    }
  }

  return blockIndex;
}

bool
MediaCache::BlockIsReusable(int32_t aBlockIndex)
{
  Block* block = &mIndex[aBlockIndex];
  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    MediaCacheStream* stream = block->mOwners[i].mStream;
    if (stream->mPinCount > 0 ||
        stream->mStreamOffset/BLOCK_SIZE == block->mOwners[i].mStreamBlock) {
      return false;
    }
  }
  return true;
}

void
MediaCache::AppendMostReusableBlock(BlockList* aBlockList,
                                      nsTArray<uint32_t>* aResult,
                                      int32_t aBlockIndexLimit)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int32_t blockIndex = aBlockList->GetLastBlock();
  if (blockIndex < 0)
    return;
  do {
    // Don't consider blocks for pinned streams, or blocks that are
    // beyond the specified limit, or a block that contains a stream's
    // current read position (such a block contains both played data
    // and readahead data)
    if (blockIndex < aBlockIndexLimit && BlockIsReusable(blockIndex)) {
      aResult->AppendElement(blockIndex);
      return;
    }
    blockIndex = aBlockList->GetPrevBlock(blockIndex);
  } while (blockIndex >= 0);
}

int32_t
MediaCache::FindReusableBlock(TimeStamp aNow,
                                MediaCacheStream* aForStream,
                                int32_t aForStreamBlock,
                                int32_t aMaxSearchBlockIndex)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  uint32_t length = std::min(uint32_t(aMaxSearchBlockIndex), uint32_t(mIndex.Length()));

  if (aForStream && aForStreamBlock > 0 &&
      uint32_t(aForStreamBlock) <= aForStream->mBlocks.Length()) {
    int32_t prevCacheBlock = aForStream->mBlocks[aForStreamBlock - 1];
    if (prevCacheBlock >= 0) {
      uint32_t freeBlockScanEnd =
        std::min(length, prevCacheBlock + FREE_BLOCK_SCAN_LIMIT);
      for (uint32_t i = prevCacheBlock; i < freeBlockScanEnd; ++i) {
        if (IsBlockFree(i))
          return i;
      }
    }
  }

  if (!mFreeBlocks.IsEmpty()) {
    int32_t blockIndex = mFreeBlocks.GetFirstBlock();
    do {
      if (blockIndex < aMaxSearchBlockIndex)
        return blockIndex;
      blockIndex = mFreeBlocks.GetNextBlock(blockIndex);
    } while (blockIndex >= 0);
  }

  // Build a list of the blocks we should consider for the "latest
  // predicted time of next use". We can exploit the fact that the block
  // linked lists are ordered by increasing time of next use. This is
  // actually the whole point of having the linked lists.
  AutoTArray<uint32_t,8> candidates;
  for (uint32_t i = 0; i < mStreams.Length(); ++i) {
    MediaCacheStream* stream = mStreams[i];
    if (stream->mPinCount > 0) {
      // No point in even looking at this stream's blocks
      continue;
    }

    AppendMostReusableBlock(&stream->mMetadataBlocks, &candidates, length);
    AppendMostReusableBlock(&stream->mPlayedBlocks, &candidates, length);

    // Don't consider readahead blocks in non-seekable streams. If we
    // remove the block we won't be able to seek back to read it later.
    if (stream->mIsTransportSeekable) {
      AppendMostReusableBlock(&stream->mReadaheadBlocks, &candidates, length);
    }
  }

  TimeDuration latestUse;
  int32_t latestUseBlock = -1;
  for (uint32_t i = 0; i < candidates.Length(); ++i) {
    TimeDuration nextUse = PredictNextUse(aNow, candidates[i]);
    if (nextUse > latestUse) {
      latestUse = nextUse;
      latestUseBlock = candidates[i];
    }
  }

  return latestUseBlock;
}

MediaCache::BlockList*
MediaCache::GetListForBlock(BlockOwner* aBlock)
{
  switch (aBlock->mClass) {
  case METADATA_BLOCK:
    NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
    return &aBlock->mStream->mMetadataBlocks;
  case PLAYED_BLOCK:
    NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
    return &aBlock->mStream->mPlayedBlocks;
  case READAHEAD_BLOCK:
    NS_ASSERTION(aBlock->mStream, "Readahead block has no stream?");
    return &aBlock->mStream->mReadaheadBlocks;
  default:
    NS_ERROR("Invalid block class");
    return nullptr;
  }
}

MediaCache::BlockOwner*
MediaCache::GetBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream)
{
  Block* block = &mIndex[aBlockIndex];
  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    if (block->mOwners[i].mStream == aStream)
      return &block->mOwners[i];
  }
  return nullptr;
}

void
MediaCache::SwapBlocks(int32_t aBlockIndex1, int32_t aBlockIndex2)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  Block* block1 = &mIndex[aBlockIndex1];
  Block* block2 = &mIndex[aBlockIndex2];

  block1->mOwners.SwapElements(block2->mOwners);

  // Now all references to block1 have to be replaced with block2 and
  // vice versa.
  // First update stream references to blocks via mBlocks.
  const Block* blocks[] = { block1, block2 };
  int32_t blockIndices[] = { aBlockIndex1, aBlockIndex2 };
  for (int32_t i = 0; i < 2; ++i) {
    for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) {
      const BlockOwner* b = &blocks[i]->mOwners[j];
      b->mStream->mBlocks[b->mStreamBlock] = blockIndices[i];
    }
  }

  // Now update references to blocks in block lists.
  mFreeBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);

  nsTHashtable<nsPtrHashKey<MediaCacheStream> > visitedStreams;

  for (int32_t i = 0; i < 2; ++i) {
    for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) {
      MediaCacheStream* stream = blocks[i]->mOwners[j].mStream;
      // Make sure that we don't update the same stream twice --- that
      // would result in swapping the block references back again!
      if (visitedStreams.GetEntry(stream))
        continue;
      visitedStreams.PutEntry(stream);
      stream->mReadaheadBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
      stream->mPlayedBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
      stream->mMetadataBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
    }
  }

  Verify();
}

void
MediaCache::RemoveBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream)
{
  Block* block = &mIndex[aBlockIndex];
  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    BlockOwner* bo = &block->mOwners[i];
    if (bo->mStream == aStream) {
      GetListForBlock(bo)->RemoveBlock(aBlockIndex);
      bo->mStream->mBlocks[bo->mStreamBlock] = -1;
      block->mOwners.RemoveElementAt(i);
      if (block->mOwners.IsEmpty()) {
        mFreeBlocks.AddFirstBlock(aBlockIndex);
      }
      return;
    }
  }
}

void
MediaCache::AddBlockOwnerAsReadahead(int32_t aBlockIndex,
                                       MediaCacheStream* aStream,
                                       int32_t aStreamBlockIndex)
{
  Block* block = &mIndex[aBlockIndex];
  if (block->mOwners.IsEmpty()) {
    mFreeBlocks.RemoveBlock(aBlockIndex);
  }
  BlockOwner* bo = block->mOwners.AppendElement();
  bo->mStream = aStream;
  bo->mStreamBlock = aStreamBlockIndex;
  aStream->mBlocks[aStreamBlockIndex] = aBlockIndex;
  bo->mClass = READAHEAD_BLOCK;
  InsertReadaheadBlock(bo, aBlockIndex);
}

void
MediaCache::FreeBlock(int32_t aBlock)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  Block* block = &mIndex[aBlock];
  if (block->mOwners.IsEmpty()) {
    // already free
    return;
  }

  CACHE_LOG(LogLevel::Debug, ("Released block %d", aBlock));

  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    BlockOwner* bo = &block->mOwners[i];
    GetListForBlock(bo)->RemoveBlock(aBlock);
    bo->mStream->mBlocks[bo->mStreamBlock] = -1;
  }
  block->mOwners.Clear();
  mFreeBlocks.AddFirstBlock(aBlock);
  Verify();
}

TimeDuration
MediaCache::PredictNextUse(TimeStamp aNow, int32_t aBlock)
{
  mReentrantMonitor.AssertCurrentThreadIn();
  NS_ASSERTION(!IsBlockFree(aBlock), "aBlock is free");

  Block* block = &mIndex[aBlock];
  // Blocks can be belong to multiple streams. The predicted next use
  // time is the earliest time predicted by any of the streams.
  TimeDuration result;
  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    BlockOwner* bo = &block->mOwners[i];
    TimeDuration prediction;
    switch (bo->mClass) {
    case METADATA_BLOCK:
      // This block should be managed in LRU mode. For metadata we predict
      // that the time until the next use is the time since the last use.
      prediction = aNow - bo->mLastUseTime;
      break;
    case PLAYED_BLOCK: {
      // This block should be managed in LRU mode, and we should impose
      // a "replay delay" to reflect the likelihood of replay happening
      NS_ASSERTION(static_cast<int64_t>(bo->mStreamBlock)*BLOCK_SIZE <
                   bo->mStream->mStreamOffset,
                   "Played block after the current stream position?");
      int64_t bytesBehind =
        bo->mStream->mStreamOffset - static_cast<int64_t>(bo->mStreamBlock)*BLOCK_SIZE;
      int64_t millisecondsBehind =
        bytesBehind*1000/bo->mStream->mPlaybackBytesPerSecond;
      prediction = TimeDuration::FromMilliseconds(
          std::min<int64_t>(millisecondsBehind*REPLAY_PENALTY_FACTOR, INT32_MAX));
      break;
    }
    case READAHEAD_BLOCK: {
      int64_t bytesAhead =
        static_cast<int64_t>(bo->mStreamBlock)*BLOCK_SIZE - bo->mStream->mStreamOffset;
      NS_ASSERTION(bytesAhead >= 0,
                   "Readahead block before the current stream position?");
      int64_t millisecondsAhead =
        bytesAhead*1000/bo->mStream->mPlaybackBytesPerSecond;
      prediction = TimeDuration::FromMilliseconds(
          std::min<int64_t>(millisecondsAhead, INT32_MAX));
      break;
    }
    default:
      NS_ERROR("Invalid class for predicting next use");
      return TimeDuration(0);
    }
    if (i == 0 || prediction < result) {
      result = prediction;
    }
  }
  return result;
}

TimeDuration
MediaCache::PredictNextUseForIncomingData(MediaCacheStream* aStream)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int64_t bytesAhead = aStream->mChannelOffset - aStream->mStreamOffset;
  if (bytesAhead <= -BLOCK_SIZE) {
    // Hmm, no idea when data behind us will be used. Guess 24 hours.
    return TimeDuration::FromSeconds(24*60*60);
  }
  if (bytesAhead <= 0)
    return TimeDuration(0);
  int64_t millisecondsAhead = bytesAhead*1000/aStream->mPlaybackBytesPerSecond;
  return TimeDuration::FromMilliseconds(
      std::min<int64_t>(millisecondsAhead, INT32_MAX));
}

enum StreamAction { NONE, SEEK, SEEK_AND_RESUME, RESUME, SUSPEND };

void
MediaCache::Update()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  // The action to use for each stream. We store these so we can make
  // decisions while holding the cache lock but implement those decisions
  // without holding the cache lock, since we need to call out to
  // stream, decoder and element code.
  AutoTArray<StreamAction,10> actions;

  {
    ReentrantMonitorAutoEnter mon(mReentrantMonitor);
    mUpdateQueued = false;
#ifdef DEBUG
    mInUpdate = true;
#endif

    int32_t maxBlocks = GetMaxBlocks();
    TimeStamp now = TimeStamp::Now();

    int32_t freeBlockCount = mFreeBlocks.GetCount();
    TimeDuration latestPredictedUseForOverflow = 0;
    if (mIndex.Length() > uint32_t(maxBlocks)) {
      // Try to trim back the cache to its desired maximum size. The cache may
      // have overflowed simply due to data being received when we have
      // no blocks in the main part of the cache that are free or lower
      // priority than the new data. The cache can also be overflowing because
      // the media.cache_size preference was reduced.
      // First, figure out what the least valuable block in the cache overflow
      // is. We don't want to replace any blocks in the main part of the
      // cache whose expected time of next use is earlier or equal to that.
      // If we allow that, we can effectively end up discarding overflowing
      // blocks (by moving an overflowing block to the main part of the cache,
      // and then overwriting it with another overflowing block), and we try
      // to avoid that since it requires HTTP seeks.
      // We also use this loop to eliminate overflowing blocks from
      // freeBlockCount.
      for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks;
           --blockIndex) {
        if (IsBlockFree(blockIndex)) {
          // Don't count overflowing free blocks in our free block count
          --freeBlockCount;
          continue;
        }
        TimeDuration predictedUse = PredictNextUse(now, blockIndex);
        latestPredictedUseForOverflow = std::max(latestPredictedUseForOverflow, predictedUse);
      }
    } else {
      freeBlockCount += maxBlocks - mIndex.Length();
    }

    // Now try to move overflowing blocks to the main part of the cache.
    for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks;
         --blockIndex) {
      if (IsBlockFree(blockIndex))
        continue;

      Block* block = &mIndex[blockIndex];
      // Try to relocate the block close to other blocks for the first stream.
      // There is no point in trying to make it close to other blocks in
      // *all* the streams it might belong to.
      int32_t destinationBlockIndex =
        FindReusableBlock(now, block->mOwners[0].mStream,
                          block->mOwners[0].mStreamBlock, maxBlocks);
      if (destinationBlockIndex < 0) {
        // Nowhere to place this overflow block. We won't be able to
        // place any more overflow blocks.
        break;
      }

      if (IsBlockFree(destinationBlockIndex) ||
          PredictNextUse(now, destinationBlockIndex) > latestPredictedUseForOverflow) {
        // Reuse blocks in the main part of the cache that are less useful than
        // the least useful overflow blocks

        nsresult rv = mFileCache->MoveBlock(blockIndex, destinationBlockIndex);

        if (NS_SUCCEEDED(rv)) {
          // We successfully copied the file data.
          CACHE_LOG(LogLevel::Debug, ("Swapping blocks %d and %d (trimming cache)",
                    blockIndex, destinationBlockIndex));
          // Swapping the block metadata here lets us maintain the
          // correct positions in the linked lists
          SwapBlocks(blockIndex, destinationBlockIndex);
          //Free the overflowing block even if the copy failed.
          CACHE_LOG(LogLevel::Debug, ("Released block %d (trimming cache)", blockIndex));
          FreeBlock(blockIndex);
        }
      } else {
        CACHE_LOG(LogLevel::Debug, ("Could not trim cache block %d (destination %d, predicted next use %f, latest predicted use for overflow %f",
                                 blockIndex, destinationBlockIndex,
                                 PredictNextUse(now, destinationBlockIndex).ToSeconds(),
                                 latestPredictedUseForOverflow.ToSeconds()));
      }
    }
    // Try chopping back the array of cache entries and the cache file.
    Truncate();

    // Count the blocks allocated for readahead of non-seekable streams
    // (these blocks can't be freed but we don't want them to monopolize the
    // cache)
    int32_t nonSeekableReadaheadBlockCount = 0;
    for (uint32_t i = 0; i < mStreams.Length(); ++i) {
      MediaCacheStream* stream = mStreams[i];
      if (!stream->mIsTransportSeekable) {
        nonSeekableReadaheadBlockCount += stream->mReadaheadBlocks.GetCount();
      }
    }

    // If freeBlockCount is zero, then compute the latest of
    // the predicted next-uses for all blocks
    TimeDuration latestNextUse;
    if (freeBlockCount == 0) {
      int32_t reusableBlock = FindReusableBlock(now, nullptr, 0, maxBlocks);
      if (reusableBlock >= 0) {
        latestNextUse = PredictNextUse(now, reusableBlock);
      }
    }

    int32_t resumeThreshold = Preferences::GetInt("media.cache_resume_threshold", 10);
    int32_t readaheadLimit = Preferences::GetInt("media.cache_readahead_limit", 30);

    for (uint32_t i = 0; i < mStreams.Length(); ++i) {
      actions.AppendElement(NONE);

      MediaCacheStream* stream = mStreams[i];
      if (stream->mClosed) {
        CACHE_LOG(LogLevel::Debug, ("Stream %p closed", stream));
        continue;
      }

      // Figure out where we should be reading from. It's the first
      // uncached byte after the current mStreamOffset.
      int64_t dataOffset = stream->GetCachedDataEndInternal(stream->mStreamOffset);
      MOZ_ASSERT(dataOffset >= 0);

      // Compute where we'd actually seek to to read at readOffset
      int64_t desiredOffset = dataOffset;
      if (stream->mIsTransportSeekable) {
        if (desiredOffset > stream->mChannelOffset &&
            desiredOffset <= stream->mChannelOffset + SEEK_VS_READ_THRESHOLD) {
          // Assume it's more efficient to just keep reading up to the
          // desired position instead of trying to seek
          desiredOffset = stream->mChannelOffset;
        }
      } else {
        // We can't seek directly to the desired offset...
        if (stream->mChannelOffset > desiredOffset) {
          // Reading forward won't get us anywhere, we need to go backwards.
          // Seek back to 0 (the client will reopen the stream) and then
          // read forward.
          NS_WARNING("Can't seek backwards, so seeking to 0");
          desiredOffset = 0;
          // Flush cached blocks out, since if this is a live stream
          // the cached data may be completely different next time we
          // read it. We have to assume that live streams don't
          // advertise themselves as being seekable...
          ReleaseStreamBlocks(stream);
        } else {
          // otherwise reading forward is looking good, so just stay where we
          // are and don't trigger a channel seek!
          desiredOffset = stream->mChannelOffset;
        }
      }

      // Figure out if we should be reading data now or not. It's amazing
      // how complex this is, but each decision is simple enough.
      bool enableReading;
      if (stream->mStreamLength >= 0 && dataOffset >= stream->mStreamLength) {
        // We want data at the end of the stream, where there's nothing to
        // read. We don't want to try to read if we're suspended, because that
        // might create a new channel and seek unnecessarily (and incorrectly,
        // since HTTP doesn't allow seeking to the actual EOF), and we don't want
        // to suspend if we're not suspended and already reading at the end of
        // the stream, since there just might be more data than the server
        // advertised with Content-Length, and we may as well keep reading.
        // But we don't want to seek to the end of the stream if we're not
        // already there.
        CACHE_LOG(LogLevel::Debug, ("Stream %p at end of stream", stream));
        enableReading = !stream->mCacheSuspended &&
          stream->mStreamLength == stream->mChannelOffset;
      } else if (desiredOffset < stream->mStreamOffset) {
        // We're reading to try to catch up to where the current stream
        // reader wants to be. Better not stop.
        CACHE_LOG(LogLevel::Debug, ("Stream %p catching up", stream));
        enableReading = true;
      } else if (desiredOffset < stream->mStreamOffset + BLOCK_SIZE) {
        // The stream reader is waiting for us, or nearly so. Better feed it.
        CACHE_LOG(LogLevel::Debug, ("Stream %p feeding reader", stream));
        enableReading = true;
      } else if (!stream->mIsTransportSeekable &&
                 nonSeekableReadaheadBlockCount >= maxBlocks*NONSEEKABLE_READAHEAD_MAX) {
        // This stream is not seekable and there are already too many blocks
        // being cached for readahead for nonseekable streams (which we can't
        // free). So stop reading ahead now.
        CACHE_LOG(LogLevel::Debug, ("Stream %p throttling non-seekable readahead", stream));
        enableReading = false;
      } else if (mIndex.Length() > uint32_t(maxBlocks)) {
        // We're in the process of bringing the cache size back to the
        // desired limit, so don't bring in more data yet
        CACHE_LOG(LogLevel::Debug, ("Stream %p throttling to reduce cache size", stream));
        enableReading = false;
      } else {
        TimeDuration predictedNewDataUse = PredictNextUseForIncomingData(stream);

        if (stream->mCacheSuspended &&
            predictedNewDataUse.ToSeconds() > resumeThreshold) {
          // Don't need data for a while, so don't bother waking up the stream
          CACHE_LOG(LogLevel::Debug, ("Stream %p avoiding wakeup since more data is not needed", stream));
          enableReading = false;
        } else if (predictedNewDataUse.ToSeconds() > readaheadLimit) {
          // Don't read ahead more than this much
          CACHE_LOG(LogLevel::Debug, ("Stream %p throttling to avoid reading ahead too far", stream));
          enableReading = false;
        } else if (freeBlockCount > 0) {
          // Free blocks in the cache, so keep reading
          CACHE_LOG(LogLevel::Debug, ("Stream %p reading since there are free blocks", stream));
          enableReading = true;
        } else if (latestNextUse <= TimeDuration(0)) {
          // No reusable blocks, so can't read anything
          CACHE_LOG(LogLevel::Debug, ("Stream %p throttling due to no reusable blocks", stream));
          enableReading = false;
        } else {
          // Read ahead if the data we expect to read is more valuable than
          // the least valuable block in the main part of the cache
          CACHE_LOG(LogLevel::Debug, ("Stream %p predict next data in %f, current worst block is %f",
                    stream, predictedNewDataUse.ToSeconds(), latestNextUse.ToSeconds()));
          enableReading = predictedNewDataUse < latestNextUse;
        }
      }

      if (enableReading) {
        for (uint32_t j = 0; j < i; ++j) {
          MediaCacheStream* other = mStreams[j];
          if (other->mResourceID == stream->mResourceID &&
              !other->mClosed && !other->mClient->IsSuspended() &&
              other->mChannelOffset/BLOCK_SIZE == desiredOffset/BLOCK_SIZE) {
            // This block is already going to be read by the other stream.
            // So don't try to read it from this stream as well.
            enableReading = false;
            CACHE_LOG(LogLevel::Debug, ("Stream %p waiting on same block (%lld) from stream %p",
                                     stream, desiredOffset/BLOCK_SIZE, other));
            break;
          }
        }
      }

      if (stream->mChannelOffset != desiredOffset && enableReading) {
        // We need to seek now.
        NS_ASSERTION(stream->mIsTransportSeekable || desiredOffset == 0,
                     "Trying to seek in a non-seekable stream!");
        // Round seek offset down to the start of the block. This is essential
        // because we don't want to think we have part of a block already
        // in mPartialBlockBuffer.
        stream->mChannelOffset = (desiredOffset/BLOCK_SIZE)*BLOCK_SIZE;
        actions[i] = stream->mCacheSuspended ? SEEK_AND_RESUME : SEEK;
      } else if (enableReading && stream->mCacheSuspended) {
        actions[i] = RESUME;
      } else if (!enableReading && !stream->mCacheSuspended) {
        actions[i] = SUSPEND;
      }
    }
#ifdef DEBUG
    mInUpdate = false;
#endif
  }

  // Update the channel state without holding our cache lock. While we're
  // doing this, decoder threads may be running and seeking, reading or changing
  // other cache state. That's OK, they'll trigger new Update events and we'll
  // get back here and revise our decisions. The important thing here is that
  // performing these actions only depends on mChannelOffset and
  // the action, which can only be written by the main thread (i.e., this
  // thread), so we don't have races here.

  // First, update the mCacheSuspended/mCacheEnded flags so that they're all correct
  // when we fire our CacheClient commands below. Those commands can rely on these flags
  // being set correctly for all streams.
  for (uint32_t i = 0; i < mStreams.Length(); ++i) {
    MediaCacheStream* stream = mStreams[i];
    switch (actions[i]) {
    case SEEK:
	case SEEK_AND_RESUME:
      stream->mCacheSuspended = false;
      stream->mChannelEnded = false;
      break;
    case RESUME:
      stream->mCacheSuspended = false;
      break;
    case SUSPEND:
      stream->mCacheSuspended = true;
      break;
    default:
      break;
    }
    stream->mHasHadUpdate = true;
  }

  for (uint32_t i = 0; i < mStreams.Length(); ++i) {
    MediaCacheStream* stream = mStreams[i];
    nsresult rv;
    switch (actions[i]) {
    case SEEK:
	case SEEK_AND_RESUME:
      CACHE_LOG(LogLevel::Debug, ("Stream %p CacheSeek to %lld (resume=%d)", stream,
                (long long)stream->mChannelOffset, actions[i] == SEEK_AND_RESUME));
      rv = stream->mClient->CacheClientSeek(stream->mChannelOffset,
                                            actions[i] == SEEK_AND_RESUME);
      break;
    case RESUME:
      CACHE_LOG(LogLevel::Debug, ("Stream %p Resumed", stream));
      rv = stream->mClient->CacheClientResume();
      QueueSuspendedStatusUpdate(stream->mResourceID);
      break;
    case SUSPEND:
      CACHE_LOG(LogLevel::Debug, ("Stream %p Suspended", stream));
      rv = stream->mClient->CacheClientSuspend();
      QueueSuspendedStatusUpdate(stream->mResourceID);
      break;
    default:
      rv = NS_OK;
      break;
    }

    if (NS_FAILED(rv)) {
      // Close the streams that failed due to error. This will cause all
      // client Read and Seek operations on those streams to fail. Blocked
      // Reads will also be woken up.
      ReentrantMonitorAutoEnter mon(mReentrantMonitor);
      stream->CloseInternal(mon);
    }
  }

  // Notify streams about the suspended status changes.
  for (uint32_t i = 0; i < mSuspendedStatusToNotify.Length(); ++i) {
    MediaCache::ResourceStreamIterator iter(mSuspendedStatusToNotify[i]);
    while (MediaCacheStream* stream = iter.Next()) {
      stream->mClient->CacheClientNotifySuspendedStatusChanged();
    }
  }
  mSuspendedStatusToNotify.Clear();
}

class UpdateEvent : public Runnable
{
public:
  NS_IMETHOD Run() override
  {
    if (gMediaCache) {
      gMediaCache->Update();
    }
    return NS_OK;
  }
};

void
MediaCache::QueueUpdate()
{
  mReentrantMonitor.AssertCurrentThreadIn();

  // Queuing an update while we're in an update raises a high risk of
  // triggering endless events
  NS_ASSERTION(!mInUpdate,
               "Queuing an update while we're in an update");
  if (mUpdateQueued)
    return;
  mUpdateQueued = true;
  // XXX MediaCache does updates when decoders are still running at
  // shutdown and get freed in the final cycle-collector cleanup.  So
  // don't leak a runnable in that case.
  nsCOMPtr<nsIThread> mainThread = do_GetMainThread();
  if (mainThread) {
    nsCOMPtr<nsIRunnable> event = new UpdateEvent();
    mainThread->Dispatch(event.forget(), NS_DISPATCH_NORMAL);
  }
}

void
MediaCache::QueueSuspendedStatusUpdate(int64_t aResourceID)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
  if (!mSuspendedStatusToNotify.Contains(aResourceID)) {
    mSuspendedStatusToNotify.AppendElement(aResourceID);
  }
}

#ifdef DEBUG_VERIFY_CACHE
void
MediaCache::Verify()
{
  mReentrantMonitor.AssertCurrentThreadIn();

  mFreeBlocks.Verify();
  for (uint32_t i = 0; i < mStreams.Length(); ++i) {
    MediaCacheStream* stream = mStreams[i];
    stream->mReadaheadBlocks.Verify();
    stream->mPlayedBlocks.Verify();
    stream->mMetadataBlocks.Verify();

    // Verify that the readahead blocks are listed in stream block order
    int32_t block = stream->mReadaheadBlocks.GetFirstBlock();
    int32_t lastStreamBlock = -1;
    while (block >= 0) {
      uint32_t j = 0;
      while (mIndex[block].mOwners[j].mStream != stream) {
        ++j;
      }
      int32_t nextStreamBlock =
        int32_t(mIndex[block].mOwners[j].mStreamBlock);
      NS_ASSERTION(lastStreamBlock < nextStreamBlock,
                   "Blocks not increasing in readahead stream");
      lastStreamBlock = nextStreamBlock;
      block = stream->mReadaheadBlocks.GetNextBlock(block);
    }
  }
}
#endif

void
MediaCache::InsertReadaheadBlock(BlockOwner* aBlockOwner,
                                   int32_t aBlockIndex)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  // Find the last block whose stream block is before aBlockIndex's
  // stream block, and insert after it
  MediaCacheStream* stream = aBlockOwner->mStream;
  int32_t readaheadIndex = stream->mReadaheadBlocks.GetLastBlock();
  while (readaheadIndex >= 0) {
    BlockOwner* bo = GetBlockOwner(readaheadIndex, stream);
    NS_ASSERTION(bo, "stream must own its blocks");
    if (bo->mStreamBlock < aBlockOwner->mStreamBlock) {
      stream->mReadaheadBlocks.AddAfter(aBlockIndex, readaheadIndex);
      return;
    }
    NS_ASSERTION(bo->mStreamBlock > aBlockOwner->mStreamBlock,
                 "Duplicated blocks??");
    readaheadIndex = stream->mReadaheadBlocks.GetPrevBlock(readaheadIndex);
  }

  stream->mReadaheadBlocks.AddFirstBlock(aBlockIndex);
  Verify();
}

void
MediaCache::AllocateAndWriteBlock(MediaCacheStream* aStream, const void* aData,
                                    MediaCacheStream::ReadMode aMode)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int32_t streamBlockIndex = aStream->mChannelOffset/BLOCK_SIZE;

  // Remove all cached copies of this block
  ResourceStreamIterator iter(aStream->mResourceID);
  while (MediaCacheStream* stream = iter.Next()) {
    while (streamBlockIndex >= int32_t(stream->mBlocks.Length())) {
      stream->mBlocks.AppendElement(-1);
    }
    if (stream->mBlocks[streamBlockIndex] >= 0) {
      // We no longer want to own this block
      int32_t globalBlockIndex = stream->mBlocks[streamBlockIndex];
      CACHE_LOG(LogLevel::Debug, ("Released block %d from stream %p block %d(%lld)",
                globalBlockIndex, stream, streamBlockIndex, (long long)streamBlockIndex*BLOCK_SIZE));
      RemoveBlockOwner(globalBlockIndex, stream);
    }
  }

  // Extend the mBlocks array as necessary

  TimeStamp now = TimeStamp::Now();
  int32_t blockIndex = FindBlockForIncomingData(now, aStream);
  if (blockIndex >= 0) {
    FreeBlock(blockIndex);

    Block* block = &mIndex[blockIndex];
    CACHE_LOG(LogLevel::Debug, ("Allocated block %d to stream %p block %d(%lld)",
              blockIndex, aStream, streamBlockIndex, (long long)streamBlockIndex*BLOCK_SIZE));

    mFreeBlocks.RemoveBlock(blockIndex);

    // Tell each stream using this resource about the new block.
    ResourceStreamIterator iter(aStream->mResourceID);
    while (MediaCacheStream* stream = iter.Next()) {
      BlockOwner* bo = block->mOwners.AppendElement();
      if (!bo)
        return;

      bo->mStream = stream;
      bo->mStreamBlock = streamBlockIndex;
      bo->mLastUseTime = now;
      stream->mBlocks[streamBlockIndex] = blockIndex;
      if (streamBlockIndex*BLOCK_SIZE < stream->mStreamOffset) {
        bo->mClass = aMode == MediaCacheStream::MODE_PLAYBACK
          ? PLAYED_BLOCK : METADATA_BLOCK;
        // This must be the most-recently-used block, since we
        // marked it as used now (which may be slightly bogus, but we'll
        // treat it as used for simplicity).
        GetListForBlock(bo)->AddFirstBlock(blockIndex);
        Verify();
      } else {
        // This may not be the latest readahead block, although it usually
        // will be. We may have to scan for the right place to insert
        // the block in the list.
        bo->mClass = READAHEAD_BLOCK;
        InsertReadaheadBlock(bo, blockIndex);
      }
    }

    nsresult rv = mFileCache->WriteBlock(blockIndex, reinterpret_cast<const uint8_t*>(aData));
    if (NS_FAILED(rv)) {
      CACHE_LOG(LogLevel::Debug, ("Released block %d from stream %p block %d(%lld)",
                blockIndex, aStream, streamBlockIndex, (long long)streamBlockIndex*BLOCK_SIZE));
      FreeBlock(blockIndex);
    }
  }

  // Queue an Update since the cache state has changed (for example
  // we might want to stop loading because the cache is full)
  QueueUpdate();
}

void
MediaCache::OpenStream(MediaCacheStream* aStream)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(mReentrantMonitor);
  CACHE_LOG(LogLevel::Debug, ("Stream %p opened", aStream));
  mStreams.AppendElement(aStream);
  aStream->mResourceID = AllocateResourceID();

  // Queue an update since a new stream has been opened.
  gMediaCache->QueueUpdate();
}

void
MediaCache::ReleaseStream(MediaCacheStream* aStream)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(mReentrantMonitor);
  CACHE_LOG(LogLevel::Debug, ("Stream %p closed", aStream));
  mStreams.RemoveElement(aStream);

  // Update MediaCache again for |mStreams| is changed.
  // We need to re-run Update() to ensure streams reading from the same resource
  // as the removed stream get a chance to continue reading.
  gMediaCache->QueueUpdate();
}

void
MediaCache::ReleaseStreamBlocks(MediaCacheStream* aStream)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  // XXX scanning the entire stream doesn't seem great, if not much of it
  // is cached, but the only easy alternative is to scan the entire cache
  // which isn't better
  uint32_t length = aStream->mBlocks.Length();
  for (uint32_t i = 0; i < length; ++i) {
    int32_t blockIndex = aStream->mBlocks[i];
    if (blockIndex >= 0) {
      CACHE_LOG(LogLevel::Debug, ("Released block %d from stream %p block %d(%lld)",
                blockIndex, aStream, i, (long long)i*BLOCK_SIZE));
      RemoveBlockOwner(blockIndex, aStream);
    }
  }
}

void
MediaCache::Truncate()
{
  uint32_t end;
  for (end = mIndex.Length(); end > 0; --end) {
    if (!IsBlockFree(end - 1))
      break;
    mFreeBlocks.RemoveBlock(end - 1);
  }

  if (end < mIndex.Length()) {
    mIndex.TruncateLength(end);
    // XXX We could truncate the cache file here, but we don't seem
    // to have a cross-platform API for doing that. At least when all
    // streams are closed we shut down the cache, which erases the
    // file at that point.
  }
}

void
MediaCache::NoteBlockUsage(MediaCacheStream* aStream, int32_t aBlockIndex,
                           int64_t aStreamOffset,
                           MediaCacheStream::ReadMode aMode, TimeStamp aNow)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  if (aBlockIndex < 0) {
    // this block is not in the cache yet
    return;
  }

  BlockOwner* bo = GetBlockOwner(aBlockIndex, aStream);
  if (!bo) {
    // this block is not in the cache yet
    return;
  }

  // The following check has to be <= because the stream offset has
  // not yet been updated for the data read from this block
  NS_ASSERTION(bo->mStreamBlock*BLOCK_SIZE <= aStreamOffset,
               "Using a block that's behind the read position?");

  GetListForBlock(bo)->RemoveBlock(aBlockIndex);
  bo->mClass =
    (aMode == MediaCacheStream::MODE_METADATA || bo->mClass == METADATA_BLOCK)
    ? METADATA_BLOCK : PLAYED_BLOCK;
  // Since this is just being used now, it can definitely be at the front
  // of mMetadataBlocks or mPlayedBlocks
  GetListForBlock(bo)->AddFirstBlock(aBlockIndex);
  bo->mLastUseTime = aNow;
  Verify();
}

void
MediaCache::NoteSeek(MediaCacheStream* aStream, int64_t aOldOffset)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  if (aOldOffset < aStream->mStreamOffset) {
    // We seeked forward. Convert blocks from readahead to played.
    // Any readahead block that intersects the seeked-over range must
    // be converted.
    int32_t blockIndex = aOldOffset/BLOCK_SIZE;
    int32_t endIndex =
      std::min<int64_t>((aStream->mStreamOffset + BLOCK_SIZE - 1)/BLOCK_SIZE,
             aStream->mBlocks.Length());
    TimeStamp now = TimeStamp::Now();
    while (blockIndex < endIndex) {
      int32_t cacheBlockIndex = aStream->mBlocks[blockIndex];
      if (cacheBlockIndex >= 0) {
        // Marking the block used may not be exactly what we want but
        // it's simple
        NoteBlockUsage(aStream, cacheBlockIndex, aStream->mStreamOffset,
                       MediaCacheStream::MODE_PLAYBACK, now);
      }
      ++blockIndex;
    }
  } else {
    // We seeked backward. Convert from played to readahead.
    // Any played block that is entirely after the start of the seeked-over
    // range must be converted.
    int32_t blockIndex =
      (aStream->mStreamOffset + BLOCK_SIZE - 1)/BLOCK_SIZE;
    int32_t endIndex =
      std::min<int64_t>((aOldOffset + BLOCK_SIZE - 1)/BLOCK_SIZE,
             aStream->mBlocks.Length());
    while (blockIndex < endIndex) {
      MOZ_ASSERT(endIndex > 0);
      int32_t cacheBlockIndex = aStream->mBlocks[endIndex - 1];
      if (cacheBlockIndex >= 0) {
        BlockOwner* bo = GetBlockOwner(cacheBlockIndex, aStream);
        NS_ASSERTION(bo, "Stream doesn't own its blocks?");
        if (bo->mClass == PLAYED_BLOCK) {
          aStream->mPlayedBlocks.RemoveBlock(cacheBlockIndex);
          bo->mClass = READAHEAD_BLOCK;
          // Adding this as the first block is sure to be OK since
          // this must currently be the earliest readahead block
          // (that's why we're proceeding backwards from the end of
          // the seeked range to the start)
          aStream->mReadaheadBlocks.AddFirstBlock(cacheBlockIndex);
          Verify();
        }
      }
      --endIndex;
    }
  }
}

void
MediaCacheStream::NotifyDataLength(int64_t aLength)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  mStreamLength = aLength;
}

void
MediaCacheStream::NotifyDataStarted(int64_t aOffset)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  NS_WARNING_ASSERTION(aOffset == mChannelOffset,
                       "Server is giving us unexpected offset");
  MOZ_ASSERT(aOffset >= 0);
  mChannelOffset = aOffset;
  if (mStreamLength >= 0) {
    // If we started reading at a certain offset, then for sure
    // the stream is at least that long.
    mStreamLength = std::max(mStreamLength, mChannelOffset);
  }
}

bool
MediaCacheStream::UpdatePrincipal(nsIPrincipal* aPrincipal)
{
  return nsContentUtils::CombineResourcePrincipals(&mPrincipal, aPrincipal);
}

void
MediaCacheStream::NotifyDataReceived(int64_t aSize, const char* aData,
    nsIPrincipal* aPrincipal)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  // Update principals before putting the data in the cache. This is important,
  // we want to make sure all principals are updated before any consumer
  // can see the new data.
  // We do this without holding the cache monitor, in case the client wants
  // to do something that takes a lock.
  {
    MediaCache::ResourceStreamIterator iter(mResourceID);
    while (MediaCacheStream* stream = iter.Next()) {
      if (stream->UpdatePrincipal(aPrincipal)) {
        stream->mClient->CacheClientNotifyPrincipalChanged();
      }
    }
  }

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  int64_t size = aSize;
  const char* data = aData;

  CACHE_LOG(LogLevel::Debug, ("Stream %p DataReceived at %lld count=%lld",
            this, (long long)mChannelOffset, (long long)aSize));

  // We process the data one block (or part of a block) at a time
  while (size > 0) {
    uint32_t blockIndex = mChannelOffset/BLOCK_SIZE;
    int32_t blockOffset = int32_t(mChannelOffset - blockIndex*BLOCK_SIZE);
    int32_t chunkSize = std::min<int64_t>(BLOCK_SIZE - blockOffset, size);

    // This gets set to something non-null if we have a whole block
    // of data to write to the cache
    const char* blockDataToStore = nullptr;
    ReadMode mode = MODE_PLAYBACK;
    if (blockOffset == 0 && chunkSize == BLOCK_SIZE) {
      // We received a whole block, so avoid a useless copy through
      // mPartialBlockBuffer
      blockDataToStore = data;
    } else {
      if (blockOffset == 0) {
        // We've just started filling this buffer so now is a good time
        // to clear this flag.
        mMetadataInPartialBlockBuffer = false;
      }
      memcpy(reinterpret_cast<char*>(mPartialBlockBuffer.get()) + blockOffset,
             data, chunkSize);

      if (blockOffset + chunkSize == BLOCK_SIZE) {
        // We completed a block, so lets write it out.
        blockDataToStore = reinterpret_cast<char*>(mPartialBlockBuffer.get());
        if (mMetadataInPartialBlockBuffer) {
          mode = MODE_METADATA;
        }
      }
    }

    if (blockDataToStore) {
      gMediaCache->AllocateAndWriteBlock(this, blockDataToStore, mode);
    }

    mChannelOffset += chunkSize;
    size -= chunkSize;
    data += chunkSize;
  }

  MediaCache::ResourceStreamIterator iter(mResourceID);
  while (MediaCacheStream* stream = iter.Next()) {
    if (stream->mStreamLength >= 0) {
      // The stream is at least as long as what we've read
      stream->mStreamLength = std::max(stream->mStreamLength, mChannelOffset);
    }
    stream->mClient->CacheClientNotifyDataReceived();
  }

  // Notify in case there's a waiting reader
  // XXX it would be fairly easy to optimize things a lot more to
  // avoid waking up reader threads unnecessarily
  mon.NotifyAll();
}

void
MediaCacheStream::FlushPartialBlockInternal(bool aNotifyAll,
                                            ReentrantMonitorAutoEnter& aReentrantMonitor)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  int32_t blockOffset = int32_t(mChannelOffset%BLOCK_SIZE);
  if (blockOffset > 0) {
    CACHE_LOG(LogLevel::Debug,
              ("Stream %p writing partial block: [%d] bytes; "
               "mStreamOffset [%lld] mChannelOffset[%lld] mStreamLength [%lld] "
               "notifying: [%s]",
               this, blockOffset, mStreamOffset, mChannelOffset, mStreamLength,
               aNotifyAll ? "yes" : "no"));

    // Write back the partial block
    memset(reinterpret_cast<char*>(mPartialBlockBuffer.get()) + blockOffset, 0,
           BLOCK_SIZE - blockOffset);
    gMediaCache->AllocateAndWriteBlock(this, mPartialBlockBuffer.get(),
        mMetadataInPartialBlockBuffer ? MODE_METADATA : MODE_PLAYBACK);
  }

  // |mChannelOffset == 0| means download ends with no bytes received.
  // We should also wake up those readers who are waiting for data
  // that will never come.
  if ((blockOffset > 0 || mChannelOffset == 0) && aNotifyAll) {
    // Wake up readers who may be waiting for this data
    aReentrantMonitor.NotifyAll();
  }
}

void
MediaCacheStream::FlushPartialBlock()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());

  // Write the current partial block to memory.
  // Note: This writes a full block, so if data is not at the end of the
  // stream, the decoder must subsequently choose correct start and end offsets
  // for reading/seeking.
  FlushPartialBlockInternal(false, mon);

  gMediaCache->QueueUpdate();
}

void
MediaCacheStream::NotifyDataEnded(nsresult aStatus)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());

  if (NS_FAILED(aStatus)) {
    // Disconnect from other streams sharing our resource, since they
    // should continue trying to load. Our load might have been deliberately
    // canceled and that shouldn't affect other streams.
    mResourceID = gMediaCache->AllocateResourceID();
  }

  // It is prudent to update channel/cache status before calling
  // CacheClientNotifyDataEnded() which will read |mChannelEnded|.
  FlushPartialBlockInternal(true, mon);
  mChannelEnded = true;
  gMediaCache->QueueUpdate();

  MediaCache::ResourceStreamIterator iter(mResourceID);
  while (MediaCacheStream* stream = iter.Next()) {
    if (NS_SUCCEEDED(aStatus)) {
      // We read the whole stream, so remember the true length
      stream->mStreamLength = mChannelOffset;
    }
    if (!stream->mDidNotifyDataEnded) {
      stream->mDidNotifyDataEnded = true;
      stream->mNotifyDataEndedStatus = aStatus;
      stream->mClient->CacheClientNotifyDataEnded(aStatus);
    }
  }
}

void
MediaCacheStream::NotifyChannelRecreated()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  mChannelEnded = false;
  mDidNotifyDataEnded = false;
}

MediaCacheStream::~MediaCacheStream()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
  NS_ASSERTION(!mPinCount, "Unbalanced Pin");

  if (gMediaCache) {
    NS_ASSERTION(mClosed, "Stream was not closed");
    gMediaCache->ReleaseStream(this);
    MediaCache::MaybeShutdown();
  }
}

void
MediaCacheStream::SetTransportSeekable(bool aIsTransportSeekable)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  NS_ASSERTION(mIsTransportSeekable || aIsTransportSeekable ||
               mChannelOffset == 0, "channel offset must be zero when we become non-seekable");
  mIsTransportSeekable = aIsTransportSeekable;
  // Queue an Update since we may change our strategy for dealing
  // with this stream
  gMediaCache->QueueUpdate();
}

bool
MediaCacheStream::IsTransportSeekable()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return mIsTransportSeekable;
}

bool
MediaCacheStream::AreAllStreamsForResourceSuspended()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  MediaCache::ResourceStreamIterator iter(mResourceID);
  // Look for a stream that's able to read the data we need
  int64_t dataOffset = -1;
  while (MediaCacheStream* stream = iter.Next()) {
    if (stream->mCacheSuspended || stream->mChannelEnded || stream->mClosed) {
      continue;
    }
    if (dataOffset < 0) {
      dataOffset = GetCachedDataEndInternal(mStreamOffset);
    }
    // Ignore streams that are reading beyond the data we need
    if (stream->mChannelOffset > dataOffset) {
      continue;
    }
    return false;
  }

  return true;
}

void
MediaCacheStream::Close()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  if (!mInitialized)
    return;

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  CloseInternal(mon);
  // Queue an Update since we may have created more free space. Don't do
  // it from CloseInternal since that gets called by Update() itself
  // sometimes, and we try to not to queue updates from Update().
  gMediaCache->QueueUpdate();
}

void
MediaCacheStream::EnsureCacheUpdate()
{
  if (mHasHadUpdate)
    return;
  gMediaCache->Update();
}

void
MediaCacheStream::CloseInternal(ReentrantMonitorAutoEnter& aReentrantMonitor)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  if (mClosed)
    return;
  mClosed = true;
  // Closing a stream will change the return value of
  // MediaCacheStream::AreAllStreamsForResourceSuspended as well as
  // ChannelMediaResource::IsSuspendedByCache. Let's notify it.
  gMediaCache->QueueSuspendedStatusUpdate(mResourceID);
  gMediaCache->ReleaseStreamBlocks(this);
  // Wake up any blocked readers
  aReentrantMonitor.NotifyAll();
}

void
MediaCacheStream::Pin()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  ++mPinCount;
  // Queue an Update since we may no longer want to read more into the
  // cache, if this stream's block have become non-evictable
  gMediaCache->QueueUpdate();
}

void
MediaCacheStream::Unpin()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  NS_ASSERTION(mPinCount > 0, "Unbalanced Unpin");
  --mPinCount;
  // Queue an Update since we may be able to read more into the
  // cache, if this stream's block have become evictable
  gMediaCache->QueueUpdate();
}

int64_t
MediaCacheStream::GetLength()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return mStreamLength;
}

int64_t
MediaCacheStream::GetNextCachedData(int64_t aOffset)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return GetNextCachedDataInternal(aOffset);
}

int64_t
MediaCacheStream::GetCachedDataEnd(int64_t aOffset)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return GetCachedDataEndInternal(aOffset);
}

bool
MediaCacheStream::IsDataCachedToEndOfStream(int64_t aOffset)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (mStreamLength < 0)
    return false;
  return GetCachedDataEndInternal(aOffset) >= mStreamLength;
}

int64_t
MediaCacheStream::GetCachedDataEndInternal(int64_t aOffset)
{
  gMediaCache->GetReentrantMonitor().AssertCurrentThreadIn();
  uint32_t startBlockIndex = aOffset/BLOCK_SIZE;
  uint32_t blockIndex = startBlockIndex;
  while (blockIndex < mBlocks.Length() && mBlocks[blockIndex] != -1) {
    ++blockIndex;
  }
  int64_t result = blockIndex*BLOCK_SIZE;
  if (blockIndex == mChannelOffset/BLOCK_SIZE) {
    // The block containing mChannelOffset may be partially read but not
    // yet committed to the main cache
    result = mChannelOffset;
  }
  if (mStreamLength >= 0) {
    // The last block in the cache may only be partially valid, so limit
    // the cached range to the stream length
    result = std::min(result, mStreamLength);
  }
  return std::max(result, aOffset);
}

int64_t
MediaCacheStream::GetNextCachedDataInternal(int64_t aOffset)
{
  gMediaCache->GetReentrantMonitor().AssertCurrentThreadIn();
  if (aOffset == mStreamLength)
    return -1;

  uint32_t startBlockIndex = aOffset/BLOCK_SIZE;
  uint32_t channelBlockIndex = mChannelOffset/BLOCK_SIZE;

  if (startBlockIndex == channelBlockIndex &&
      aOffset < mChannelOffset) {
    // The block containing mChannelOffset is partially read, but not
    // yet committed to the main cache. aOffset lies in the partially
    // read portion, thus it is effectively cached.
    return aOffset;
  }

  if (startBlockIndex >= mBlocks.Length())
    return -1;

  // Is the current block cached?
  if (mBlocks[startBlockIndex] != -1)
    return aOffset;

  // Count the number of uncached blocks
  bool hasPartialBlock = (mChannelOffset % BLOCK_SIZE) != 0;
  uint32_t blockIndex = startBlockIndex + 1;
  while (true) {
    if ((hasPartialBlock && blockIndex == channelBlockIndex) ||
        (blockIndex < mBlocks.Length() && mBlocks[blockIndex] != -1)) {
      // We at the incoming channel block, which has has data in it,
      // or are we at a cached block. Return index of block start.
      return blockIndex * BLOCK_SIZE;
    }

    // No more cached blocks?
    if (blockIndex >= mBlocks.Length())
      return -1;

    ++blockIndex;
  }

  NS_NOTREACHED("Should return in loop");
  return -1;
}

void
MediaCacheStream::SetReadMode(ReadMode aMode)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (aMode == mCurrentMode)
    return;
  mCurrentMode = aMode;
  gMediaCache->QueueUpdate();
}

void
MediaCacheStream::SetPlaybackRate(uint32_t aBytesPerSecond)
{
  NS_ASSERTION(aBytesPerSecond > 0, "Zero playback rate not allowed");
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (aBytesPerSecond == mPlaybackBytesPerSecond)
    return;
  mPlaybackBytesPerSecond = aBytesPerSecond;
  gMediaCache->QueueUpdate();
}

nsresult
MediaCacheStream::Seek(int32_t aWhence, int64_t aOffset)
{
  NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (mClosed)
    return NS_ERROR_FAILURE;

  int64_t oldOffset = mStreamOffset;
  int64_t newOffset = mStreamOffset;
  switch (aWhence) {
  case PR_SEEK_END:
    if (mStreamLength < 0)
      return NS_ERROR_FAILURE;
    newOffset = mStreamLength + aOffset;
    break;
  case PR_SEEK_CUR:
    newOffset += aOffset;
    break;
  case PR_SEEK_SET:
    newOffset = aOffset;
    break;
  default:
    NS_ERROR("Unknown whence");
    return NS_ERROR_FAILURE;
  }

  if (newOffset < 0)
    return NS_ERROR_FAILURE;
  mStreamOffset = newOffset;

  CACHE_LOG(LogLevel::Debug, ("Stream %p Seek to %lld", this, (long long)mStreamOffset));
  gMediaCache->NoteSeek(this, oldOffset);

  gMediaCache->QueueUpdate();
  return NS_OK;
}

int64_t
MediaCacheStream::Tell()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return mStreamOffset;
}

nsresult
MediaCacheStream::Read(char* aBuffer, uint32_t aCount, uint32_t* aBytes)
{
  NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (mClosed)
    return NS_ERROR_FAILURE;

  // Cache the offset in case it is changed again when we are waiting for the
  // monitor to be notified to avoid reading at the wrong position.
  auto streamOffset = mStreamOffset;

  uint32_t count = 0;
  // Read one block (or part of a block) at a time
  while (count < aCount) {
    uint32_t streamBlock = uint32_t(streamOffset/BLOCK_SIZE);
    uint32_t offsetInStreamBlock = uint32_t(streamOffset - streamBlock*BLOCK_SIZE);
    int64_t size = std::min<int64_t>(aCount - count, BLOCK_SIZE - offsetInStreamBlock);

    if (mStreamLength >= 0) {
      // Don't try to read beyond the end of the stream
      int64_t bytesRemaining = mStreamLength - streamOffset;
      if (bytesRemaining <= 0) {
        // Get out of here and return NS_OK
        break;
      }
      size = std::min(size, bytesRemaining);
      // Clamp size until 64-bit file size issues are fixed.
      size = std::min(size, int64_t(INT32_MAX));
    }

    int32_t cacheBlock = streamBlock < mBlocks.Length() ? mBlocks[streamBlock] : -1;
    if (cacheBlock < 0) {
      // We don't have a complete cached block here.

      if (count > 0) {
        // Some data has been read, so return what we've got instead of
        // blocking or trying to find a stream with a partial block.
        break;
      }

      // See if the data is available in the partial cache block of any
      // stream reading this resource. We need to do this in case there is
      // another stream with this resource that has all the data to the end of
      // the stream but the data doesn't end on a block boundary.
      MediaCacheStream* streamWithPartialBlock = nullptr;
      MediaCache::ResourceStreamIterator iter(mResourceID);
      while (MediaCacheStream* stream = iter.Next()) {
        if (uint32_t(stream->mChannelOffset/BLOCK_SIZE) == streamBlock &&
            streamOffset < stream->mChannelOffset) {
          streamWithPartialBlock = stream;
          break;
        }
      }
      if (streamWithPartialBlock) {
        // We can just use the data in mPartialBlockBuffer. In fact we should
        // use it rather than waiting for the block to fill and land in
        // the cache.
        int64_t bytes = std::min<int64_t>(size, streamWithPartialBlock->mChannelOffset - streamOffset);
        // Clamp bytes until 64-bit file size issues are fixed.
        bytes = std::min(bytes, int64_t(INT32_MAX));
        MOZ_ASSERT(bytes >= 0 && bytes <= aCount, "Bytes out of range.");
        memcpy(aBuffer,
          reinterpret_cast<char*>(streamWithPartialBlock->mPartialBlockBuffer.get()) + offsetInStreamBlock, bytes);
        if (mCurrentMode == MODE_METADATA) {
          streamWithPartialBlock->mMetadataInPartialBlockBuffer = true;
        }
        streamOffset += bytes;
        count = bytes;
        break;
      }

      // No data has been read yet, so block
      mon.Wait();
      if (mClosed) {
        // We may have successfully read some data, but let's just throw
        // that out.
        return NS_ERROR_FAILURE;
      }
      continue;
    }

    gMediaCache->NoteBlockUsage(this, cacheBlock, streamOffset, mCurrentMode, TimeStamp::Now());

    int64_t offset = cacheBlock*BLOCK_SIZE + offsetInStreamBlock;
    int32_t bytes;
    MOZ_ASSERT(size >= 0 && size <= INT32_MAX, "Size out of range.");
    nsresult rv = gMediaCache->ReadCacheFile(offset, aBuffer + count, int32_t(size), &bytes);
    if (NS_FAILED(rv)) {
      if (count == 0)
        return rv;
      // If we did successfully read some data, may as well return it
      break;
    }
    streamOffset += bytes;
    count += bytes;
  }

  if (count > 0) {
    // Some data was read, so queue an update since block priorities may
    // have changed
    gMediaCache->QueueUpdate();
  }
  CACHE_LOG(LogLevel::Debug, ("Stream %p Read at %lld count=%d", this, streamOffset-count, count));
  *aBytes = count;
  mStreamOffset = streamOffset;
  return NS_OK;
}

nsresult
MediaCacheStream::ReadAt(int64_t aOffset, char* aBuffer,
                         uint32_t aCount, uint32_t* aBytes)
{
  NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  nsresult rv = Seek(nsISeekableStream::NS_SEEK_SET, aOffset);
  if (NS_FAILED(rv)) return rv;
  return Read(aBuffer, aCount, aBytes);
}

nsresult
MediaCacheStream::ReadFromCache(char* aBuffer, int64_t aOffset, int64_t aCount)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (mClosed)
    return NS_ERROR_FAILURE;

  // Read one block (or part of a block) at a time
  uint32_t count = 0;
  int64_t streamOffset = aOffset;
  while (count < aCount) {
    uint32_t streamBlock = uint32_t(streamOffset/BLOCK_SIZE);
    uint32_t offsetInStreamBlock =
      uint32_t(streamOffset - streamBlock*BLOCK_SIZE);
    int64_t size = std::min<int64_t>(aCount - count, BLOCK_SIZE - offsetInStreamBlock);

    if (mStreamLength >= 0) {
      // Don't try to read beyond the end of the stream
      int64_t bytesRemaining = mStreamLength - streamOffset;
      if (bytesRemaining <= 0) {
        return NS_ERROR_FAILURE;
      }
      size = std::min(size, bytesRemaining);
      // Clamp size until 64-bit file size issues are fixed.
      size = std::min(size, int64_t(INT32_MAX));
    }

    int32_t bytes;
    uint32_t channelBlock = uint32_t(mChannelOffset/BLOCK_SIZE);
    int32_t cacheBlock = streamBlock < mBlocks.Length() ? mBlocks[streamBlock] : -1;
    if (channelBlock == streamBlock && streamOffset < mChannelOffset) {
      // We can just use the data in mPartialBlockBuffer. In fact we should
      // use it rather than waiting for the block to fill and land in
      // the cache.
      // Clamp bytes until 64-bit file size issues are fixed.
      int64_t toCopy = std::min<int64_t>(size, mChannelOffset - streamOffset);
      bytes = std::min(toCopy, int64_t(INT32_MAX));
      MOZ_ASSERT(bytes >= 0 && bytes <= toCopy, "Bytes out of range.");
      memcpy(aBuffer + count,
        reinterpret_cast<char*>(mPartialBlockBuffer.get()) + offsetInStreamBlock, bytes);
    } else {
      if (cacheBlock < 0) {
        // We expect all blocks to be cached! Fail!
        return NS_ERROR_FAILURE;
      }
      int64_t offset = cacheBlock*BLOCK_SIZE + offsetInStreamBlock;
      MOZ_ASSERT(size >= 0 && size <= INT32_MAX, "Size out of range.");
      nsresult rv = gMediaCache->ReadCacheFile(offset, aBuffer + count, int32_t(size), &bytes);
      if (NS_FAILED(rv)) {
        return rv;
      }
    }
    streamOffset += bytes;
    count += bytes;
  }

  return NS_OK;
}

nsresult
MediaCacheStream::Init()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  if (mInitialized)
    return NS_OK;

  InitMediaCache();
  if (!gMediaCache)
    return NS_ERROR_FAILURE;
  gMediaCache->OpenStream(this);
  mInitialized = true;
  return NS_OK;
}

nsresult
MediaCacheStream::InitAsClone(MediaCacheStream* aOriginal)
{
  if (!aOriginal->IsAvailableForSharing())
    return NS_ERROR_FAILURE;

  if (mInitialized)
    return NS_OK;

  nsresult rv = Init();
  if (NS_FAILED(rv))
    return rv;
  mResourceID = aOriginal->mResourceID;

  // Grab cache blocks from aOriginal as readahead blocks for our stream
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());

  mPrincipal = aOriginal->mPrincipal;
  mStreamLength = aOriginal->mStreamLength;
  mIsTransportSeekable = aOriginal->mIsTransportSeekable;

  // Cloned streams are initially suspended, since there is no channel open
  // initially for a clone.
  mCacheSuspended = true;
  mChannelEnded = true;

  if (aOriginal->mDidNotifyDataEnded) {
    mNotifyDataEndedStatus = aOriginal->mNotifyDataEndedStatus;
    mDidNotifyDataEnded = true;
    mClient->CacheClientNotifyDataEnded(mNotifyDataEndedStatus);
  }

  for (uint32_t i = 0; i < aOriginal->mBlocks.Length(); ++i) {
    int32_t cacheBlockIndex = aOriginal->mBlocks[i];
    if (cacheBlockIndex < 0)
      continue;

    while (i >= mBlocks.Length()) {
      mBlocks.AppendElement(-1);
    }
    // Every block is a readahead block for the clone because the clone's initial
    // stream offset is zero
    gMediaCache->AddBlockOwnerAsReadahead(cacheBlockIndex, this, i);
  }

  return NS_OK;
}

nsresult MediaCacheStream::GetCachedRanges(MediaByteRangeSet& aRanges)
{
  // Take the monitor, so that the cached data ranges can't grow while we're
  // trying to loop over them.
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());

  // We must be pinned while running this, otherwise the cached data ranges may
  // shrink while we're trying to loop over them.
  NS_ASSERTION(mPinCount > 0, "Must be pinned");

  int64_t startOffset = GetNextCachedDataInternal(0);
  while (startOffset >= 0) {
    int64_t endOffset = GetCachedDataEndInternal(startOffset);
    NS_ASSERTION(startOffset < endOffset, "Buffered range must end after its start");
    // Bytes [startOffset..endOffset] are cached.
    aRanges += MediaByteRange(startOffset, endOffset);
    startOffset = GetNextCachedDataInternal(endOffset);
    NS_ASSERTION(startOffset == -1 || startOffset > endOffset,
      "Must have advanced to start of next range, or hit end of stream");
  }
  return NS_OK;
}

} // namespace mozilla