1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
"use strict";
const { JITOptimizations } = require("devtools/client/performance/modules/logic/jit");
const FrameUtils = require("devtools/client/performance/modules/logic/frame-utils");
/**
* A call tree for a thread. This is essentially a linkage between all frames
* of all samples into a single tree structure, with additional information
* on each node, like the time spent (in milliseconds) and samples count.
*
* @param object thread
* The raw thread object received from the backend. Contains samples,
* stackTable, frameTable, and stringTable.
* @param object options
* Additional supported options
* - number startTime
* - number endTime
* - boolean contentOnly [optional]
* - boolean invertTree [optional]
* - boolean flattenRecursion [optional]
*/
function ThreadNode(thread, options = {}) {
if (options.endTime == void 0 || options.startTime == void 0) {
throw new Error("ThreadNode requires both `startTime` and `endTime`.");
}
this.samples = 0;
this.sampleTimes = [];
this.youngestFrameSamples = 0;
this.calls = [];
this.duration = options.endTime - options.startTime;
this.nodeType = "Thread";
this.inverted = options.invertTree;
// Total bytesize of all allocations if enabled
this.byteSize = 0;
this.youngestFrameByteSize = 0;
let { samples, stackTable, frameTable, stringTable } = thread;
// Nothing to do if there are no samples.
if (samples.data.length === 0) {
return;
}
this._buildInverted(samples, stackTable, frameTable, stringTable, options);
if (!options.invertTree) {
this._uninvert();
}
}
ThreadNode.prototype = {
/**
* Build an inverted call tree from profile samples. The format of the
* samples is described in tools/profiler/ProfileEntry.h, under the heading
* "ThreadProfile JSON Format".
*
* The profile data is naturally presented inverted. Inverting the call tree
* is also the default in the Performance tool.
*
* @param object samples
* The raw samples array received from the backend.
* @param object stackTable
* The table of deduplicated stacks from the backend.
* @param object frameTable
* The table of deduplicated frames from the backend.
* @param object stringTable
* The table of deduplicated strings from the backend.
* @param object options
* Additional supported options
* - number startTime
* - number endTime
* - boolean contentOnly [optional]
* - boolean invertTree [optional]
*/
_buildInverted: function buildInverted(samples, stackTable, frameTable, stringTable,
options) {
function getOrAddFrameNode(calls, isLeaf, frameKey, inflatedFrame, isMetaCategory,
leafTable) {
// Insert the inflated frame into the call tree at the current level.
let frameNode;
// Leaf nodes have fan out much greater than non-leaf nodes, thus the
// use of a hash table. Otherwise, do linear search.
//
// Note that this method is very hot, thus the manual looping over
// Array.prototype.find.
if (isLeaf) {
frameNode = leafTable[frameKey];
} else {
for (let i = 0; i < calls.length; i++) {
if (calls[i].key === frameKey) {
frameNode = calls[i];
break;
}
}
}
if (!frameNode) {
frameNode = new FrameNode(frameKey, inflatedFrame, isMetaCategory);
if (isLeaf) {
leafTable[frameKey] = frameNode;
}
calls.push(frameNode);
}
return frameNode;
}
const SAMPLE_STACK_SLOT = samples.schema.stack;
const SAMPLE_TIME_SLOT = samples.schema.time;
const SAMPLE_BYTESIZE_SLOT = samples.schema.size;
const STACK_PREFIX_SLOT = stackTable.schema.prefix;
const STACK_FRAME_SLOT = stackTable.schema.frame;
const getOrAddInflatedFrame = FrameUtils.getOrAddInflatedFrame;
let samplesData = samples.data;
let stacksData = stackTable.data;
// Caches.
let inflatedFrameCache = FrameUtils.getInflatedFrameCache(frameTable);
let leafTable = Object.create(null);
let startTime = options.startTime;
let endTime = options.endTime;
let flattenRecursion = options.flattenRecursion;
// Reused options object passed to InflatedFrame.prototype.getFrameKey.
let mutableFrameKeyOptions = {
contentOnly: options.contentOnly,
isRoot: false,
isLeaf: false,
isMetaCategoryOut: false
};
let byteSize = 0;
for (let i = 0; i < samplesData.length; i++) {
let sample = samplesData[i];
let sampleTime = sample[SAMPLE_TIME_SLOT];
if (SAMPLE_BYTESIZE_SLOT !== void 0) {
byteSize = sample[SAMPLE_BYTESIZE_SLOT];
}
// A sample's end time is considered to be its time of sampling. Its
// start time is the sampling time of the previous sample.
//
// Thus, we compare sampleTime <= start instead of < to filter out
// samples that end exactly at the start time.
if (!sampleTime || sampleTime <= startTime || sampleTime > endTime) {
continue;
}
let stackIndex = sample[SAMPLE_STACK_SLOT];
let calls = this.calls;
let prevCalls = this.calls;
let prevFrameKey;
let isLeaf = mutableFrameKeyOptions.isLeaf = true;
let skipRoot = options.invertTree;
// Inflate the stack and build the FrameNode call tree directly.
//
// In the profiler data, each frame's stack is referenced by an index
// into stackTable.
//
// Each entry in stackTable is a pair [ prefixIndex, frameIndex ]. The
// prefixIndex is itself an index into stackTable, referencing the
// prefix of the current stack (that is, the younger frames). In other
// words, the stackTable is encoded as a trie of the inverted
// callstack. The frameIndex is an index into frameTable, describing the
// frame at the current depth.
//
// This algorithm inflates each frame in the frame table while walking
// the stack trie as described above.
//
// The frame key is then computed from the inflated frame /and/ the
// current depth in the FrameNode call tree. That is, the frame key is
// not wholly determinable from just the inflated frame.
//
// For content frames, the frame key is just its location. For chrome
// frames, the key may be a metacategory or its location, depending on
// rendering options and its position in the FrameNode call tree.
//
// The frame key is then used to build up the inverted FrameNode call
// tree.
//
// Note that various filtering functions, such as filtering for content
// frames or flattening recursion, are inlined into the stack inflation
// loop. This is important for performance as it avoids intermediate
// structures and multiple passes.
while (stackIndex !== null) {
let stackEntry = stacksData[stackIndex];
let frameIndex = stackEntry[STACK_FRAME_SLOT];
// Fetch the stack prefix (i.e. older frames) index.
stackIndex = stackEntry[STACK_PREFIX_SLOT];
// Do not include the (root) node in this sample, as the costs of each frame
// will make it clear to differentiate (root)->B vs (root)->A->B
// when a tree is inverted, a revert of bug 1147604
if (stackIndex === null && skipRoot) {
break;
}
// Inflate the frame.
let inflatedFrame = getOrAddInflatedFrame(inflatedFrameCache, frameIndex,
frameTable, stringTable);
// Compute the frame key.
mutableFrameKeyOptions.isRoot = stackIndex === null;
let frameKey = inflatedFrame.getFrameKey(mutableFrameKeyOptions);
// An empty frame key means this frame should be skipped.
if (frameKey === "") {
continue;
}
// If we shouldn't flatten the current frame into the previous one, advance a
// level in the call tree.
let shouldFlatten = flattenRecursion && frameKey === prevFrameKey;
if (!shouldFlatten) {
calls = prevCalls;
}
let frameNode = getOrAddFrameNode(calls, isLeaf, frameKey, inflatedFrame,
mutableFrameKeyOptions.isMetaCategoryOut,
leafTable);
if (isLeaf) {
frameNode.youngestFrameSamples++;
frameNode._addOptimizations(inflatedFrame.optimizations,
inflatedFrame.implementation, sampleTime,
stringTable);
if (byteSize) {
frameNode.youngestFrameByteSize += byteSize;
}
}
// Don't overcount flattened recursive frames.
if (!shouldFlatten) {
frameNode.samples++;
if (byteSize) {
frameNode.byteSize += byteSize;
}
}
prevFrameKey = frameKey;
prevCalls = frameNode.calls;
isLeaf = mutableFrameKeyOptions.isLeaf = false;
}
this.samples++;
this.sampleTimes.push(sampleTime);
if (byteSize) {
this.byteSize += byteSize;
}
}
},
/**
* Uninverts the call tree after its having been built.
*/
_uninvert: function uninvert() {
function mergeOrAddFrameNode(calls, node, samples, size) {
// Unlike the inverted call tree, we don't use a root table for the top
// level, as in general, there are many fewer entry points than
// leaves. Instead, linear search is used regardless of level.
for (let i = 0; i < calls.length; i++) {
if (calls[i].key === node.key) {
let foundNode = calls[i];
foundNode._merge(node, samples, size);
return foundNode.calls;
}
}
let copy = node._clone(samples, size);
calls.push(copy);
return copy.calls;
}
let workstack = [{ node: this, level: 0 }];
let spine = [];
let entry;
// The new root.
let rootCalls = [];
// Walk depth-first and keep the current spine (e.g., callstack).
do {
entry = workstack.pop();
if (entry) {
spine[entry.level] = entry;
let node = entry.node;
let calls = node.calls;
let callSamples = 0;
let callByteSize = 0;
// Continue the depth-first walk.
for (let i = 0; i < calls.length; i++) {
workstack.push({ node: calls[i], level: entry.level + 1 });
callSamples += calls[i].samples;
callByteSize += calls[i].byteSize;
}
// The sample delta is used to distinguish stacks.
//
// Suppose we have the following stack samples:
//
// A -> B
// A -> C
// A
//
// The inverted tree is:
//
// A
// / \
// B C
//
// with A.samples = 3, B.samples = 1, C.samples = 1.
//
// A is distinguished as being its own stack because
// A.samples - (B.samples + C.samples) > 0.
//
// Note that bottoming out is a degenerate where callSamples = 0.
let samplesDelta = node.samples - callSamples;
let byteSizeDelta = node.byteSize - callByteSize;
if (samplesDelta > 0) {
// Reverse the spine and add them to the uninverted call tree.
let uninvertedCalls = rootCalls;
for (let level = entry.level; level > 0; level--) {
let callee = spine[level];
uninvertedCalls = mergeOrAddFrameNode(uninvertedCalls, callee.node,
samplesDelta, byteSizeDelta);
}
}
}
} while (entry);
// Replace the toplevel calls with rootCalls, which now contains the
// uninverted roots.
this.calls = rootCalls;
},
/**
* Gets additional details about this node.
* @see FrameNode.prototype.getInfo for more information.
*
* @return object
*/
getInfo: function (options) {
return FrameUtils.getFrameInfo(this, options);
},
/**
* Mimicks the interface of FrameNode, and a ThreadNode can never have
* optimization data (at the moment, anyway), so provide a function
* to return null so we don't need to check if a frame node is a thread
* or not everytime we fetch optimization data.
*
* @return {null}
*/
hasOptimizations: function () {
return null;
}
};
/**
* A function call node in a tree. Represents a function call with a unique context,
* resulting in each FrameNode having its own row in the corresponding tree view.
* Take samples:
* A()->B()->C()
* A()->B()
* Q()->B()
*
* In inverted tree, A()->B()->C() would have one frame node, and A()->B() and
* Q()->B() would share a frame node.
* In an uninverted tree, A()->B()->C() and A()->B() would share a frame node,
* with Q()->B() having its own.
*
* In all cases, all the frame nodes originated from the same InflatedFrame.
*
* @param string frameKey
* The key associated with this frame. The key determines identity of
* the node.
* @param string location
* The location of this function call. Note that this isn't sanitized,
* so it may very well (not?) include the function name, url, etc.
* @param number line
* The line number inside the source containing this function call.
* @param number category
* The category type of this function call ("js", "graphics" etc.).
* @param number allocations
* The number of memory allocations performed in this frame.
* @param number isContent
* Whether this frame is content.
* @param boolean isMetaCategory
* Whether or not this is a platform node that should appear as a
* generalized meta category or not.
*/
function FrameNode(frameKey, { location, line, category, isContent }, isMetaCategory) {
this.key = frameKey;
this.location = location;
this.line = line;
this.youngestFrameSamples = 0;
this.samples = 0;
this.calls = [];
this.isContent = !!isContent;
this._optimizations = null;
this._tierData = [];
this._stringTable = null;
this.isMetaCategory = !!isMetaCategory;
this.category = category;
this.nodeType = "Frame";
this.byteSize = 0;
this.youngestFrameByteSize = 0;
}
FrameNode.prototype = {
/**
* Take optimization data observed for this frame.
*
* @param object optimizationSite
* Any JIT optimization information attached to the current
* sample. Lazily inflated via stringTable.
* @param number implementation
* JIT implementation used for this observed frame (baseline, ion);
* can be null indicating "interpreter"
* @param number time
* The time this optimization occurred.
* @param object stringTable
* The string table used to inflate the optimizationSite.
*/
_addOptimizations: function (site, implementation, time, stringTable) {
// Simply accumulate optimization sites for now. Processing is done lazily
// by JITOptimizations, if optimization information is actually displayed.
if (site) {
let opts = this._optimizations;
if (opts === null) {
opts = this._optimizations = [];
}
opts.push(site);
}
if (!this._stringTable) {
this._stringTable = stringTable;
}
// Record type of implementation used and the sample time
this._tierData.push({ implementation, time });
},
_clone: function (samples, size) {
let newNode = new FrameNode(this.key, this, this.isMetaCategory);
newNode._merge(this, samples, size);
return newNode;
},
_merge: function (otherNode, samples, size) {
if (this === otherNode) {
return;
}
this.samples += samples;
this.byteSize += size;
if (otherNode.youngestFrameSamples > 0) {
this.youngestFrameSamples += samples;
}
if (otherNode.youngestFrameByteSize > 0) {
this.youngestFrameByteSize += otherNode.youngestFrameByteSize;
}
if (this._stringTable === null) {
this._stringTable = otherNode._stringTable;
}
if (otherNode._optimizations) {
if (!this._optimizations) {
this._optimizations = [];
}
let opts = this._optimizations;
let otherOpts = otherNode._optimizations;
for (let i = 0; i < otherOpts.length; i++) {
opts.push(otherOpts[i]);
}
}
if (otherNode._tierData.length) {
let tierData = this._tierData;
let otherTierData = otherNode._tierData;
for (let i = 0; i < otherTierData.length; i++) {
tierData.push(otherTierData[i]);
}
tierData.sort((a, b) => a.time - b.time);
}
},
/**
* Returns the parsed location and additional data describing
* this frame. Uses cached data if possible. Takes the following
* options:
*
* @param {ThreadNode} options.root
* The root thread node to calculate relative costs.
* Generates [self|total] [duration|percentage] values.
* @param {boolean} options.allocations
* Generates `totalAllocations` and `selfAllocations`.
*
* @return object
* The computed { name, file, url, line } properties for this
* function call, as well as additional params if options specified.
*/
getInfo: function (options) {
return FrameUtils.getFrameInfo(this, options);
},
/**
* Returns whether or not the frame node has an JITOptimizations model.
*
* @return {Boolean}
*/
hasOptimizations: function () {
return !this.isMetaCategory && !!this._optimizations;
},
/**
* Returns the underlying JITOptimizations model representing
* the optimization attempts occuring in this frame.
*
* @return {JITOptimizations|null}
*/
getOptimizations: function () {
if (!this._optimizations) {
return null;
}
return new JITOptimizations(this._optimizations, this._stringTable);
},
/**
* Returns the tiers used overtime.
*
* @return {Array<object>}
*/
getTierData: function () {
return this._tierData;
}
};
exports.ThreadNode = ThreadNode;
exports.FrameNode = FrameNode;
|