/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ // IWYU pragma: private, include "nsString.h" #include "mozilla/Casting.h" #include "mozilla/MemoryReporting.h" #ifndef MOZILLA_INTERNAL_API #error Cannot use internal string classes without MOZILLA_INTERNAL_API defined. Use the frozen header nsStringAPI.h instead. #endif /** * The base for string comparators */ class nsTStringComparator_CharT { public: typedef CharT char_type; nsTStringComparator_CharT() { } virtual int operator()(const char_type*, const char_type*, uint32_t, uint32_t) const = 0; }; /** * The default string comparator (case-sensitive comparision) */ class nsTDefaultStringComparator_CharT : public nsTStringComparator_CharT { public: typedef CharT char_type; nsTDefaultStringComparator_CharT() { } virtual int operator()(const char_type*, const char_type*, uint32_t, uint32_t) const override; }; /** * nsTSubstring is the most abstract class in the string hierarchy. It * represents a single contiguous array of characters, which may or may not * be null-terminated. This type is not instantiated directly. A sub-class * is instantiated instead. For example, see nsTString. * * NAMES: * nsAString for wide characters * nsACString for narrow characters * * Many of the accessors on nsTSubstring are inlined as an optimization. */ class nsTSubstring_CharT { public: typedef mozilla::fallible_t fallible_t; typedef CharT char_type; typedef nsCharTraits<char_type> char_traits; typedef char_traits::incompatible_char_type incompatible_char_type; typedef nsTSubstring_CharT self_type; typedef self_type abstract_string_type; typedef self_type base_string_type; typedef self_type substring_type; typedef nsTSubstringTuple_CharT substring_tuple_type; typedef nsTString_CharT string_type; typedef nsReadingIterator<char_type> const_iterator; typedef nsWritingIterator<char_type> iterator; typedef nsTStringComparator_CharT comparator_type; typedef char_type* char_iterator; typedef const char_type* const_char_iterator; typedef uint32_t size_type; typedef uint32_t index_type; public: // this acts like a virtual destructor ~nsTSubstring_CharT() { Finalize(); } /** * reading iterators */ const_char_iterator BeginReading() const { return mData; } const_char_iterator EndReading() const { return mData + mLength; } /** * deprecated reading iterators */ const_iterator& BeginReading(const_iterator& aIter) const { aIter.mStart = mData; aIter.mEnd = mData + mLength; aIter.mPosition = aIter.mStart; return aIter; } const_iterator& EndReading(const_iterator& aIter) const { aIter.mStart = mData; aIter.mEnd = mData + mLength; aIter.mPosition = aIter.mEnd; return aIter; } const_char_iterator& BeginReading(const_char_iterator& aIter) const { return aIter = mData; } const_char_iterator& EndReading(const_char_iterator& aIter) const { return aIter = mData + mLength; } /** * writing iterators */ char_iterator BeginWriting() { if (!EnsureMutable()) { AllocFailed(mLength); } return mData; } char_iterator BeginWriting(const fallible_t&) { return EnsureMutable() ? mData : char_iterator(0); } char_iterator EndWriting() { if (!EnsureMutable()) { AllocFailed(mLength); } return mData + mLength; } char_iterator EndWriting(const fallible_t&) { return EnsureMutable() ? (mData + mLength) : char_iterator(0); } char_iterator& BeginWriting(char_iterator& aIter) { return aIter = BeginWriting(); } char_iterator& BeginWriting(char_iterator& aIter, const fallible_t& aFallible) { return aIter = BeginWriting(aFallible); } char_iterator& EndWriting(char_iterator& aIter) { return aIter = EndWriting(); } char_iterator& EndWriting(char_iterator& aIter, const fallible_t& aFallible) { return aIter = EndWriting(aFallible); } /** * deprecated writing iterators */ iterator& BeginWriting(iterator& aIter) { char_type* data = BeginWriting(); aIter.mStart = data; aIter.mEnd = data + mLength; aIter.mPosition = aIter.mStart; return aIter; } iterator& EndWriting(iterator& aIter) { char_type* data = BeginWriting(); aIter.mStart = data; aIter.mEnd = data + mLength; aIter.mPosition = aIter.mEnd; return aIter; } /** * accessors */ // returns pointer to string data (not necessarily null-terminated) #if defined(CharT_is_PRUnichar) && defined(MOZ_USE_CHAR16_WRAPPER) char16ptr_t Data() const #else const char_type* Data() const #endif { return mData; } size_type Length() const { return mLength; } uint32_t Flags() const { return mFlags; } bool IsEmpty() const { return mLength == 0; } bool IsLiteral() const { return (mFlags & F_LITERAL) != 0; } bool IsVoid() const { return (mFlags & F_VOIDED) != 0; } bool IsTerminated() const { return (mFlags & F_TERMINATED) != 0; } char_type CharAt(index_type aIndex) const { NS_ASSERTION(aIndex < mLength, "index exceeds allowable range"); return mData[aIndex]; } char_type operator[](index_type aIndex) const { return CharAt(aIndex); } char_type First() const { NS_ASSERTION(mLength > 0, "|First()| called on an empty string"); return mData[0]; } inline char_type Last() const { NS_ASSERTION(mLength > 0, "|Last()| called on an empty string"); return mData[mLength - 1]; } size_type NS_FASTCALL CountChar(char_type) const; int32_t NS_FASTCALL FindChar(char_type, index_type aOffset = 0) const; inline bool Contains(char_type aChar) const { return FindChar(aChar) != kNotFound; } /** * equality */ bool NS_FASTCALL Equals(const self_type&) const; bool NS_FASTCALL Equals(const self_type&, const comparator_type&) const; bool NS_FASTCALL Equals(const char_type* aData) const; bool NS_FASTCALL Equals(const char_type* aData, const comparator_type& aComp) const; #if defined(CharT_is_PRUnichar) && defined(MOZ_USE_CHAR16_WRAPPER) bool NS_FASTCALL Equals(char16ptr_t aData) const { return Equals(static_cast<const char16_t*>(aData)); } bool NS_FASTCALL Equals(char16ptr_t aData, const comparator_type& aComp) const { return Equals(static_cast<const char16_t*>(aData), aComp); } #endif /** * An efficient comparison with ASCII that can be used even * for wide strings. Call this version when you know the * length of 'data'. */ bool NS_FASTCALL EqualsASCII(const char* aData, size_type aLen) const; /** * An efficient comparison with ASCII that can be used even * for wide strings. Call this version when 'data' is * null-terminated. */ bool NS_FASTCALL EqualsASCII(const char* aData) const; // EqualsLiteral must ONLY be applied to an actual literal string, or // a char array *constant* declared without an explicit size. // Do not attempt to use it with a regular char* pointer, or with a // non-constant char array variable. Use EqualsASCII for them. // The template trick to acquire the array length at compile time without // using a macro is due to Corey Kosak, with much thanks. template<int N> inline bool EqualsLiteral(const char (&aStr)[N]) const { return EqualsASCII(aStr, N - 1); } // The LowerCaseEquals methods compare the ASCII-lowercase version of // this string (lowercasing only ASCII uppercase characters) to some // ASCII/Literal string. The ASCII string is *not* lowercased for // you. If you compare to an ASCII or literal string that contains an // uppercase character, it is guaranteed to return false. We will // throw assertions too. bool NS_FASTCALL LowerCaseEqualsASCII(const char* aData, size_type aLen) const; bool NS_FASTCALL LowerCaseEqualsASCII(const char* aData) const; // LowerCaseEqualsLiteral must ONLY be applied to an actual // literal string, or a char array *constant* declared without an // explicit size. Do not attempt to use it with a regular char* // pointer, or with a non-constant char array variable. Use // LowerCaseEqualsASCII for them. template<int N> inline bool LowerCaseEqualsLiteral(const char (&aStr)[N]) const { return LowerCaseEqualsASCII(aStr, N - 1); } /** * assignment */ void NS_FASTCALL Assign(char_type aChar); MOZ_MUST_USE bool NS_FASTCALL Assign(char_type aChar, const fallible_t&); void NS_FASTCALL Assign(const char_type* aData); MOZ_MUST_USE bool NS_FASTCALL Assign(const char_type* aData, const fallible_t&); void NS_FASTCALL Assign(const char_type* aData, size_type aLength); MOZ_MUST_USE bool NS_FASTCALL Assign(const char_type* aData, size_type aLength, const fallible_t&); void NS_FASTCALL Assign(const self_type&); MOZ_MUST_USE bool NS_FASTCALL Assign(const self_type&, const fallible_t&); void NS_FASTCALL Assign(const substring_tuple_type&); MOZ_MUST_USE bool NS_FASTCALL Assign(const substring_tuple_type&, const fallible_t&); #if defined(CharT_is_PRUnichar) && defined(MOZ_USE_CHAR16_WRAPPER) void Assign(char16ptr_t aData) { Assign(static_cast<const char16_t*>(aData)); } void Assign(char16ptr_t aData, size_type aLength) { Assign(static_cast<const char16_t*>(aData), aLength); } MOZ_MUST_USE bool Assign(char16ptr_t aData, size_type aLength, const fallible_t& aFallible) { return Assign(static_cast<const char16_t*>(aData), aLength, aFallible); } #endif void NS_FASTCALL AssignASCII(const char* aData, size_type aLength); MOZ_MUST_USE bool NS_FASTCALL AssignASCII(const char* aData, size_type aLength, const fallible_t&); void NS_FASTCALL AssignASCII(const char* aData) { AssignASCII(aData, mozilla::AssertedCast<size_type, size_t>(strlen(aData))); } MOZ_MUST_USE bool NS_FASTCALL AssignASCII(const char* aData, const fallible_t& aFallible) { return AssignASCII(aData, mozilla::AssertedCast<size_type, size_t>(strlen(aData)), aFallible); } // AssignLiteral must ONLY be applied to an actual literal string, or // a char array *constant* declared without an explicit size. // Do not attempt to use it with a regular char* pointer, or with a // non-constant char array variable. Use AssignASCII for those. // There are not fallible version of these methods because they only really // apply to small allocations that we wouldn't want to check anyway. template<int N> void AssignLiteral(const char_type (&aStr)[N]) { AssignLiteral(aStr, N - 1); } #ifdef CharT_is_PRUnichar template<int N> void AssignLiteral(const char (&aStr)[N]) { AssignASCII(aStr, N - 1); } #endif self_type& operator=(char_type aChar) { Assign(aChar); return *this; } self_type& operator=(const char_type* aData) { Assign(aData); return *this; } #if defined(CharT_is_PRUnichar) && defined(MOZ_USE_CHAR16_WRAPPER) self_type& operator=(char16ptr_t aData) { Assign(aData); return *this; } #endif self_type& operator=(const self_type& aStr) { Assign(aStr); return *this; } self_type& operator=(const substring_tuple_type& aTuple) { Assign(aTuple); return *this; } void NS_FASTCALL Adopt(char_type* aData, size_type aLength = size_type(-1)); /** * buffer manipulation */ void NS_FASTCALL Replace(index_type aCutStart, size_type aCutLength, char_type aChar); MOZ_MUST_USE bool NS_FASTCALL Replace(index_type aCutStart, size_type aCutLength, char_type aChar, const fallible_t&); void NS_FASTCALL Replace(index_type aCutStart, size_type aCutLength, const char_type* aData, size_type aLength = size_type(-1)); MOZ_MUST_USE bool NS_FASTCALL Replace(index_type aCutStart, size_type aCutLength, const char_type* aData, size_type aLength, const fallible_t&); void Replace(index_type aCutStart, size_type aCutLength, const self_type& aStr) { Replace(aCutStart, aCutLength, aStr.Data(), aStr.Length()); } MOZ_MUST_USE bool Replace(index_type aCutStart, size_type aCutLength, const self_type& aStr, const fallible_t& aFallible) { return Replace(aCutStart, aCutLength, aStr.Data(), aStr.Length(), aFallible); } void NS_FASTCALL Replace(index_type aCutStart, size_type aCutLength, const substring_tuple_type& aTuple); void NS_FASTCALL ReplaceASCII(index_type aCutStart, size_type aCutLength, const char* aData, size_type aLength = size_type(-1)); MOZ_MUST_USE bool NS_FASTCALL ReplaceASCII(index_type aCutStart, size_type aCutLength, const char* aData, size_type aLength, const fallible_t&); // ReplaceLiteral must ONLY be applied to an actual literal string. // Do not attempt to use it with a regular char* pointer, or with a char // array variable. Use Replace or ReplaceASCII for those. template<int N> void ReplaceLiteral(index_type aCutStart, size_type aCutLength, const char_type (&aStr)[N]) { ReplaceLiteral(aCutStart, aCutLength, aStr, N - 1); } void Append(char_type aChar) { Replace(mLength, 0, aChar); } MOZ_MUST_USE bool Append(char_type aChar, const fallible_t& aFallible) { return Replace(mLength, 0, aChar, aFallible); } void Append(const char_type* aData, size_type aLength = size_type(-1)) { Replace(mLength, 0, aData, aLength); } MOZ_MUST_USE bool Append(const char_type* aData, size_type aLength, const fallible_t& aFallible) { return Replace(mLength, 0, aData, aLength, aFallible); } #if defined(CharT_is_PRUnichar) && defined(MOZ_USE_CHAR16_WRAPPER) void Append(char16ptr_t aData, size_type aLength = size_type(-1)) { Append(static_cast<const char16_t*>(aData), aLength); } #endif void Append(const self_type& aStr) { Replace(mLength, 0, aStr); } MOZ_MUST_USE bool Append(const self_type& aStr, const fallible_t& aFallible) { return Replace(mLength, 0, aStr, aFallible); } void Append(const substring_tuple_type& aTuple) { Replace(mLength, 0, aTuple); } void AppendASCII(const char* aData, size_type aLength = size_type(-1)) { ReplaceASCII(mLength, 0, aData, aLength); } MOZ_MUST_USE bool AppendASCII(const char* aData, const fallible_t& aFallible) { return ReplaceASCII(mLength, 0, aData, size_type(-1), aFallible); } MOZ_MUST_USE bool AppendASCII(const char* aData, size_type aLength, const fallible_t& aFallible) { return ReplaceASCII(mLength, 0, aData, aLength, aFallible); } /** * Append a formatted string to the current string. Uses the format * codes documented in prprf.h */ void AppendPrintf(const char* aFormat, ...); void AppendPrintf(const char* aFormat, va_list aAp); void AppendInt(int32_t aInteger) { AppendPrintf("%d", aInteger); } void AppendInt(int32_t aInteger, int aRadix) { const char* fmt = aRadix == 10 ? "%d" : aRadix == 8 ? "%o" : "%x"; AppendPrintf(fmt, aInteger); } void AppendInt(uint32_t aInteger) { AppendPrintf("%u", aInteger); } void AppendInt(uint32_t aInteger, int aRadix) { const char* fmt = aRadix == 10 ? "%u" : aRadix == 8 ? "%o" : "%x"; AppendPrintf(fmt, aInteger); } void AppendInt(int64_t aInteger) { AppendPrintf("%lld", aInteger); } void AppendInt(int64_t aInteger, int aRadix) { const char* fmt = aRadix == 10 ? "%lld" : aRadix == 8 ? "%llo" : "%llx"; AppendPrintf(fmt, aInteger); } void AppendInt(uint64_t aInteger) { AppendPrintf("%llu", aInteger); } void AppendInt(uint64_t aInteger, int aRadix) { const char* fmt = aRadix == 10 ? "%llu" : aRadix == 8 ? "%llo" : "%llx"; AppendPrintf(fmt, aInteger); } /** * Append the given float to this string */ void NS_FASTCALL AppendFloat(float aFloat); void NS_FASTCALL AppendFloat(double aFloat); public: // AppendLiteral must ONLY be applied to an actual literal string. // Do not attempt to use it with a regular char* pointer, or with a char // array variable. Use Append or AppendASCII for those. template<int N> void AppendLiteral(const char_type (&aStr)[N]) { ReplaceLiteral(mLength, 0, aStr, N - 1); } #ifdef CharT_is_PRUnichar template<int N> void AppendLiteral(const char (&aStr)[N]) { AppendASCII(aStr, N - 1); } template<int N> MOZ_MUST_USE bool AppendLiteral(const char (&aStr)[N], const fallible_t& aFallible) { return AppendASCII(aStr, N - 1, aFallible); } #endif self_type& operator+=(char_type aChar) { Append(aChar); return *this; } self_type& operator+=(const char_type* aData) { Append(aData); return *this; } #if defined(CharT_is_PRUnichar) && defined(MOZ_USE_CHAR16_WRAPPER) self_type& operator+=(char16ptr_t aData) { Append(aData); return *this; } #endif self_type& operator+=(const self_type& aStr) { Append(aStr); return *this; } self_type& operator+=(const substring_tuple_type& aTuple) { Append(aTuple); return *this; } void Insert(char_type aChar, index_type aPos) { Replace(aPos, 0, aChar); } void Insert(const char_type* aData, index_type aPos, size_type aLength = size_type(-1)) { Replace(aPos, 0, aData, aLength); } #if defined(CharT_is_PRUnichar) && defined(MOZ_USE_CHAR16_WRAPPER) void Insert(char16ptr_t aData, index_type aPos, size_type aLength = size_type(-1)) { Insert(static_cast<const char16_t*>(aData), aPos, aLength); } #endif void Insert(const self_type& aStr, index_type aPos) { Replace(aPos, 0, aStr); } void Insert(const substring_tuple_type& aTuple, index_type aPos) { Replace(aPos, 0, aTuple); } // InsertLiteral must ONLY be applied to an actual literal string. // Do not attempt to use it with a regular char* pointer, or with a char // array variable. Use Insert for those. template<int N> void InsertLiteral(const char_type (&aStr)[N], index_type aPos) { ReplaceLiteral(aPos, 0, aStr, N - 1); } void Cut(index_type aCutStart, size_type aCutLength) { Replace(aCutStart, aCutLength, char_traits::sEmptyBuffer, 0); } /** * buffer sizing */ /** * Attempts to set the capacity to the given size in number of * characters, without affecting the length of the string. * There is no need to include room for the null terminator: it is * the job of the string class. * Also ensures that the buffer is mutable. */ void NS_FASTCALL SetCapacity(size_type aNewCapacity); MOZ_MUST_USE bool NS_FASTCALL SetCapacity(size_type aNewCapacity, const fallible_t&); void NS_FASTCALL SetLength(size_type aNewLength); MOZ_MUST_USE bool NS_FASTCALL SetLength(size_type aNewLength, const fallible_t&); void Truncate(size_type aNewLength = 0) { NS_ASSERTION(aNewLength <= mLength, "Truncate cannot make string longer"); SetLength(aNewLength); } /** * buffer access */ /** * Get a const pointer to the string's internal buffer. The caller * MUST NOT modify the characters at the returned address. * * @returns The length of the buffer in characters. */ inline size_type GetData(const char_type** aData) const { *aData = mData; return mLength; } /** * Get a pointer to the string's internal buffer, optionally resizing * the buffer first. If size_type(-1) is passed for newLen, then the * current length of the string is used. The caller MAY modify the * characters at the returned address (up to but not exceeding the * length of the string). * * @returns The length of the buffer in characters or 0 if unable to * satisfy the request due to low-memory conditions. */ size_type GetMutableData(char_type** aData, size_type aNewLen = size_type(-1)) { if (!EnsureMutable(aNewLen)) { AllocFailed(aNewLen == size_type(-1) ? mLength : aNewLen); } *aData = mData; return mLength; } size_type GetMutableData(char_type** aData, size_type aNewLen, const fallible_t&) { if (!EnsureMutable(aNewLen)) { *aData = nullptr; return 0; } *aData = mData; return mLength; } #if defined(CharT_is_PRUnichar) && defined(MOZ_USE_CHAR16_WRAPPER) size_type GetMutableData(wchar_t** aData, size_type aNewLen = size_type(-1)) { return GetMutableData(reinterpret_cast<char16_t**>(aData), aNewLen); } size_type GetMutableData(wchar_t** aData, size_type aNewLen, const fallible_t& aFallible) { return GetMutableData(reinterpret_cast<char16_t**>(aData), aNewLen, aFallible); } #endif /** * string data is never null, but can be marked void. if true, the * string will be truncated. @see nsTSubstring::IsVoid */ void NS_FASTCALL SetIsVoid(bool); /** * This method is used to remove all occurrences of aChar from this * string. * * @param aChar -- char to be stripped * @param aOffset -- where in this string to start stripping chars */ void StripChar(char_type aChar, int32_t aOffset = 0); /** * This method is used to remove all occurrences of aChars from this * string. * * @param aChars -- chars to be stripped * @param aOffset -- where in this string to start stripping chars */ void StripChars(const char_type* aChars, uint32_t aOffset = 0); /** * If the string uses a shared buffer, this method * clears the pointer without releasing the buffer. */ void ForgetSharedBuffer() { if (mFlags & nsSubstring::F_SHARED) { mData = char_traits::sEmptyBuffer; mLength = 0; mFlags = F_TERMINATED; } } public: /** * this is public to support automatic conversion of tuple to string * base type, which helps avoid converting to nsTAString. */ MOZ_IMPLICIT nsTSubstring_CharT(const substring_tuple_type& aTuple) : mData(nullptr) , mLength(0) , mFlags(F_NONE) { Assign(aTuple); } /** * allows for direct initialization of a nsTSubstring object. * * NOTE: this constructor is declared public _only_ for convenience * inside the string implementation. */ // XXXbz or can I just include nscore.h and use NS_BUILD_REFCNT_LOGGING? #if defined(DEBUG) || defined(FORCE_BUILD_REFCNT_LOGGING) #define XPCOM_STRING_CONSTRUCTOR_OUT_OF_LINE nsTSubstring_CharT(char_type* aData, size_type aLength, uint32_t aFlags); #else #undef XPCOM_STRING_CONSTRUCTOR_OUT_OF_LINE nsTSubstring_CharT(char_type* aData, size_type aLength, uint32_t aFlags) : mData(aData) , mLength(aLength) , mFlags(aFlags) { MOZ_RELEASE_ASSERT(CheckCapacity(aLength), "String is too large."); } #endif /* DEBUG || FORCE_BUILD_REFCNT_LOGGING */ size_t SizeOfExcludingThisIfUnshared(mozilla::MallocSizeOf aMallocSizeOf) const; size_t SizeOfIncludingThisIfUnshared(mozilla::MallocSizeOf aMallocSizeOf) const; /** * WARNING: Only use these functions if you really know what you are * doing, because they can easily lead to double-counting strings. If * you do use them, please explain clearly in a comment why it's safe * and won't lead to double-counting. */ size_t SizeOfExcludingThisEvenIfShared(mozilla::MallocSizeOf aMallocSizeOf) const; size_t SizeOfIncludingThisEvenIfShared(mozilla::MallocSizeOf aMallocSizeOf) const; template<class T> void NS_ABORT_OOM(T) { struct never {}; // a compiler-friendly way to do static_assert(false) static_assert(mozilla::IsSame<T, never>::value, "In string classes, use AllocFailed to account for sizeof(char_type). " "Use the global ::NS_ABORT_OOM if you really have a count of bytes."); } MOZ_ALWAYS_INLINE void AllocFailed(size_t aLength) { ::NS_ABORT_OOM(aLength * sizeof(char_type)); } protected: friend class nsTObsoleteAStringThunk_CharT; friend class nsTSubstringTuple_CharT; // XXX GCC 3.4 needs this :-( friend class nsTPromiseFlatString_CharT; char_type* mData; size_type mLength; uint32_t mFlags; // default initialization nsTSubstring_CharT() : mData(char_traits::sEmptyBuffer) , mLength(0) , mFlags(F_TERMINATED) { } // version of constructor that leaves mData and mLength uninitialized explicit nsTSubstring_CharT(uint32_t aFlags) : mFlags(aFlags) { } // copy-constructor, constructs as dependent on given object // (NOTE: this is for internal use only) nsTSubstring_CharT(const self_type& aStr) : mData(aStr.mData) , mLength(aStr.mLength) , mFlags(aStr.mFlags & (F_TERMINATED | F_VOIDED)) { } /** * this function releases mData and does not change the value of * any of its member variables. in other words, this function acts * like a destructor. */ void NS_FASTCALL Finalize(); /** * this function prepares mData to be mutated. * * @param aCapacity specifies the required capacity of mData * @param aOldData returns null or the old value of mData * @param aOldFlags returns 0 or the old value of mFlags * * if mData is already mutable and of sufficient capacity, then this * function will return immediately. otherwise, it will either resize * mData or allocate a new shared buffer. if it needs to allocate a * new buffer, then it will return the old buffer and the corresponding * flags. this allows the caller to decide when to free the old data. * * this function returns false if is unable to allocate sufficient * memory. * * XXX we should expose a way for subclasses to free old_data. */ bool NS_FASTCALL MutatePrep(size_type aCapacity, char_type** aOldData, uint32_t* aOldFlags); /** * this function prepares a section of mData to be modified. if * necessary, this function will reallocate mData and possibly move * existing data to open up the specified section. * * @param aCutStart specifies the starting offset of the section * @param aCutLength specifies the length of the section to be replaced * @param aNewLength specifies the length of the new section * * for example, suppose mData contains the string "abcdef" then * * ReplacePrep(2, 3, 4); * * would cause mData to look like "ab____f" where the characters * indicated by '_' have an unspecified value and can be freely * modified. this function will null-terminate mData upon return. * * this function returns false if is unable to allocate sufficient * memory. */ MOZ_MUST_USE bool ReplacePrep(index_type aCutStart, size_type aCutLength, size_type aNewLength); MOZ_MUST_USE bool NS_FASTCALL ReplacePrepInternal( index_type aCutStart, size_type aCutLength, size_type aNewFragLength, size_type aNewTotalLength); /** * returns the number of writable storage units starting at mData. * the value does not include space for the null-terminator character. * * NOTE: this function returns 0 if mData is immutable (or the buffer * is 0-sized). */ size_type NS_FASTCALL Capacity() const; /** * this helper function can be called prior to directly manipulating * the contents of mData. see, for example, BeginWriting. */ MOZ_MUST_USE bool NS_FASTCALL EnsureMutable( size_type aNewLen = size_type(-1)); /** * returns true if this string overlaps with the given string fragment. */ bool IsDependentOn(const char_type* aStart, const char_type* aEnd) const { /** * if it _isn't_ the case that one fragment starts after the other ends, * or ends before the other starts, then, they conflict: * * !(f2.begin >= f1.aEnd || f2.aEnd <= f1.begin) * * Simplified, that gives us: */ return (aStart < (mData + mLength) && aEnd > mData); } /** * Checks if the given capacity is valid for this string type. */ static MOZ_MUST_USE bool CheckCapacity(size_type aCapacity) { if (aCapacity > kMaxCapacity) { // Also assert for |aCapacity| equal to |size_type(-1)|, since we used to // use that value to flag immutability. NS_ASSERTION(aCapacity != size_type(-1), "Bogus capacity"); return false; } return true; } /** * this helper function stores the specified dataFlags in mFlags */ void SetDataFlags(uint32_t aDataFlags) { NS_ASSERTION((aDataFlags & 0xFFFF0000) == 0, "bad flags"); mFlags = aDataFlags | (mFlags & 0xFFFF0000); } void NS_FASTCALL ReplaceLiteral(index_type aCutStart, size_type aCutLength, const char_type* aData, size_type aLength); static int AppendFunc(void* aArg, const char* aStr, uint32_t aLen); static const size_type kMaxCapacity; public: // NOTE: this method is declared public _only_ for convenience for // callers who don't have access to the original nsLiteralString_CharT. void NS_FASTCALL AssignLiteral(const char_type* aData, size_type aLength); // mFlags is a bitwise combination of the following flags. the meaning // and interpretation of these flags is an implementation detail. // // NOTE: these flags are declared public _only_ for convenience inside // the string implementation. enum { F_NONE = 0, // no flags // data flags are in the lower 16-bits F_TERMINATED = 1 << 0, // IsTerminated returns true F_VOIDED = 1 << 1, // IsVoid returns true F_SHARED = 1 << 2, // mData points to a heap-allocated, shared buffer F_OWNED = 1 << 3, // mData points to a heap-allocated, raw buffer F_FIXED = 1 << 4, // mData points to a fixed-size writable, dependent buffer F_LITERAL = 1 << 5, // mData points to a string literal; F_TERMINATED will also be set // class flags are in the upper 16-bits F_CLASS_FIXED = 1 << 16 // indicates that |this| is of type nsTFixedString }; // // Some terminology: // // "dependent buffer" A dependent buffer is one that the string class // does not own. The string class relies on some // external code to ensure the lifetime of the // dependent buffer. // // "shared buffer" A shared buffer is one that the string class // allocates. When it allocates a shared string // buffer, it allocates some additional space at // the beginning of the buffer for additional // fields, including a reference count and a // buffer length. See nsStringHeader. // // "adopted buffer" An adopted buffer is a raw string buffer // allocated on the heap (using moz_xmalloc) // of which the string class subsumes ownership. // // Some comments about the string flags: // // F_SHARED, F_OWNED, and F_FIXED are all mutually exlusive. They // indicate the allocation type of mData. If none of these flags // are set, then the string buffer is dependent. // // F_SHARED, F_OWNED, or F_FIXED imply F_TERMINATED. This is because // the string classes always allocate null-terminated buffers, and // non-terminated substrings are always dependent. // // F_VOIDED implies F_TERMINATED, and moreover it implies that mData // points to char_traits::sEmptyBuffer. Therefore, F_VOIDED is // mutually exclusive with F_SHARED, F_OWNED, and F_FIXED. // }; int NS_FASTCALL Compare(const nsTSubstring_CharT::base_string_type& aLhs, const nsTSubstring_CharT::base_string_type& aRhs, const nsTStringComparator_CharT& = nsTDefaultStringComparator_CharT()); inline bool operator!=(const nsTSubstring_CharT::base_string_type& aLhs, const nsTSubstring_CharT::base_string_type& aRhs) { return !aLhs.Equals(aRhs); } inline bool operator!=(const nsTSubstring_CharT::base_string_type& aLhs, const nsTSubstring_CharT::char_type* aRhs) { return !aLhs.Equals(aRhs); } inline bool operator<(const nsTSubstring_CharT::base_string_type& aLhs, const nsTSubstring_CharT::base_string_type& aRhs) { return Compare(aLhs, aRhs) < 0; } inline bool operator<=(const nsTSubstring_CharT::base_string_type& aLhs, const nsTSubstring_CharT::base_string_type& aRhs) { return Compare(aLhs, aRhs) <= 0; } inline bool operator==(const nsTSubstring_CharT::base_string_type& aLhs, const nsTSubstring_CharT::base_string_type& aRhs) { return aLhs.Equals(aRhs); } inline bool operator==(const nsTSubstring_CharT::base_string_type& aLhs, const nsTSubstring_CharT::char_type* aRhs) { return aLhs.Equals(aRhs); } inline bool operator>=(const nsTSubstring_CharT::base_string_type& aLhs, const nsTSubstring_CharT::base_string_type& aRhs) { return Compare(aLhs, aRhs) >= 0; } inline bool operator>(const nsTSubstring_CharT::base_string_type& aLhs, const nsTSubstring_CharT::base_string_type& aRhs) { return Compare(aLhs, aRhs) > 0; }